JPH04362403A - Pneumatic tire - Google Patents

Pneumatic tire

Info

Publication number
JPH04362403A
JPH04362403A JP3162435A JP16243591A JPH04362403A JP H04362403 A JPH04362403 A JP H04362403A JP 3162435 A JP3162435 A JP 3162435A JP 16243591 A JP16243591 A JP 16243591A JP H04362403 A JPH04362403 A JP H04362403A
Authority
JP
Japan
Prior art keywords
rubber
ice
performance
tire
rubber composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3162435A
Other languages
Japanese (ja)
Other versions
JP3096091B2 (en
Inventor
Yoshiyuki Morimoto
森本 芳之
Koji Yamauchi
山内 功治
Seiichiro Iwafune
盛一郎 岩船
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP03162435A priority Critical patent/JP3096091B2/en
Priority to NO922180A priority patent/NO180263C/en
Priority to ES92305174T priority patent/ES2103343T3/en
Priority to CA002070570A priority patent/CA2070570C/en
Priority to DE69219207T priority patent/DE69219207T2/en
Priority to EP92305174A priority patent/EP0517538B1/en
Publication of JPH04362403A publication Critical patent/JPH04362403A/en
Priority to US08/596,755 priority patent/US5753365A/en
Application granted granted Critical
Publication of JP3096091B2 publication Critical patent/JP3096091B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Tires In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To obtain a pneumatic tire, as an all-season tire in reality, which secures sufficient control stability, durability and low fuel consumption in summer and provides sufficient drivability and brakability on dry-on-ice roads as well as wet-on-ice roads. CONSTITUTION:Rubber composition that 100 pts.wt. rubber and 5-6 pts.wt. syndiotactic-1,2-polybutadiene resin, which has an average grain size ranging within 10-500mum and a crystal melting point of 110 deg.C or higher, are mixed together is arranged on a tread.

