JPH0436304A - Preparation of highly water-absorbent polymer - Google Patents

Preparation of highly water-absorbent polymer

Info

Publication number
JPH0436304A
JPH0436304A JP14247590A JP14247590A JPH0436304A JP H0436304 A JPH0436304 A JP H0436304A JP 14247590 A JP14247590 A JP 14247590A JP 14247590 A JP14247590 A JP 14247590A JP H0436304 A JPH0436304 A JP H0436304A
Authority
JP
Japan
Prior art keywords
polymer
group
acrylic acid
water absorption
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14247590A
Other languages
Japanese (ja)
Other versions
JP2917418B2 (en
Inventor
Kenji Yoshinaga
吉永 憲司
Shuhei Yada
修平 矢田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Petrochemical Co Ltd
Original Assignee
Mitsubishi Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Petrochemical Co Ltd filed Critical Mitsubishi Petrochemical Co Ltd
Priority to JP14247590A priority Critical patent/JP2917418B2/en
Publication of JPH0436304A publication Critical patent/JPH0436304A/en
Application granted granted Critical
Publication of JP2917418B2 publication Critical patent/JP2917418B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To prepare the title polymer having excellent water absorption properties, a large mean particle diameter, and good flowability and transportability as a product by allowing (meth)acryilic acid or an alkali salt thereof to undergo reversed phase suspension polymn. in a hydrocarbon solvent in the presence of a specific phosphoric ester surfactant. CONSTITUTION:In a process wherein a monomer selected from the group consisting of (meth)acrylic acid and alkali metal salts thereof is allowed to undergo reversed phase suspension polymn. in a hydrocarbon solvent, in the presence of a crosslinker [e.g. N,N'-methylenebis(meth)acrylamide], using a radical initiator [e.g. ammonium persulfate, or an azo initiator such as azobis-(2- amidinopropane)-hydrochloride], a phosphoric ester surfactant of formula I (wherein R is 8-30C alkyl or alkylphenyl; R' is OH or a group of formula II; and (n) is 1-5) is used. The polymer product gives a highly water-absorbent polymer which, excellent in safety and having excellent water absorption properties, a large mean particle diameter, and good flowability and transportability as a product, is suitably used in many applications as a water absorbent material.

Description

【発明の詳細な説明】 〔発明の背景〕 〈産業上の利用分野〉 本発明は、高吸水性ポリマーの製造法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Background of the Invention] <Industrial Application Field> The present invention relates to a method for producing a superabsorbent polymer.

本発明で得られる高吸水性ポリマーは、安全性が高く、
吸水諸性能に優れ、しかも大きな平均粒子径を有してお
り、さらに製品としての流動性、搬送性が良好であるの
で、各種の吸水材料に対して有利に使用することができ
る。
The superabsorbent polymer obtained by the present invention is highly safe,
It has excellent water absorption performance, has a large average particle diameter, and has good fluidity and transportability as a product, so it can be advantageously used for various water absorption materials.

〈従来技術〉 近年、高吸水性ポリマーは、生理用品や紙おむつ等の衛
生材料分野のみならず、止水材、結露防止材、さらに鮮
度保持材、溶剤脱水材等の産業用途、緑化、農園芸用途
等にも実用化されつつあり、今後、応用範囲はさらに拡
大されていくと思われる合成ポリマーである。この種の
高吸水性ポリマーとしては、澱粉−アクリロニトリルグ
ラフト共重合体の加水分解物、カルボキシメチルセルロ
ース架橋体、ポリアクリル酸(塩)架橋体、アクリル酸
(塩)−ビニルアルコール共重合体、ポリエチレンオキ
サイド架橋体等が知られている。しかし、これらの高吸
水性ポリマーのいずれもが、吸水能はほぼ満足している
ものの、吸水速度、保水力等の吸水諸性能を同時に満足
しているとは言い難い。すなわち、吸水能の高いポリマ
ーは、−C的に、吸水速度が遅く、保水力に乏しいから
である。
<Prior art> In recent years, superabsorbent polymers have been used not only in the field of sanitary materials such as sanitary products and disposable diapers, but also in industrial applications such as water-stopping materials, anti-condensation materials, freshness preservation materials, and solvent dehydration materials, greening, and agriculture and horticulture. It is a synthetic polymer that is being put into practical use for various purposes, and its range of applications is expected to further expand in the future. Examples of this type of superabsorbent polymer include starch-acrylonitrile graft copolymer hydrolyzate, carboxymethyl cellulose crosslinked product, polyacrylic acid (salt) crosslinked product, acrylic acid (salt)-vinyl alcohol copolymer, and polyethylene oxide. Crosslinked products and the like are known. However, although all of these highly water-absorbent polymers have almost satisfactory water absorption capacity, it is difficult to say that they simultaneously satisfy various water absorption properties such as water absorption rate and water retention capacity. That is, a polymer with high water absorption capacity has a slow water absorption rate and poor water retention capacity in terms of -C.

上記高吸水性ポリマーの吸水速度を向上させる方法とし
ては、親油性界面活性剤、非揮発性炭化水素またはステ
アリン酸カルシウム等の、所謂、滑剤を混合する方法、
ポリマー自体の架橋密度を高くして、ポリマーの親水性
を低下させる方法等が提案されている。しかし、前者の
方法は、単なる物理的混合であって滑剤がポリマーに化
学的に固定化されていないために、ごく初期においては
改善は見られるもののその効果は永続きしないという問
題点がある。また、後者の方法には、ポリマーの吸水能
自体を低下させてしまうという問題点がある。
Methods for improving the water absorption rate of the superabsorbent polymer include a method of mixing a so-called lubricant such as a lipophilic surfactant, a non-volatile hydrocarbon, or calcium stearate;
A method has been proposed in which the hydrophilicity of the polymer is reduced by increasing the crosslinking density of the polymer itself. However, the former method involves mere physical mixing and the lubricant is not chemically immobilized on the polymer, so there is a problem in that although an improvement is seen in the very early stages, the effect is not permanent. Furthermore, the latter method has the problem of reducing the water absorbing ability of the polymer itself.

次に平均粒子径については、特に逆相懸濁重合法におい
て合成された高吸水性ポリマーは、微粒子が多く、取扱
い上、困難なものが多い。
Next, regarding the average particle diameter, particularly superabsorbent polymers synthesized by reverse-phase suspension polymerization have many fine particles and are often difficult to handle.

高吸水性ポリマーの平均粒子径の増大方法としては、モ
ノマー相に増粘剤を加えて重合させる方法、生成した微
粒子をバインダーを用いて造粒する方法等が一般的であ
る。しかし、前者は、モノマー相の粘度を増大させるた
めに、重合物粒子が相互に粘着し、全体または一部分が
塊状物となったりして良好な方法とは言い難い。又、後
者は、バインダーを使用するため、安全性、コストの面
で不利となる。
Common methods for increasing the average particle size of superabsorbent polymers include a method in which a thickener is added to the monomer phase and polymerized, a method in which the produced fine particles are granulated using a binder, and the like. However, the former method is not a good method because it increases the viscosity of the monomer phase, causing the polymer particles to stick to each other, resulting in all or part of the polymer particles becoming lumpy. Furthermore, since the latter uses a binder, it is disadvantageous in terms of safety and cost.

その他にも、吸水諸性能のアップ又は平均粒子径のアッ
プを目的として、種々の界面活性剤を使用する方法が提
案されている。
In addition, methods using various surfactants have been proposed for the purpose of improving water absorption performance or increasing the average particle size.

このようなものとして、例えば、HL、B8〜12の界
面活性剤を用いる方法が特開昭56−131608号公
報に記載されている。
As such, for example, a method using surfactants HL and B8 to B12 is described in JP-A-56-131608.

しかしながら、この方法では、得られたポリマーの平均
粒子径が改良され、微粒子は減るものの、重合時に重合
槽器壁へのポリマーの付着が激しくて、安定操業をする
点に於いて必ずしも満足できるものとは言えない。しか
も、この方法により粒径を大きくしたポリマーは、−船
釣に吸水性能が劣る傾向にある。従って、平均粒径が大
きく、且つ、高吸水性ポリマーに要求される吸水諸性能
を充分に満足しているポリマーは未だなく、その吸水速
度、保水力等の吸水諸性能及び平均粒子径さらには生産
安定性をも考慮した場合、まだ改善される余地は残され
ている。
However, although this method improves the average particle size of the obtained polymer and reduces the number of fine particles, it is not always satisfactory in terms of stable operation because the polymer adheres to the walls of the polymerization tank during polymerization. It can not be said. Moreover, polymers whose particle size is increased by this method tend to have poor water absorption performance when used for boat fishing. Therefore, there is still no polymer that has a large average particle size and fully satisfies the various water absorption properties required for superabsorbent polymers. When considering production stability, there is still room for improvement.

〔発明の概要〕[Summary of the invention]

LjL 本発明は、安全性が高く、吸水諸性能に優れ、しかも大
きな平均粒子径を有し、製品としての流動性、搬送性が
良好な高吸水性ポリマーを容易に製造する方法を擾供し
ようとするものである。
LjL The present invention provides a method for easily producing a superabsorbent polymer that is highly safe, has excellent water absorption performance, has a large average particle size, and has good fluidity and transportability as a product. That is.

本発明者らは、前記の問題点を解決する目的で種々検討
を重ねた結果、上記逆相懸濁重合法において、界面活性
剤として、−歴代 (式中、Rは炭素数8ないし3oのアルキル基、又は、
アルキルフェニル基を表わし、R′は−OH基又は式+
QC)12CH2+T OHの基を表わす。また、nは
工ないし5の整数である。) で表わされるリン酸エステル系界面活性剤を使用するこ
とにより、安全性が高く、吸水諸性能に優れ、しかも大
きな平均粒子径を有し、製品としての流動性、搬送性が
良好な高吸水性ポリマーが得られることを見出して、本
発明を完成するに至った。
As a result of various studies aimed at solving the above-mentioned problems, the present inventors have discovered that in the above-mentioned reverse phase suspension polymerization method, -successive (wherein R is a carbon number of 8 to 3 o) as a surfactant. an alkyl group, or
represents an alkylphenyl group, R' is -OH group or formula +
QC) represents a group of 12CH2+TOH. Further, n is an integer from 1 to 5. ) By using a phosphate ester surfactant represented by The present invention was completed based on the discovery that it is possible to obtain a synthetic polymer.