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は空気入りタイヤに関し、
詳しくは、夏期における操縦安定性能および耐久性能を
損なうことなく、氷雪路面上における駆動性、制動性お
よび操縦性を著しく改良した、いわゆるオールシーズン
用空気入りタイヤに関するものである。 【0002】 【従来の技術】近年、冬期においてもタイヤ交換するこ
と無く、夏期と同様に使用できるいわゆるオールシーズ
ンタイヤの需要が高まってきている。このようなタイヤ
は冬期においても夏期と同様のドライグリップ性、ウェ
ットグリップ性、操縦安定性、耐久性、低燃費性を有し
、さらに氷上や雪上においても十分な駆動性や制動性を
有することが要求される。 【0003】従来、このようなタイヤに用いられるトレ
ッドゴムには、サマー用トレッドゴムの低温での硬度を
低くすることが要求され、従ってガラス転移点の低いポ
リマーを使用するか、もしくは低温での弾性率を適切に
保てる軟化剤や可塑剤を用いる方法が知られている。 【0004】しかし、前者の方法では、かかるポリマー
のヒステリシス特性のために、氷雪温度領域ではそこそ
この性能が発揮されても、湿潤路面や乾燥路面での制動
性や操縦性が十分でないという問題点があり、また後者
の方法も、特開昭55−135149号、特開昭58−
199203号、特開昭60−137945号公報など
に開示されているが、いずれの方法においても、氷雪上
性能の改良の程度の割りには、一般路を走行した際の耐
摩耗性や耐久性に及ぼす悪影響が大きいなどの問題点が
指摘されている。 【0005】 【発明が解決しようとする課題】上述のいずれの技術を
用いた場合においても、確かに−5℃以下の比較的低温
領域における、いわゆるドライ  オン  アイスでの
氷雪上性能では良好な性能を示すものの、0℃付近の湿
潤状態、いわゆるウェット  オン  アイスでの氷雪
上性能においては、十分な摩擦係数を得られず、駆動性
、制動性および操縦性が十分改良されているとは言い難
い。 【0006】そこで、本発明の目的は、夏期における操
縦安定性、耐久性、低燃費性を十分に確保した上で、ド
ライ  オン  アイスのみならずウェット  オン 
 アイスにおいても十分な駆動性、制動性を有する、真
の意味でのオールシーズンタイヤを提供することにある
。 【0007】 【課題を解決するための手段】本発明者らは、かかるオ
ールシーズン用またはスタッドレス用タイヤのトレッド
ゴムの氷雪上性能、特に湿潤状態にある氷雪路面に対す
る性能について鋭意検討した結果、トレッド部のゴム組
成物にある特定の構造を有するシンジオタクティック−
1,2−ポリブタジエン樹脂の粒子を配合したゴム組成
物を用いることにより、該氷雪上性能を著しく改良でき
、かつ夏場または通常路面の走行時に求められる操縦安
定性、耐久性等の性能を損うことのないことを見い出し
、本発明を完成するに至った。また、上記粒子以外のマ
トリックス部を構成するゴムが発泡ゴム組成物である場
合には、更に一層の氷雪上性能の向上が得られることを
確かめた。 【0008】すなわち、本発明の空気入りタイヤは、平
均粒径が10〜500μm の範囲内の粒状であり、か
つ結晶の融点が110℃以上であるシンジオタクティッ
ク−1,2−ポリブタジエン樹脂をゴム分100重量部
に対し5〜60重量部配合したゴム組成物をトレッドに
配設したことを特徴とするものである。 【0009】本発明で使用するシンジオタクティック−
1,2−ポリブダジエン樹脂の粒径は10〜500μm
 の範囲内であることを要するが、この理由は、粒径が
10μm よりも小さいと、本発明で目的とする氷雪上
性能が十分ではなく、一方500μm より大きいと、
氷雪上性能においてある程度の効果は認められるものの
、耐摩耗性等のタイヤに求められる他の性能を低下させ
るので、好ましくはないためである。尚、ここでいう「
粒状」とは、トレッドのタイヤ赤道面断面およびタイヤ
赤道面に垂直なタイヤ半径方向断面いずれにおいても、
シンジオタクティック−1,2−ポリブタジエン樹脂粒
子の最長径と最短径の比Mの平均値が6以下、好ましく
は4以下であることをいう。すなわち、氷上や雪上の駆
動性や制動性を改良するためには、シンジオタクティッ
ク−1,2−ポリブダジエン樹脂がミクロ有機短繊維で
はなく、粒状状態でトレッドゴム組成物内に分散してい
ることを要する。 【0010】また、かかるシンジオタクティック−1,
2−ポリブダジエン樹脂は、一般に結晶性を有している
が、その結晶部の融点が110℃以上であることを要す
る。この理由は、融点が110℃未満の場合、配合時に
樹脂を投入して混練する際、樹脂が軟化し変形したり、
その一部または全部が融解してしまうことにより、所望
の粒径を保持できなくなり、目的とする氷雪上性能の改
良が見られなくなるからである。 【0011】本発明の空気入りタイヤのトレッド用ゴム
組成物には、上記シンジオタクティック−1,2−ポリ
ブダジエン樹脂をゴム分100重量部に対し5〜60重
量部配合することを要するが、この理由は、この配合量
が5重量部よりも少ないと、目的とする氷雪上性能の向
上が殆ど認められず、一方60重量部を超えて配合する
と耐摩耗性等の他のタイヤ性能が著しく損なわれるばか
りでなく、タイヤ製造時の加工性も著しく悪化し、実用
に供し得なくなるからである。 【0012】本発明においては、上記シンジオタクティ
ック−1,2−ポリブダジエン樹脂を配合すべきゴム組
成物を形成するゴムの種類、配合する充填剤の種類およ
び他の薬品については通常用いられているものを使用す
ることができ、特に限定されるべきものではない。例え
ば、ゴム成分として、天然ゴム、ポリイソプレンゴム、
ポリブタジエンゴム、スチレン−ブタジエン共重合体ゴ
ム、スチレン−イソプレン−ブタジエン三元共重合体ゴ
ム、スチレン−イソプレン共重合体ゴム、イソプレン−
ブタジエン共重合体ゴム等を挙げることができる。また
、トレッドに配設する組成物には、例えば、充填剤、老
化防止剤、加硫剤、加硫促進剤を含めることができ、こ
れらの種類、量についても通常トレッドゴムに用いられ
る範囲内であって、特に限定されるものではない。 【0013】本発明においては、トレッドゴムが3〜3
5%の発泡倍率の独立気泡を有することが好ましい。0
℃付近の氷表面に溶融した水分が多い状態において気孔
によるミクロな吸排水効果を大きくし、優れた氷雪上性
能を発揮させるためにはかかる独立気泡が有用であるか
らである。発泡は発泡剤によるもの、ガスの高圧ミキシ
ングによるもののいずれの方法を用いてもよい。尚、発
泡倍率が3%未満では発泡の効果が十分でなく、一方3
5%を超えるとトレッド剛性が不十分のため、耐摩耗性
の低下や溝底クラックの発生が大となり、好ましくない
。 【0014】ここで、発泡ゴムの発泡率Vs は、次式
Vs ={(ρ0−ρ9)/(ρ1−ρ9)−1}×1
00(%)  ・・・  (1) で表され、ρ1 は発泡ゴムの密度(g/cm3)、ρ
0 は発泡ゴムの固相部の密度(g/cm3)、ρ9 
は発泡ゴムの気泡内のガス部の密度(g/cm3)であ
る。発泡ゴムは固相部と、固相部によって形成される空
洞(独立気泡)、すなわち気泡内のガス部とから構成さ
れている。ガス部の密度ρ9 は極めて小さく、ほぼ零
に近く、かつ固相部の密度ρ1 に対して極めて小さい
ので、式(1)は、次式Vs ={(ρ0−ρ1)−1
}×100(%)         ・・・  (2) とほぼ同等となる。 【0015】尚、本発明の空気入りタイヤにおいては、
上述のシンジオタクティック−1,2−ポリブダジエン
樹脂を配合した通常のゴムまたは発泡ゴムの組成物を、
キャップ−ベース構造を有するトレッド部のキャップ部
のみに配設してもよい。 【0016】 【実施例】以下、実施例および比較例を挙げて本発明を
より具体的に説明する。始めに、本実施例において行っ
た各物性値測定法について述べる。1)樹脂の結晶の融
点セイコー電子(株)製の示差熱分析計DSC200を
用い、昇温速度10℃/分で30℃から250℃までの
温度範囲で昇温し、得られた吸熱ピークから融点温度を
測定した。 【0017】2)氷上摩擦係数の測定ゴムの氷上摩擦係
数、特に0℃付近の湿潤状態における氷上摩擦係数は、
表面温度が−0.5 ℃の氷上に通常加硫法により得ら
れたスラブシートより得た試料表面(試料寸法、長さ1
0mm、幅10mm、厚さ5mm)と氷を接触させ、協
和海面科学(株)製の動・静摩擦係数計を用いて測定し
た。測定条件として、乗用車用ラジアルタイヤについて
は荷重2kg/cm2およびトラック・バス用ラジアル
タイヤについては荷重5kg/cm2とし、滑り速度1
0mm/sec、雰囲気温度−2℃、表面状態は鏡面に
近似して行った。 【0018】3)小型タイヤ性能試験 3−1)氷上制動性能 試験タイヤPSR(165SR13)を作成し、ならし
走行として50km通常走行を行った後、テストに供し
た。耐摩耗性能試験および耐ウェットスキッド性能試験
も同様である。各試験タイヤ4本を排気量1500cc
の乗用車に装着し、外気温−5℃の氷上で制動距離を測
定した。比較例1のコントロールタイヤを100として
指数表示した。数値は大きい程、制動が良好であること
を示す。 3−2)摩耗試験 各試験タイヤ2本を排気量1500ccの乗用車のドラ
イブ軸に取り付け、テストコースのコンクリート路面上