即ち、本発明による高吸水性ポリマーの製造法は、アク
リル酸及び/又はメタクリル酸並びにそのアルカリ金属
塩よりなる群から選ばれるアクリル酸系モノマーを、架
橋剤の存在下に、ラジカル重合開始剤を用いて、炭化水
素溶媒中で逆相懸濁重合させる方法において、逆相懸濁
重合に使用する界面活性剤が一般式 (式中、Rは炭素数8ないし30のアルキル基、又は、
アルキルフェニル基を表わし、R′は一〇H基又は式+
0CHzCHz h ORの基を表わす。また、nは工
ないし5の整数である。) で表わされるリン酸エステル系界面活性剤であることを
特徴とするものである。
That is, the method for producing a superabsorbent polymer according to the present invention involves adding a radical polymerization initiator to an acrylic acid monomer selected from the group consisting of acrylic acid and/or methacrylic acid and alkali metal salts thereof in the presence of a crosslinking agent. In the method of reverse-phase suspension polymerization in a hydrocarbon solvent, the surfactant used in the reverse-phase suspension polymerization has the general formula (wherein R is an alkyl group having 8 to 30 carbon atoms, or
Represents an alkylphenyl group, R' is 10H group or formula +
0CHzCHz h Represents a group of OR. Further, n is an integer from 1 to 5. ) It is characterized by being a phosphate ester surfactant represented by:

亘−! 本発明によって製造される高吸水性ポリマーは、吸水能
、吸水速度、保水力等の吸水諸性能に優れたものである
。しかも大きな平均粒子径を持ち、製品としての、流動
性、搬送性も良好である。
Wataru-! The superabsorbent polymer produced by the present invention has excellent water absorption properties such as water absorption capacity, water absorption rate, and water retention capacity. In addition, it has a large average particle diameter and has good fluidity and transportability as a product.

〔発明の詳細な説明〕[Detailed description of the invention]

モノマー 本発明において重合させるべきモノマーとしては、アク
リル酸及び/又はメタクリル酸並びにそのアルカリ金属
塩よりなる群から選ばれるアクリル酸系モノマーが用い
られる。ここで言うアルカリ金属塩とは、アクリル酸及
び/又はメタクリル酸のカルボキシル基を、例えば、水
酸化ナトリウム、水酸化カリウム、水酸化リチウム等の
アルカリ金属水酸化物で中和させて得られた塩のことで
ある。生成ポリマーの性能及び価格等の面からいえば、
アクリル酸及び/又はメタクリル酸を水酸化ナトリウム
にて中和した塩が特に好ましく用いられる。アクリル酸
及び/又はメタクリル酸の中和度は本発明における高吸
水性ポリマーの性能面を考慮する場合に非常に重要な因
子の一つであり、生成高吸水性ポリマーの性能のトータ
ルバランスを考える場合には、アクリル酸系モノマーの
全カルボキシル基の50〜95モル%が中和されている
ことが望ましい。中和度が50モル%未満である場合は
、吸水能が劣る傾向にあり、性能をバランス良く保つの
が困難となる。逆に、95モル%を越えて中和すると、
重合速度が極端に遅くなるので中和のメリットは少ない
Monomer The monomer to be polymerized in the present invention is an acrylic acid monomer selected from the group consisting of acrylic acid and/or methacrylic acid and alkali metal salts thereof. The alkali metal salt referred to here refers to a salt obtained by neutralizing the carboxyl group of acrylic acid and/or methacrylic acid with an alkali metal hydroxide such as sodium hydroxide, potassium hydroxide, lithium hydroxide, etc. It is about. In terms of the performance and price of the produced polymer,
Salts obtained by neutralizing acrylic acid and/or methacrylic acid with sodium hydroxide are particularly preferably used. The degree of neutralization of acrylic acid and/or methacrylic acid is one of the very important factors when considering the performance of the superabsorbent polymer in the present invention, and it is important to consider the total balance of performance of the superabsorbent polymer produced. In some cases, it is desirable that 50 to 95 mol% of all carboxyl groups in the acrylic acid monomer be neutralized. If the degree of neutralization is less than 50 mol%, water absorption capacity tends to be poor, making it difficult to maintain well-balanced performance. Conversely, if more than 95 mol% is neutralized,
Since the polymerization rate becomes extremely slow, neutralization has little merit.

これらのアクリル酸系モノマーの溶液中での濃度は、2
0%以上、30〜60%であることが好ましい。
The concentration of these acrylic acid monomers in solution is 2
It is preferably 0% or more, and 30 to 60%.

また、本発明では、上述したアクリル酸系モノマー以外
にこれらと共重合可能なモノマー、例えばマレイン酸(
塩)、イタコン酸(塩)、アクリルアミド、2−アクリ
ルアミド−2−メチルプロパンスルホン酸、2−(メタ
)アクリロイルエタンスルホン酸、2−ヒドロキシエチ
ル(メタ)アクリレート等も吸水性ポリマーの吸水性能
を実質的に損なわない範囲で併用することも可能である
In addition to the above-mentioned acrylic acid monomers, the present invention also uses monomers copolymerizable with these monomers, such as maleic acid (
Salt), itaconic acid (salt), acrylamide, 2-acrylamido-2-methylpropanesulfonic acid, 2-(meth)acryloylethanesulfonic acid, 2-hydroxyethyl (meth)acrylate, etc. also substantially improve the water absorption performance of water-absorbing polymers. It is also possible to use them together as long as they do not damage the product.