を所定の速度で走行させた。溝深さの変化量を測定し、
比較例1のコントロールタイヤを100として指数表示
した。数値は大きい程、耐摩耗性能が良好であることを
示す。 3−3)耐ウェットスキッド性能 湿潤路面の耐スキッド性(耐ウェットスキッド性)は、
水深3mmの湿潤コンクリート路面において80km/
hの速度から急制動し、車輪がロックされてから停止す
るまでの距離を測定し、下式によって試験タイヤの耐ウ
ェットスキッド性を評価した。値が大きい程、耐ウェッ
トスキッド性が良好であることを示す。 【0019】4)大型タイヤ性能試験試験タイヤTBR
(1000R20)を作成し、ならし走行として8トン
、2Dタイプのトラックに100%積載条件の下、ドラ
イブ軸に試験タイヤを装着し、150km走行した。 4−1)氷上制動性能 8トン、2Dタイプトラックに100%積載条件の下、
全輪に試験タイヤを装着し、時速20km走行からフル
ロックブレーキをかけた際の制動距離を測定した。氷温
は−5℃である。結果は、比較例7のコントロールタイ
ヤ対比の指数で表示した。数字は大きい程、氷上制動性
能が良好であることを示す。 4−2)摩耗試験 8トン、2Dタイプトラックに100%積載条件の下、
全輪に試験タイヤを装着し、通常実地走行を行ない、5
万km走行時の溝深さを比較例7のコントロールタイヤ
を100として指数表示した。数値は大きい程、耐摩耗
性が良好であることを示す。下記の表1に、実施例およ
び比較例で使用した種々のシンジオタクティック−1,
2−ポリブダジエン樹脂の平均粒径および結晶融点を示
す。尚、粒径の測定はALPINE社製エアージェット
シープ粒度測定機200LS型を用いて測定し、累積5
0%の粒径をもって平均粒径とした。 【0020】       【0021】表2および表3に、表1に示
す各種シンジオタクティック−1,2−ポリブダジエン
樹脂粒子と組み合わせたゴムマトリックスの配合処方(
重量部)、並びに得られた粒子混入ゴムの加硫物性およ
び当該ゴムをタイヤトレッドに適用したときのタイヤ性
能を夫々示す。具体的には、表2では乗用車用ラジアル
タイヤ(PSR)につき検討し、表3ではトラック・バ
ス用ラジアルタイヤ(TBR)につき検討した。 【0022】 【表2】 【0023】 【表3】 【0024】乗用車用ラジアルタイヤについての性能評
価試験結果を示す表2からは、次のことが確かめられた
。平均粒径および結晶融点において本発明の条件を満た
すシンジオタクティック−1,2−ポリブダジエン樹脂
種B,C,DおよびEをトレッドゴムに20重量部配合
した実施例1〜4においては、かかる条件を満たしてい
ない樹脂種A,F,GおよびHを配合した比較例2〜5
に比し、比較例1のコントロールタイヤ対比氷上制動性
が大幅に向上しかつ耐ウェットスキッド性および耐摩耗
性も殆ど損なわれることはなかった。また、本発明の条
件を満たすシンジオタクティック−1,2−ポリブダジ
エン樹脂種Dをトレッドゴムに配合するとともに、この
マトリックスゴムを発泡ゴムとした実施例5および6で
は、他のタイヤ性能を殆ど損なうことなく氷上制動性能
をより一層向上させることができた。なお、樹脂を配合
せず発泡ゴムだけを用いた比較例6においては、氷上制
動性能は向上するものの耐摩耗性の面で問題があった。 【0025】次に、トラック・バス用ラジアルタイヤに
ついての性能評価試験結果を示す表3からは、次のこと
が確かめられた。本発明の条件を満たすシンジオタクテ
ィック−1,2−ポリブダジエン樹脂種Dを本発明で規
定する配合量内でトレッドゴムに配合した実施例7〜1
0においては、かかる樹脂種Dの配合量が本発明の範囲
から逸脱している比較例8〜10に比し、比較例7のコ
ントロールタイヤ対比氷上制動性が大幅に向上し、かつ
耐摩耗性も殆ど損なわれることはなかった。また、本発
明の条件を満たすシンジオタクティック−1,2−ポリ
ブダジエン樹脂種Dを本発明で規定する配合量内でトレ
ッドゴムに配合するとともに、このマトリックスゴムを
発泡ゴムとした実施例11では、他のタイヤ性能を殆ど
損なうことなく氷上制動性能をより一層向上させること
ができた。なお、かかる樹脂を本発明で規定する配合量
を逸脱して配合しかつ発泡ゴムを用いた比較例11およ
び12においては、氷上制動性能は向上するものの耐摩
耗性の面で問題があった。 【0026】 【発明の効果】以上説明してきたように、本発明の空気
入りタイヤにおいては、トレッド部のゴム組成物に、あ
る特定の構造を有するシンジオタクティック−1,2−
ポリブダジエン樹脂の粒子を所定量配合したゴム組成物
を用いたことにより、ドライオン  アイスのみならず
、ウェット  オン  アイスにおいても十分な駆動性
および制動性を示して氷雪上性能が著しく向上し、しか
も夏場または通常路面の走行時に求められる操縦安定性
、耐久性、低燃費性の性能が殆ど損なわれることがない
という効果が得られる。従って、本発明の空気入りタイ
ヤは真の意味でオールシーズンタイヤといえる。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a pneumatic tire,
Specifically, the present invention relates to a so-called all-season pneumatic tire that has significantly improved driving performance, braking performance, and maneuverability on icy and snowy roads without impairing steering stability performance and durability performance in summer. BACKGROUND OF THE INVENTION In recent years, there has been an increasing demand for so-called all-season tires that can be used in the winter without having to change tires in the same way as in the summer. Such tires must have the same dry grip, wet grip, steering stability, durability, and fuel efficiency in winter as they do in summer, and also have sufficient driving and braking performance on ice and snow. is required. Conventionally, the tread rubber used for such tires has been required to have low hardness at low temperatures for summer tread rubber, and therefore a polymer with a low glass transition point has been used, or a polymer with a low glass transition temperature has been used. A method using a softener or plasticizer that can maintain an appropriate elastic modulus is known. However, the former method has the problem that, due to the hysteresis characteristics of the polymer, although it exhibits reasonable performance in the freezing and snow temperature range, braking performance and maneuverability on wet and dry road surfaces are insufficient. The latter method is also disclosed in Japanese Patent Application Laid-open Nos. 135149-1982 and 1983-
No. 199203, Japanese Unexamined Patent Publication No. 1992-137945, etc., but in both methods, the abrasion resistance and durability when driving on ordinary roads are low, considering the degree of improvement in performance on ice and snow. Problems have been pointed out, such as the large negative impact it has on people. [0005] Problems to be Solved by the Invention [0005] No matter which of the above-mentioned techniques is used, it is true that the performance on ice and snow in the so-called dry-on-ice in a relatively low-temperature region of -5°C or lower is good. However, in wet conditions around 0℃, so-called wet-on-ice performance on ice and snow, a sufficient coefficient of friction cannot be obtained, and it is difficult to say that driving performance, braking performance, and maneuverability have been sufficiently improved. . Therefore, an object of the present invention is to sufficiently ensure steering stability, durability, and fuel efficiency in the summer, and to provide a vehicle not only for dry-on-ice driving but also for wet-on-ice driving.
The objective is to provide a true all-season tire that has sufficient driving and braking performance even on ice. Means for Solving the Problems The present inventors have conducted intensive studies on the performance of the tread rubber of such all-season or studless tires on ice and snow, particularly on the performance on ice and snow road surfaces in wet conditions. syndiotactic rubber composition with a specific structure
By using a rubber composition blended with particles of 1,2-polybutadiene resin, the performance on ice and snow can be significantly improved, and performance such as steering stability and durability required in summer or when driving on normal roads is not impaired. The inventors discovered that there is no such thing and completed the present invention. Furthermore, it was confirmed that when the rubber constituting the matrix portion other than the above-mentioned particles is a foamed rubber composition, further improvement in performance on ice and snow can be obtained. That is, the pneumatic tire of the present invention uses syndiotactic-1,2-polybutadiene resin, which is granular with an average particle size within the range of 10 to 500 μm and whose crystalline melting point is 110° C. or higher, as a rubber. The rubber composition is characterized in that the tread is provided with a rubber composition in an amount of 5 to 60 parts by weight per 100 parts by weight. Syndiotactic used in the present invention
The particle size of 1,2-polybutadiene resin is 10 to 500 μm
The reason for this is that if the particle size is smaller than 10 μm, the performance on ice and snow that is the objective of the present invention will not be sufficient, while if it is larger than 500 μm,
This is because although a certain degree of effect is recognized in terms of performance on ice and snow, it degrades other performances required of a tire such as wear resistance, so it is not preferable. In addition, here "
"Grain" refers to tread in both the tire equatorial plane cross section and the tire radial cross section perpendicular to the tire equatorial plane.
It means that the average value of the ratio M of the longest diameter to the shortest diameter of syndiotactic-1,2-polybutadiene resin particles is 6 or less, preferably 4 or less. That is, in order to improve driveability and braking performance on ice and snow, syndiotactic-1,2-polybutadiene resin is dispersed in the tread rubber composition in the form of granules rather than microorganic short fibers. It requires that. [0010] Also, such syndiotactic-1,
2-polybutadiene resin generally has crystallinity, but the melting point of the crystal part is required to be 110°C or higher. The reason for this is that if the melting point is less than 110°C, the resin may soften and deform when it is added and kneaded during compounding.