衆援剋 上記アクリル酸系モノマーは、何ら架橋剤を使用しなく
ても、ある程度の自己架橋が生じて高吸水性ポリマーと
なるが、吸水諸性能をバランス良く保つためには、この
七ツマー水溶液に架橋剤成分を加える必要がある。架橋
剤成分としては、分子内に2個以上の重合性不飽和基を
有し、かつ前記アクリル酸系モノマーと共重合性を示す
水溶性化合物、例えばN、N’−メチレンビスアクリル
アミド、N、N’ −メチレンビスメタクリルアミド等
のビスアクリルアミド類が一般的であり、且つ好ましい
。上記架橋剤成分は、通常、モノマー水溶液に対して、
約0.005〜0.5重量%、好ましくは約0.01〜
0.3重量%、の範囲で用いるのが適当である。
The above acrylic acid monomer undergoes self-crosslinking to some extent and becomes a highly water-absorbing polymer even without the use of any crosslinking agent, but in order to maintain a well-balanced water absorption performance, it is necessary to use this 7-mer aqueous solution. It is necessary to add a crosslinking agent component to the As the crosslinking agent component, a water-soluble compound having two or more polymerizable unsaturated groups in the molecule and exhibiting copolymerizability with the acrylic acid monomer, such as N,N'-methylenebisacrylamide, N, Bisacrylamides such as N'-methylenebismethacrylamide are common and preferred. The above crosslinking agent component is usually added to the monomer aqueous solution.
About 0.005-0.5% by weight, preferably about 0.01-0.01% by weight
It is appropriate to use it in a range of 0.3% by weight.

一ジカル 入 本発明における逆相懸濁重合法においては、予めモノマ
ー水溶液中に水溶性ラジカル重合開始剤を溶解させてお
(ことが普通である。ここで用いる水溶性ラジカル重合
開始剤としては、過硫酸カリウム、過硫酸アンモニウム
等の過硫酸塩や、アゾビス−(2−アミジノプロパン)
塩酸塩等のアゾ系開始剤等が代表的である。これらのラ
ジカル重合開始剤は、通常モノマー水溶液に対して、約
o、ooi〜5.0重量%、好ましくは約0.01〜1
.0重量%の範囲で用いるのが適当である。
In the reverse-phase suspension polymerization method of the present invention, a water-soluble radical polymerization initiator is usually dissolved in the monomer aqueous solution in advance.The water-soluble radical polymerization initiator used here is Persulfates such as potassium persulfate and ammonium persulfate, azobis-(2-amidinopropane)
Typical examples include azo initiators such as hydrochloride. These radical polymerization initiators are usually used in an amount of about o, ooi to 5.0% by weight, preferably about 0.01 to 1% by weight, based on the monomer aqueous solution.
.. It is appropriate to use it in the range of 0% by weight.

釡−媒 本発明に使用する逆相懸濁重合の溶媒としては、脂肪族
炭化水素もしくは脂環式炭化水素が好ましい。具体的に
は、ノルマルペンタン、ノルマルヘキサン、ノルマルヘ
プタン、シクロヘキサン、リグロイン等が掲げられ、特
に、シクロヘキサン、ノルマルヘキサンが、重合熱の除
去、得られたポリマーの乾燥の観点からも好ましいもの
である。
Pot-Medium The solvent for reversed-phase suspension polymerization used in the present invention is preferably an aliphatic hydrocarbon or an alicyclic hydrocarbon. Specifically, normal pentane, normal hexane, normal heptane, cyclohexane, ligroin, etc. are listed, and cyclohexane and normal hexane are particularly preferred from the viewpoint of removing polymerization heat and drying the obtained polymer.

この溶媒と重合モノマーとの使用比率は、通常容積比で
、溶媒対重合モノマーが1対1〜5対1の範囲であるの
が好ましい。
The ratio of the solvent to the polymerizable monomer is usually in a volume ratio of 1:1 to 5:1.

星皿孟性遁 本発明に用いられるリン酸エステル系界面活性剤は、化
学構造上、又、生理学的にも天然の燐脂質(レシチン、
セファリン等)と類憤しているため他の界面活性剤と比
較しても低毒性、低刺激性なものであり、安全性の観点
からも好ましい界面活性剤である。
The phosphate ester surfactant used in the present invention is chemically structurally and physiologically based on natural phospholipids (lecithin,
Since it is similar to other surfactants (such as cephalin), it is less toxic and less irritating than other surfactants, making it a preferred surfactant from a safety standpoint.

これらの界面活性剤の添加量は、モノマーに対して通常
0.1〜10重量%、好ましくは、0.5〜5重量%、
の範囲の量である。添加量が0.1重量%未満であると
目的とする分散の効果が得られず、又、10重量%超過
では、重合後のポリマーを乾燥させた時にポリマーが凝
集する傾向があるので好ましくない。
The amount of these surfactants added is usually 0.1 to 10% by weight, preferably 0.5 to 5% by weight, based on the monomer.
is a quantity in the range of . If the amount added is less than 0.1% by weight, the desired dispersion effect cannot be obtained, and if it exceeds 10% by weight, the polymer tends to aggregate when dried after polymerization, which is not preferable. .

代表的なリン酸エステルの例としては、ジオキシエチレ
ンオクタドデシルエーテルリン酸、ジー(ジオキシエチ
レン)オクタドデシルエーテルリン酸、ポリオキシエチ
レン(6)オクタドデシルエーテルリン酸、ジー(ポリ
オキシエチレン(6))オクタドデシルエーテルリン酸
、ジー(ポリオキシエチレン(8))−p−ノニルフェ
ニルエーテルリン酸、ジオキシエチレン−p−ドデシル
フェニルエーテルリン酸、ジー(ジオキシエチレン)−
p−ドデシルフェニルエーテルリン酸、等が挙げられる
Examples of typical phosphoric acid esters include dioxyethylene octadodecyl ether phosphoric acid, di(dioxyethylene) octadodecyl ether phosphoric acid, polyoxyethylene(6) octadodecyl ether phosphoric acid, and di(polyoxyethylene(6) octadodecyl ether phosphoric acid). 6)) Octadodecyl ether phosphoric acid, di(polyoxyethylene (8))-p-nonylphenyl ether phosphoric acid, dioxyethylene-p-dodecylphenyl ether phosphoric acid, di(dioxyethylene)-
Examples include p-dodecyl phenyl ether phosphoric acid.

l−企 前記した様に、本発明は、アクリル酸及び/又はメタク
リル酸並びにそのアルカリ金属塩よりなる群から選ばれ
るアクリル酸系モノマーを、架橋剤、ラジカル重合開始
剤及び二種の界面活性剤の存在下に、逆相懸濁重合法に
よって重合を行うものである。アクリル酸系モノマー、
架橋剤、ラジカル重合開始剤および界面活性剤の添加順
序、添加態様ないし重合操作は、本発明の目的に反しな
い限り任意である。例えば、(イ)架橋剤およびラジカ
ル重合開始剤を溶解させたアクリル酸系モノマー水溶液
を、界面活性剤を添加しておいた炭化水素溶媒に添加し
て懸濁させ、その後に加熱を行なって重合を行う方法、
(ロ)架橋剤およびラジカル重合開始剤を溶解させたア
クリル酸系モノマー水溶液に界面活性剤を添加し、これ
を炭化水素溶媒に添加して懸濁させ、加熱により重合を
行う方法、(ハ)架橋剤およびラジカル重合開始剤を溶
解させたアクリル酸系モノマー水溶液を、炭化水素溶媒
に添加して懸濁させ、その後に界面活性剤を添加し、加
熱して重合を行う方法、などを例示することができる。
l-As mentioned above, the present invention uses an acrylic acid monomer selected from the group consisting of acrylic acid and/or methacrylic acid and alkali metal salts thereof, in combination with a crosslinking agent, a radical polymerization initiator, and two types of surfactants. Polymerization is carried out by reverse phase suspension polymerization in the presence of. acrylic acid monomer,
The order of addition, mode of addition, and polymerization operation of the crosslinking agent, radical polymerization initiator, and surfactant are arbitrary as long as they do not contradict the purpose of the present invention. For example, (a) an aqueous acrylic acid monomer solution in which a crosslinking agent and a radical polymerization initiator are dissolved is added to a hydrocarbon solvent to which a surfactant has been added, suspended, and then heated to polymerize. how to do,
(b) A method of adding a surfactant to an aqueous acrylic acid monomer solution in which a crosslinking agent and a radical polymerization initiator are dissolved, adding this to a hydrocarbon solvent to suspend it, and polymerizing by heating; (c) Examples include a method in which an aqueous acrylic acid monomer solution in which a crosslinking agent and a radical polymerization initiator are dissolved is added to a hydrocarbon solvent and suspended, and then a surfactant is added and polymerization is carried out by heating. be able to.

重合温度は、40〜120°C1好ましくは60〜90
℃、が採用される。また、重合時間は、重合温度等によ
って異なるが、−船釣には30分〜6時間程度、好まし
くは、1時間〜4時間、である。重合終了後、ポリマー
を炭化水素溶媒から分離し乾燥させれば、目的とする粉
末高吸水性ポリマーが得られる。
The polymerization temperature is 40 to 120°C, preferably 60 to 90°C.
℃ is adopted. The polymerization time varies depending on the polymerization temperature, etc., but for boat fishing it is about 30 minutes to 6 hours, preferably 1 hour to 4 hours. After the polymerization is completed, the polymer is separated from the hydrocarbon solvent and dried to obtain the desired powdered superabsorbent polymer.

〔実験例〕[Experiment example]

以下、実験例により本発明の詳細な説明する。 The present invention will be explained in detail below using experimental examples.

尚、高吸水性ポリマーの吸水諸性能とは吸水能、吸水速
度、保水力を表わし、次の様にして測定した。又、平均
粒子径の測定法も記した。
The water absorption performance of the superabsorbent polymer refers to water absorption capacity, water absorption rate, and water retention capacity, and was measured as follows. The method for measuring the average particle diameter is also described.

狡水血 高吸水性ポリマー1gを400メツシユのナイロン袋(
10cmX10cmの大きさ)に入れ、1!の0.9%
生理食塩水に30分浸漬する。30分後、ナイロン袋を
引き上げ、15分水切り後、重量測定をし、ブランク補
正をして、高吸水性ポリマー1gが吸収した0、 9%
生理食塩水の重量を吸水能とした。
1 g of Kosui Ke super absorbent polymer in a 400 mesh nylon bag (
10cm x 10cm) and 1! 0.9% of
Soak in physiological saline for 30 minutes. After 30 minutes, pull up the nylon bag, drain it for 15 minutes, weigh it, make a blank correction, and find out that 0.9% of the amount absorbed by 1g of super absorbent polymer.
The weight of physiological saline was defined as water absorption capacity.

吸水速度 第1図に示す装置を用いて測定した。高吸水性ポリマー
1.0gを小穴のあいた支持板の上の不織布上におく。
Water absorption rate was measured using the apparatus shown in Figure 1. 1.0 g of a superabsorbent polymer is placed on a nonwoven fabric on a support plate with small holes.