This is because if some or all of the particles melt, the desired particle size cannot be maintained, and the desired improvement in performance on ice and snow cannot be achieved. The rubber composition for a tread of a pneumatic tire of the present invention requires 5 to 60 parts by weight of the above-mentioned syndiotactic-1,2-polybutadiene resin per 100 parts by weight of rubber. The reason for this is that if the amount is less than 5 parts by weight, the desired performance on ice and snow will hardly be improved, whereas if it is more than 60 parts by weight, other tire performance such as wear resistance will be significantly impaired. This is because not only is the tire damaged, but also the workability during tire manufacture is significantly deteriorated, making it impossible to put it to practical use. In the present invention, the type of rubber forming the rubber composition into which the syndiotactic-1,2-polybutadiene resin is blended, the type of filler to be blended, and other chemicals are determined according to those commonly used. Any one can be used, and there are no particular limitations. For example, as a rubber component, natural rubber, polyisoprene rubber,
Polybutadiene rubber, styrene-butadiene copolymer rubber, styrene-isoprene-butadiene terpolymer rubber, styrene-isoprene copolymer rubber, isoprene-
Examples include butadiene copolymer rubber. In addition, the composition disposed in the tread can include, for example, fillers, anti-aging agents, vulcanizing agents, and vulcanization accelerators, and the types and amounts of these are also within the range normally used for tread rubber. However, it is not particularly limited. [0013] In the present invention, the tread rubber is 3 to 3
It is preferable to have closed cells with an expansion ratio of 5%. 0
This is because such closed cells are useful for increasing the microscopic water absorption and drainage effect by the pores and exhibiting excellent performance on ice and snow when there is a lot of melted water on the ice surface at temperatures around .degree. Foaming may be performed using either a foaming agent or high-pressure mixing of gases. Note that if the foaming ratio is less than 3%, the foaming effect will not be sufficient;
If it exceeds 5%, the tread rigidity will be insufficient, leading to a decrease in wear resistance and the occurrence of groove bottom cracks, which is not preferable. Here, the foaming rate Vs of the foamed rubber is determined by the following formula: Vs = {(ρ0-ρ9)/(ρ1-ρ9)-1}×1
00 (%) ... (1) where ρ1 is the density of foamed rubber (g/cm3), ρ
0 is the density of the solid phase part of the foam rubber (g/cm3), ρ9
is the density (g/cm3) of the gas part within the foamed rubber cells. Foamed rubber is composed of a solid phase portion and a cavity (closed cell) formed by the solid phase portion, that is, a gas portion within the cell. Since the density ρ9 of the gas part is extremely small, close to zero, and extremely small compared to the density ρ1 of the solid phase part, equation (1) can be expressed as the following equation Vs = {(ρ0-ρ1)-1
}×100(%) ... (2) It is almost equivalent to. Furthermore, in the pneumatic tire of the present invention,
A composition of ordinary rubber or foam rubber blended with the above-mentioned syndiotactic-1,2-polybutadiene resin,
It may be provided only in the cap portion of the tread portion having a cap-base structure. [Examples] The present invention will be explained in more detail below with reference to Examples and Comparative Examples. First, the methods for measuring each physical property value performed in this example will be described. 1) Melting point of resin crystals Using a differential thermal analyzer DSC200 manufactured by Seiko Electronics Co., Ltd., the temperature was raised in the temperature range from 30 °C to 250 °C at a heating rate of 10 °C/min, and the endothermic peak obtained was The melting point temperature was measured. 2) Measurement of coefficient of friction on ice The coefficient of friction on ice of rubber, especially in the wet state around 0°C, is as follows:
The sample surface obtained from a slab sheet obtained by the usual vulcanization method on ice with a surface temperature of -0.5 °C (sample dimensions, length 1
(0 mm, width 10 mm, thickness 5 mm) was brought into contact with ice and measured using a dynamic/static friction coefficient meter manufactured by Kyowa Kaimen Kagaku Co., Ltd. The measurement conditions were a load of 2 kg/cm2 for radial tires for passenger cars, a load of 5 kg/cm2 for radial tires for trucks and buses, and a sliding speed of 1.