下面より、0.9%生理食塩水と接触させたときに高吸
水性ポリマーが、0.9%生理食塩水を吸水する量を測
定した。開始後、1o分間に吸水した0、 9%食塩水
の量をもって吸水速度とした。
The amount of water absorbed by the superabsorbent polymer when brought into contact with 0.9% physiological saline was measured from the bottom surface. After the start, the amount of 0.9% saline water absorbed in 1 minute was defined as the water absorption rate.

鴛1気な 第1図に示した装置を用いて、高吸水性ポリマーIgに
0.9%生理食塩水25dを均一に吸水させる。この吸
水ゲルを400メツシユのナイロン袋(10cmx、1
0cm)に入れ、入口をシールする。
Using the apparatus shown in FIG. 1, 25 d of 0.9% physiological saline was uniformly absorbed into the superabsorbent polymer Ig. Place this water-absorbing gel in a 400-mesh nylon bag (10cm x 1
0cm) and seal the entrance.

このサンプルの上下を濾紙(10CIX I 0CI)
 10枚ずつではさみ、これに45g/ajの荷重を3
分間かける。濾紙に移った0、9%生理食塩水量を測定
し、加圧前後の吸水量より、保水力を求めた。
Cover the top and bottom of this sample with filter paper (10CIX I 0CI)
Hold 10 sheets at a time and apply a load of 45 g/aj to each of them for 3
Take a minute. The amount of 0 and 9% physiological saline transferred to the filter paper was measured, and the water retention capacity was determined from the amount of water absorbed before and after pressurization.

JIS規格の標準フルイのうち、42,60゜80.1
00,150,200.325メツシユのフルイを用い
て質量規準の粒径分布を求め、質攪拌機、還流冷却器、
温度計、窒素ガス導入管を付設した容量500dの四つ
日丸底フラスコに、シクロヘキサン121gを入れ、次
式(I)で表わされるリン酸エステル系界面活性剤0.
9gを添加して溶解させた後、窒素ガスを吹込み溶存酸
素を追い出した。
Among the JIS standard sieves, 42,60°80.1
00,150,200.325 mesh sieve was used to determine the mass-based particle size distribution, and the mass-based particle size distribution was determined using a sieve stirrer, a reflux condenser,
121 g of cyclohexane was placed in a 500 d round-bottom flask equipped with a thermometer and a nitrogen gas inlet tube, and 0.0 g of a phosphate ester surfactant represented by the following formula (I) was added.
After adding and dissolving 9 g, nitrogen gas was blown in to drive out dissolved oxygen.

式(1) 別に、容量300dのコニカルビーカー中で、アクリル
酸30gを外部より水冷しながら、これに水79.65
 gに溶解した11.65gの純度95%の水酸化ナト
リウムを加えて、全カルボキシル基の70モル%を中和
した。この場合の水に対するモノマー濃度は、中和後の
モノマー濃度として、30重量%に相当する。次いで、
これにN、N’−メチレンビスアクリルアミド0.04
2 g、過硫酸カリウム0.104gを加えて溶解した
後、窒素ガスを吹き込んで溶存酸素を追い出した。
Formula (1) Separately, in a conical beaker with a capacity of 300 d, 79.65 g of water was added to 30 g of acrylic acid while cooling it with water from the outside.
11.65 g of 95% pure sodium hydroxide dissolved in g was added to neutralize 70 mol% of the total carboxyl groups. The monomer concentration relative to water in this case corresponds to 30% by weight as the monomer concentration after neutralization. Then,
Add to this 0.04 N,N'-methylenebisacrylamide
After adding and dissolving 2 g of potassium persulfate and 0.104 g of potassium persulfate, dissolved oxygen was expelled by blowing in nitrogen gas.

前記の四つ日丸底フラスコの内容物に、この容量300
戚のコニカルビーカーの内容物を添加し、攪拌して分散
させ、窒素ガスをバブリングさせなから油浴によりフラ
スコ内温を昇温させたところ、60°C付近に達してか
ら内温が2、激に上昇し、数十分後には75°Cに達し
た。次いで、その内温を60〜65°Cに保持し、且つ
攪拌しながら3時間反応させた。尚、攪拌は250rp
n+で行なった。
Add this volume of 300 to the contents of the four-day round bottom flask.
When the contents of the conical beaker were added and dispersed by stirring, the temperature inside the flask was raised in an oil bath without bubbling nitrogen gas, and after reaching around 60°C, the internal temperature rose to 2. The temperature rose sharply, reaching 75°C after several tens of minutes. Next, the internal temperature was maintained at 60 to 65°C and the mixture was reacted for 3 hours with stirring. In addition, stirring is at 250 rpm.
This was done on n+.

3時間反応させた後、攪拌を停止すると、湿潤ポリマー
粒子が丸底フラスコの底に沈降したので、デカンテーシ
ョンでシクロヘキサン相と容易に分離できた。分離した
湿潤ポリマーを減圧乾燥機に移し、80〜90℃に加熱
して付着したシクロヘキサン及び水を除去し、さらさら
とした粉末ポリマー約35gを得た。
After reacting for 3 hours, stirring was stopped and the wet polymer particles settled to the bottom of the round bottom flask and could be easily separated from the cyclohexane phase by decantation. The separated wet polymer was transferred to a vacuum dryer and heated to 80 to 90°C to remove adhering cyclohexane and water, yielding about 35 g of a smooth powdered polymer.

実施例2 実施例1において、界面活性剤として、式(1)で表わ
されるリン酸エステルを1.8g用いた他は同様にして
、粉末ポリマー約35gを得た。
Example 2 About 35 g of powdered polymer was obtained in the same manner as in Example 1, except that 1.8 g of the phosphoric acid ester represented by formula (1) was used as the surfactant.

実施例3 実施例1において、界面活性剤として、式CI)で表わ
されるリン酸エステルを2.7g用いた他は同様にして
、粉末ポリマー約35gを得た。
Example 3 About 35 g of a powdered polymer was obtained in the same manner as in Example 1, except that 2.7 g of a phosphoric acid ester represented by formula CI) was used as a surfactant.

実施例4 実施例1において、界面活性剤として、式(II)で表
わされるリン酸エステル0.9gを用いた他は同様にし
て、粉末ポリマー約35gを得た。
Example 4 About 35 g of powdered polymer was obtained in the same manner as in Example 1, except that 0.9 g of the phosphoric acid ester represented by formula (II) was used as the surfactant.

式(II) 実施例5 実施例1において、界面活性剤として式(II[)で表
わされるリン酸エステル0.9gを用いた他は同様にし
て、粉末ポリマー約35gを得た。
Formula (II) Example 5 Approximately 35 g of powdered polymer was obtained in the same manner as in Example 1, except that 0.9 g of the phosphoric acid ester represented by the formula (II[) was used as the surfactant.

式(1) 実施例6 実施例1において、水酸化ナトリウム10.0 g水7
8.3 gを用いた以外は同様にして、粉末ポリマー約
35gを得た。(全カルボキシル基の60モル%を中和
したこととなる。) 実施例7 実施例1において、重合開始剤として、過硫酸カリウム
に代えて、2,2′−アゾビス−(2−アミジノプロパ
ン)2塩酸塩0.104gを用い、且つ、架橋剤である
N、N’−メチレンビスアクリルアミドを0.063 
g用いた以外は同様にして、粉末ポリマー約35gを得
た。
Formula (1) Example 6 In Example 1, sodium hydroxide 10.0 g water 7
Approximately 35 g of powdered polymer was obtained in the same manner except that 8.3 g was used. (60 mol% of all carboxyl groups were neutralized.) Example 7 In Example 1, 2,2'-azobis-(2-amidinopropane) was used instead of potassium persulfate as the polymerization initiator. Using 0.104 g of dihydrochloride, and 0.063 g of N,N'-methylenebisacrylamide as a crosslinking agent.
About 35 g of powdered polymer was obtained in the same manner except that g was used.

比較例1 実施例1において、リン酸エステル系界面活性剤の代り
に、ソルビタンモノラウレー) 0.9 gを用いた以
外は同様にして、粉体ポリマー約35gを得た。
Comparative Example 1 About 35 g of powdered polymer was obtained in the same manner as in Example 1, except that 0.9 g of sorbitan monolaure was used instead of the phosphate ester surfactant.

比較例2 実施例1において、リン酸エステル系界面活性剤の代り
に、デカグリセリルペンタステアレート0.9gを用い
た以外は同様にして、粉体ポリマー約35gを得た。
Comparative Example 2 About 35 g of powdered polymer was obtained in the same manner as in Example 1, except that 0.9 g of decaglyceryl pentastearate was used instead of the phosphate ester surfactant.

比較例3 比較例1において、モノマー相にヒドロキシエチルセル
ロース(フジケミカル社製、フジへツタA−5000)
を1.0g加えた以外は同様にして、粉末を下記第1表
に示す。
Comparative Example 3 In Comparative Example 1, hydroxyethyl cellulose (manufactured by Fuji Chemical Co., Ltd., Fujihetsuta A-5000) was used as the monomer phase.
The powder was prepared in the same manner except that 1.0 g of the powder was added as shown in Table 1 below.

第1表 第1表に示した結果からも明らかなように、本発明にお
ける高吸水性ポリマーは、吸水能吸水速度、保水力等の
吸水諸性能に優れ、しかも大きな平均粒子径を有してい
ることがわかる。
As is clear from the results shown in Table 1, the superabsorbent polymer of the present invention has excellent water absorption performance such as water absorption capacity, water absorption rate, and water retention capacity, and has a large average particle diameter. I know that there is.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、高吸水性ポリマーの吸水速度および保水力を
測定するのに使用した装置の概略を示す図面である。 1・・・高吸水性ポリマー(Ig)、2・・・小穴のあ
いた支持板、3・・・不織布、4・・・0.9%食塩水
、5・・・ビューレット、6・・・ゴム栓、7.8・・
・バルブ、9・・・空気入口。
FIG. 1 is a diagram schematically showing an apparatus used to measure the water absorption rate and water retention capacity of superabsorbent polymers. DESCRIPTION OF SYMBOLS 1... Super absorbent polymer (Ig), 2... Support plate with small holes, 3... Nonwoven fabric, 4... 0.9% saline, 5... Buret, 6... Rubber stopper, 7.8...
・Valve, 9...Air inlet.

Claims (1)

【特許請求の範囲】 1)アクリル酸及び/又はメタクリル酸並びにそのアル
カリ金属塩よりなる群から選ばれるアクリル酸系モノマ
ーを、架橋剤の存在下に、ラジカル重合開始剤を用いて
、炭化水素溶媒中で逆相懸濁重合させる方法において、
逆相懸濁重合に使用する界面活性剤が一般式 ▲数式、化学式、表等があります▼ (式中、Rは炭素数8ないし30のアルキル基、又は、
アルキルフェニル基を表わし、R′は−OH基又は式▲
数式、化学式、表等があります▼の基を表わす。また、 nは1ないし5の整数である。) で表わされるリン酸エステル系界面活性剤であることを
特徴とする、高吸水性ポリマーの製造法。 2)アクリル酸系モノマーが、その全カルボキシル基の
50〜95モル%がアルカリ金属塩で中和されたもので
ある特許請求の範囲第1項記載の製造法。
[Claims] 1) An acrylic acid monomer selected from the group consisting of acrylic acid and/or methacrylic acid and alkali metal salts thereof is treated in a hydrocarbon solvent using a radical polymerization initiator in the presence of a crosslinking agent. In the method of reverse phase suspension polymerization in
The surfactant used in reverse-phase suspension polymerization has a general formula ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ (In the formula, R is an alkyl group having 8 to 30 carbon atoms, or
Represents an alkylphenyl group, R' is -OH group or formula ▲
There are mathematical formulas, chemical formulas, tables, etc. Represents the group ▼. Further, n is an integer from 1 to 5. ) A method for producing a superabsorbent polymer, characterized in that it is a phosphate ester surfactant represented by: 2) The production method according to claim 1, wherein 50 to 95 mol% of the total carboxyl groups of the acrylic acid monomer are neutralized with an alkali metal salt.
JP14247590A 1990-05-31 1990-05-31 Method for producing superabsorbent polymer Expired - Lifetime JP2917418B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14247590A JP2917418B2 (en) 1990-05-31 1990-05-31 Method for producing superabsorbent polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14247590A JP2917418B2 (en) 1990-05-31 1990-05-31 Method for producing superabsorbent polymer

Publications (2)

Publication Number Publication Date
JPH0436304A true JPH0436304A (en) 1992-02-06
JP2917418B2 JP2917418B2 (en) 1999-07-12

Family

ID=15316185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14247590A Expired - Lifetime JP2917418B2 (en) 1990-05-31 1990-05-31 Method for producing superabsorbent polymer

Country Status (1)

Country Link
JP (1) JP2917418B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5998553A (en) * 1997-04-22 1999-12-07 Mitsubishi Chemical Corporation Highly water-absorptive polymer and process for producing the same
KR100409069B1 (en) * 2000-03-06 2003-12-11 주식회사 엘지화학 A method of preparing resin absorbing water
JP2005112979A (en) * 2003-10-07 2005-04-28 Dainippon Ink & Chem Inc Method for producing absorbing resin
WO2017150108A1 (en) * 2016-03-02 2017-09-08 住友精化株式会社 Process for producing water-absorbing resin particles

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5998553A (en) * 1997-04-22 1999-12-07 Mitsubishi Chemical Corporation Highly water-absorptive polymer and process for producing the same
KR100409069B1 (en) * 2000-03-06 2003-12-11 주식회사 엘지화학 A method of preparing resin absorbing water
JP2005112979A (en) * 2003-10-07 2005-04-28 Dainippon Ink & Chem Inc Method for producing absorbing resin
WO2017150108A1 (en) * 2016-03-02 2017-09-08 住友精化株式会社 Process for producing water-absorbing resin particles
JPWO2017150108A1 (en) * 2016-03-02 2018-12-27 住友精化株式会社 Method for producing water absorbent resin particles
US10835887B2 (en) 2016-03-02 2020-11-17 Sumitomo Seika Chemicals Co., Ltd Process for producing water-absorbing resin particles

Also Published As

Publication number Publication date
JP2917418B2 (en) 1999-07-12

Similar Documents

Publication Publication Date Title
JP3119900B2 (en) Method for producing superabsorbent polymer
JP3155294B2 (en) Method for producing superabsorbent polymer
JPH02300210A (en) Production of highly water-absorptive polymer
US20070262290A1 (en) Water-Absorbent Polymers for Producing Flame-Resistant Compositions
JPH02191604A (en) Water-absorbing resin and production thereof
US5185413A (en) Process for producing highly water-absortive polymers
CN102665771A (en) Methods for producing water-absorbent foamed polymer particles
JP2888852B2 (en) Powdery superabsorbent polymer composition
JPS61271303A (en) Production of water-absorptive resin
JPH04346833A (en) Liquid adsorbent
JPH04331205A (en) Production of highly water-absorptive polymer
JPH03195713A (en) Production of polymer having high water absorption
JPH0436304A (en) Preparation of highly water-absorbent polymer
US9950306B2 (en) Process for producing water-absorbing polymer particles with high free swell rate
JP2002105125A (en) Method for producing water-absorbing resin
JPH0778095B2 (en) Method for producing high expansion type water-absorbent polymer
JPH0645651B2 (en) Method for producing high expansion water-absorbent polymer
JPS63297408A (en) Production of improved highly water-absorbing polymer
US5274048A (en) Use of glycidyl phosphonates as crosslinkers in the preparation of hydrogels
JP2010059254A (en) Method for producing water-absorbing resin particle, absorbent, and absorbing article
JPH04339810A (en) Production of highly water-absorptive polymer
JPH0314809A (en) Production of water-absorbent resin with excellent heat resistance
JPH02153907A (en) Production of highly hygroscopic polymer
JP3126347B2 (en) Method for producing superabsorbent polymer
JP2002284882A (en) Manufacturing method of highly water-absorbing polymer

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080423

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100423

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100423

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110423

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110423

Year of fee payment: 12