The test was carried out at a speed of 0 mm/sec, an ambient temperature of -2° C., and a surface condition approximated to a mirror surface. 3) Small tire performance test 3-1) Braking performance test on ice A tire PSR (165SR13) was prepared, and after running normally for 50 km as a break-in run, it was subjected to a test. The same applies to the wear resistance performance test and the wet skid resistance performance test. Each of the four test tires had a displacement of 1500cc.
The braking distance was measured on ice at an outside temperature of -5°C. The control tire of Comparative Example 1 was set as 100 and expressed as an index. The larger the value, the better the braking. 3-2) Wear test Two tires for each test were attached to the drive shaft of a passenger car with a displacement of 1500 cc, and the tires were run on a concrete road surface of a test course at a predetermined speed. Measure the amount of change in groove depth,
The control tire of Comparative Example 1 was set as 100 and expressed as an index. The larger the value, the better the wear resistance performance. 3-3) Wet skid resistance The skid resistance on wet road surfaces (wet skid resistance) is as follows:
80km/on a wet concrete road with a water depth of 3mm
The wet skid resistance of the test tire was evaluated using the following formula by suddenly braking from a speed of h and measuring the distance from when the wheels were locked to when the wheels came to a stop. The larger the value, the better the wet skid resistance. 4) Large tire performance test test tire TBR
(1000R20) was created and run for 150 km on an 8 ton, 2D type truck under 100% loading condition with a test tire mounted on the drive shaft. 4-1) Braking performance on ice: 8 tons, under 100% loading conditions on a 2D type truck,
Test tires were installed on all wheels, and the braking distance was measured when full lock brakes were applied from a speed of 20 km/h. The ice temperature is -5°C. The results are expressed as an index relative to the control tire of Comparative Example 7. The larger the number, the better the braking performance on ice. 4-2) Wear test under 100% loading condition on 8 tons, 2D type truck,
Attach test tires to all wheels and perform normal driving.5
The groove depth after running for 10,000 km was expressed as an index, with the control tire of Comparative Example 7 set as 100. The larger the value, the better the wear resistance. Table 1 below shows various syndiotactic-1,
The average particle size and crystal melting point of 2-polybutadiene resin are shown. The particle size was measured using an Air Jet Sheep particle size analyzer model 200LS manufactured by ALPINE, and the cumulative
The particle size of 0% was taken as the average particle size. [0021] Tables 2 and 3 show the compounding formulations (
(parts by weight), the vulcanized physical properties of the obtained particle-containing rubber, and the tire performance when the rubber is applied to a tire tread. Specifically, Table 2 examines radial tires for passenger cars (PSR), and Table 3 examines radial tires for trucks and buses (TBR). [Table 2] [Table 3] [0024] From Table 2 showing the performance evaluation test results for radial tires for passenger cars, the following was confirmed. In Examples 1 to 4, 20 parts by weight of syndiotactic-1,2-polybutadiene resin species B, C, D and E, which satisfy the conditions of the present invention in average particle size and crystal melting point, were blended into the tread rubber. Comparative Examples 2 to 5 in which resin types A, F, G, and H that do not meet the conditions are blended
Compared to the control tire of Comparative Example 1, the braking performance on ice was significantly improved, and the wet skid resistance and abrasion resistance were hardly impaired. Furthermore, in Examples 5 and 6, in which syndiotactic-1,2-polybutadiene resin type D satisfying the conditions of the present invention was blended into the tread rubber, and the matrix rubber was foamed rubber, most of the other tire performances were improved. We were able to further improve braking performance on ice without any loss. In addition, in Comparative Example 6 in which only foamed rubber was used without blending resin, although the braking performance on ice was improved, there was a problem in terms of wear resistance. Next, from Table 3 showing the performance evaluation test results for radial tires for trucks and buses, the following was confirmed. Examples 7 to 1 in which syndiotactic-1,2-polybutadiene resin type D satisfying the conditions of the present invention was blended into tread rubber within the blending amount specified by the present invention
0, compared to Comparative Examples 8 to 10 in which the blending amount of resin type D deviates from the range of the present invention, the braking performance on ice compared to the control tire of Comparative Example 7 was significantly improved, and the wear resistance was improved. There was almost no damage. In addition, in Example 11, syndiotactic-1,2-polybutadiene resin type D satisfying the conditions of the present invention was blended into the tread rubber within the blending amount specified by the present invention, and this matrix rubber was foamed rubber. , it was possible to further improve the braking performance on ice without compromising the performance of other tires. In addition, in Comparative Examples 11 and 12 in which the resin was blended in an amount deviating from the amount specified in the present invention and foamed rubber was used, although the braking performance on ice was improved, there was a problem in terms of wear resistance. [0026] As explained above, in the pneumatic tire of the present invention, the rubber composition of the tread portion contains syndiotactic-1,2-
By using a rubber composition containing a predetermined amount of polybutadiene resin particles, it exhibits sufficient drive and braking performance not only on dry ice but also on wet ice, significantly improving performance on ice and snow, and even in summer. Alternatively, it is possible to obtain the effect that the performance of steering stability, durability, and fuel efficiency required when driving on a normal road surface is hardly impaired. Therefore, the pneumatic tire of the present invention can be said to be an all-season tire in the true sense.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  平均粒径が10〜500μm の範囲
内の粒状であり、かつ結晶の融点が110℃以上である
シンジオタクティック−1,2−ポリブタジエン樹脂を
ゴム分100重量部に対し、5〜60重量部配合したゴ
ム組成物をトレッドに配設したことを特徴とする空気入
りタイヤ。
Claim 1: Syndiotactic-1,2-polybutadiene resin, which is granular with an average particle size within the range of 10 to 500 μm and whose crystalline melting point is 110° C. or higher, is added in an amount of 5 to 100 parts by weight of rubber. A pneumatic tire characterized in that a tread is provided with a rubber composition containing up to 60 parts by weight of a rubber composition.
【請求項2】  上記粒子以外のマトリックス部を構成
するゴムが発泡ゴム組成物からなる請求項1記載の空気
入りタイヤ。
2. The pneumatic tire according to claim 1, wherein the rubber constituting the matrix portion other than the particles comprises a foamed rubber composition.
【請求項3】  トレッド部がキャップ−ベース構造か
らなり、キャップ部に用いるゴム組成物が請求項1また
は2記載のゴム組成物からなることを特徴とする空気入
りタイヤ。
3. A pneumatic tire characterized in that the tread portion has a cap-base structure, and the rubber composition used for the cap portion is comprised of the rubber composition according to claim 1 or 2.
JP03162435A 1991-06-07 1991-06-07 Pneumatic tire Expired - Fee Related JP3096091B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP03162435A JP3096091B2 (en) 1991-06-07 1991-06-07 Pneumatic tire
NO922180A NO180263C (en) 1991-06-07 1992-06-02 Air-filled all-season deck
CA002070570A CA2070570C (en) 1991-06-07 1992-06-05 All season type pneumatic tires
DE69219207T DE69219207T2 (en) 1991-06-07 1992-06-05 tire
ES92305174T ES2103343T3 (en) 1991-06-07 1992-06-05 TIRES.
EP92305174A EP0517538B1 (en) 1991-06-07 1992-06-05 Pneumatic tires
US08/596,755 US5753365A (en) 1991-06-07 1996-02-05 Rubber composition and all season type pneumatic tires made from a rubber composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03162435A JP3096091B2 (en) 1991-06-07 1991-06-07 Pneumatic tire

Publications (2)

Publication Number Publication Date
JPH04362403A true JPH04362403A (en) 1992-12-15
JP3096091B2 JP3096091B2 (en) 2000-10-10

Family

ID=15754559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03162435A Expired - Fee Related JP3096091B2 (en) 1991-06-07 1991-06-07 Pneumatic tire

Country Status (1)

Country Link
JP (1) JP3096091B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997034776A1 (en) * 1996-03-18 1997-09-25 Bridgestone Corporation Pneumatic tire, method of production of the pneumatic tire, rubber composition and vulcanized rubber composition
CN111727218A (en) * 2018-02-21 2020-09-29 株式会社普利司通 Method for producing vulcanized rubber composition

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997034776A1 (en) * 1996-03-18 1997-09-25 Bridgestone Corporation Pneumatic tire, method of production of the pneumatic tire, rubber composition and vulcanized rubber composition
US6336487B1 (en) 1996-03-18 2002-01-08 Bridgestone Corporation Pneumatic tire, method of manufacturing a pneumatic tire, rubber composition and vulcanized rubber composition
CN111727218A (en) * 2018-02-21 2020-09-29 株式会社普利司通 Method for producing vulcanized rubber composition

Also Published As

Publication number Publication date
JP3096091B2 (en) 2000-10-10

Similar Documents

Publication Publication Date Title
CA2145355C (en) Pneumatic tire having formed rubber
KR20050057207A (en) Rubber composition for tyre treads
US20140194545A1 (en) Vehicle tyre having a tread comprising a heat-expandable rubber composition
EP3807357B1 (en) A rubber composition for a tire tread
JP3401283B2 (en) Pneumatic tire
US5753365A (en) Rubber composition and all season type pneumatic tires made from a rubber composition
EP0517538B1 (en) Pneumatic tires
JP3021801B2 (en) Pneumatic tire
JP2568520B2 (en) Pneumatic tire
JP3096091B2 (en) Pneumatic tire
JP2868872B2 (en) Pneumatic tire having a foamed rubber layer on the tread
JPH04221206A (en) Pneumatic tire
JPH09136999A (en) Rubber composition
JP3040876B2 (en) Pneumatic tire
JPH04132751A (en) Pneumatic tire
JP3549974B2 (en) Method for producing rubber composition
JPH05147406A (en) Pneumatic tire
JPH07126438A (en) Pneumatic tire
JP2004300340A (en) Rubber composition for tire and pneumatic tire
JP2003292676A (en) Rubber composition for tire and pneumatic tire
JPH08300904A (en) Pneumatic tire
JP3054238B2 (en) Pneumatic tire
JPH06306207A (en) Pneumatic tire
JPH10292066A (en) Rubber composition and pneumatic tire
JP2901257B2 (en) Heavy duty pneumatic tires

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080804

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080804

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090804

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090804

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees