JPH04362334A - Magnetic damper equipment - Google Patents

Magnetic damper equipment

Info

Publication number
JPH04362334A
JPH04362334A JP16331291A JP16331291A JPH04362334A JP H04362334 A JPH04362334 A JP H04362334A JP 16331291 A JP16331291 A JP 16331291A JP 16331291 A JP16331291 A JP 16331291A JP H04362334 A JPH04362334 A JP H04362334A
Authority
JP
Japan
Prior art keywords
magnetic
conductor plate
permanent magnets
eddy current
pole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16331291A
Other languages
Japanese (ja)
Other versions
JP3029703B2 (en
Inventor
Kazuyuki Watanabe
和幸 渡辺
Masayuki Isonaga
磯永 雅之
Hirofumi Nakano
廣文 中野
Kazuo Matsui
一雄 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP3163312A priority Critical patent/JP3029703B2/en
Publication of JPH04362334A publication Critical patent/JPH04362334A/en
Application granted granted Critical
Publication of JP3029703B2 publication Critical patent/JP3029703B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To improve the damping force of a magnetic damper equipment and to minimize it. CONSTITUTION:Three permanent magnets 13-15 are formed into a state of contacting each other under the opposite polarity arrangement of each S, N, S pole at an upper side yoke 11, and three permanent magnets 17-19 are formed similarly under the different alloy arrangement of each N, S, N pole opposite to the described each magnet at an lower side yoke 12. A magnetic circuit is constituted by three directional magnetic fields which are shown as an arrow of each permanent magnet from the N pole to the S pole at the opposite side. A conductor plate 20 which is an electrical good conductor such as an aluminum plate, etc., with the fixed depth size (w) and consists of non-magnetic material, is arranged in a non contact state in an empty gap (d) which has high flux density of this magnetic circuit, and a translation type magnetic damper equipment is constituted. And, the width D1 of the permanent magnet positioning at both edges to the moving direction of the conductor plate, is set up narrower than the width D2 of the permanent magnet positioning at the center.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、各種装置の振動を減衰
させたり、運動に負荷を与えるための磁気ダンパ装置に
おいて、特に係る減衰等をさせるための制動力を向上さ
せるとともに、小形化を図った磁気ダンパ装置に関する
ものである。
[Industrial Application Field] The present invention is directed to a magnetic damper device for damping vibrations of various devices and applying load to motion, and in particular improves the braking force for such damping, etc., and also reduces the size of the device. The present invention relates to a magnetic damper device according to the present invention.

【0002】0002

【従来の技術】各種装置の振動の減衰や運動に負荷を与
えるための磁気ダンパ装置については、文献として例え
ば「日本機械学会講演論文集No,890−26」など
によりその理論的基礎が与えられている。図5(A),
(B)にはその従来における並進形磁気ダンパ装置の基
本モデルが示されている。図における磁気ダンパ装置は
、一端がコ字形に連結され、他端を上下に対向させたヨ
ーク1,2と、各ヨーク1,2の上下対向面にそれぞれ
配置され、そのN極およびS極を対向させた永久磁石3
,4と、両永久磁石3,4により構成される磁気回路の
高磁束密度を有する空隙dに非接触状態で配置された導
体板5とを備えている。
[Prior Art] Regarding magnetic damper devices for damping the vibrations of various devices and applying loads to their movements, the theoretical basis is given in literature such as "Proceedings of the Japan Society of Mechanical Engineers No. 890-26". ing. Figure 5(A),
(B) shows a basic model of the conventional translation type magnetic damper device. The magnetic damper device in the figure has yokes 1 and 2 connected at one end in a U-shape and the other end facing each other vertically, and is arranged on the vertically opposing surfaces of each yoke 1 and 2, with their N and S poles connected to each other. Permanent magnets 3 facing each other
.

【0003】以上の構成において、導体板5が所定の速
度vで矢印方向に相対移動すると上記空隙d内の磁束を
切るため、電磁誘導の原理により起電力Eが導体板5に
生じ、その結果図5(B)に鎖線で示すように渦電流が
流れる。この渦電流と、上記永久磁石3,4により空隙
d間に発生される磁界との作用によって上記導体板5に
上記導体板5の移動方向と逆向きの制動力が発生する。
In the above configuration, when the conductor plate 5 moves relatively in the direction of the arrow at a predetermined speed v, the magnetic flux within the gap d is cut, so that an electromotive force E is generated in the conductor plate 5 due to the principle of electromagnetic induction. Eddy current flows as shown by the chain line in FIG. 5(B). Due to the action of this eddy current and the magnetic field generated between the gap d by the permanent magnets 3 and 4, a braking force is generated in the conductor plate 5 in the direction opposite to the moving direction of the conductor plate 5.

【0004】この制動力は、導体板5あるいはヨーク1
,2側に連結された図示しない各種装置や構造物の振動
の減衰や運動に負荷を与え、減衰力が運動速度に極めて
正確に比例すること、無接触で作用し安定していること
および温度に対する変化が少ないことなどの利点がある
ので、例えば特開昭61−131841号公報に示すテ
ーブル装置の高精度位置決めなどに用いられているほか
、各種の用途に応用することができる。
This braking force is generated by the conductor plate 5 or the yoke 1.
, apply a load to the vibration damping and movement of various devices and structures (not shown) connected to the second side, and ensure that the damping force is extremely accurately proportional to the speed of movement, that it acts without contact and is stable, and that the temperature Since it has the advantage that there is little change in the position, it is used, for example, in high-precision positioning of a table device as shown in Japanese Patent Application Laid-Open No. 61-131841, and can be applied to various other uses.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、従来の
磁気ダンパ装置は、N極からS極に向かう一方向の磁場
中のみで導体板5の相対移動により制動力を発生してい
るため、以下に述べる実用上の問題があった。すなわち
、まず、制動力を発生させるのに有効に使われる渦電流
は、上記空隙d内の部分だけであり、それ以外に流れる
渦電流は制動力に対しては有効に使われず、その結果と
して効率が低くくなるため、十分に制動力を発生させる
には強力な磁石をより多く必要とする欠点があった。 また、導体板5中に渦電流を十分に流すためには、高磁
束密度領域より導体が十分に大きくしなければならず、
前述の文献などでは3倍以上が好ましいとしている。し
たがって、導体板5は著しく大きくなり、磁気ダンパ装
置全体が大型化する欠点があった。
[Problems to be Solved by the Invention] However, the conventional magnetic damper device generates braking force by relative movement of the conductor plate 5 only in a magnetic field in one direction from the N pole to the S pole. There were practical problems to be mentioned. That is, first of all, the eddy current that is effectively used to generate braking force is only within the gap d, and the eddy current that flows elsewhere is not effectively used to generate braking force, and as a result, This had the disadvantage of lower efficiency, requiring more powerful magnets to generate sufficient braking force. In addition, in order to cause a sufficient eddy current to flow through the conductor plate 5, the conductor must be made sufficiently larger than the high magnetic flux density region.
The above-mentioned literature states that 3 times or more is preferable. Therefore, the conductor plate 5 becomes significantly large, resulting in an increase in the size of the entire magnetic damper device.

【0006】そこで本出願人は、上記問題を解決するた
めに、先に特願平3−33357号で、図6に示すよう
な磁気ダンパ装置を提案した。すなわち、同一ヨーク面
6に3個の永久磁石7,8,9を配設し、しかもその両
永久磁石7,8,9の導体板10に対向する表面の磁極
を互いに異なるようにしている。具体的には両端の永久
磁石7,9の表面をN極とし、中央の永久磁石8のそれ
をS極としている。
In order to solve the above problem, the present applicant previously proposed a magnetic damper device as shown in FIG. 6 in Japanese Patent Application No. 3-33357. That is, three permanent magnets 7, 8, 9 are arranged on the same yoke surface 6, and the magnetic poles of the surfaces of the permanent magnets 7, 8, 9 facing the conductive plate 10 are made to be different from each other. Specifically, the surfaces of the permanent magnets 7 and 9 at both ends are the north pole, and that of the central permanent magnet 8 is the south pole.

【0007】かかる構成にすることにより、導体板10
が図6に示すように所定の速度vで矢印方向に移動する
と、上述の従来例と同様の原理により導体板10の各永
久磁石7,8,9に対向する部位の周囲に所定方向の渦
電流が生じる。この渦電流は、導体板10上の永久磁石
7,8,9の隣接辺側を中心としその周囲を回る第1の
渦電流Aと、両端の永久磁石7,9の外側辺側を中心と
しその周囲を回る第2の渦電流Bの2種類があり、実線
で示した第1の渦電流Aの量は、破線で示した第2の渦
電流Bに比し充分大きくなる。
[0007] With this configuration, the conductor plate 10
When it moves in the direction of the arrow at a predetermined speed v as shown in FIG. A current is generated. This eddy current is composed of a first eddy current A that is centered around the side adjacent to the permanent magnets 7, 8, and 9 on the conductor plate 10, and a first eddy current A that revolves around the side adjacent to the permanent magnets 7, 8, and 9 on the conductor plate 10, and a first eddy current A that revolves around the side adjacent to the permanent magnets 7, 8, and 9 on the conductor plate 10, and a first eddy current A that revolves around the side adjacent to the permanent magnets 7, 8, and There are two types of second eddy currents B circulating around it, and the amount of the first eddy current A shown by the solid line is sufficiently larger than the second eddy current B shown by the broken line.

【0008】しかし、上記先提案に係る磁気ダンパ装置
では、従来の磁気ダンパ装置に比較すると格段の効果を
奏することができるが、新たに以下に示す問題を有する
ことが判った。すなわち、導体板10に作用する制動力
は、高磁束密度領域内を渦電流が流れるときに発生する
ため、領域外を流れる量の多い上記の第2の渦電流Bは
ロスが多く、発生した渦電流を制動力発生のために有効
に利用していない。さらに、第2の渦電流Bは、図示す
るごとく、高磁束密度領域から外側に大きく突出する経
路をとっているため、その突出量をみこして導体板10
の寸法形状を決めなければならず、小型化のネックにも
なる。本発明は、上記した背景に鑑みてなされたもので
、制動力をより強力にしつつ、装置全体の小形化を図っ
た磁気ダンパ装置を提供することを目的としている。
[0008] However, although the magnetic damper device according to the above-mentioned proposal can achieve a remarkable effect compared to the conventional magnetic damper device, it has been found that it has the following new problem. That is, the braking force acting on the conductor plate 10 is generated when an eddy current flows within a high magnetic flux density region, so the second eddy current B, which flows in a large amount outside the region, has a large loss and is generated. Eddy currents are not effectively used to generate braking force. Further, as shown in the figure, the second eddy current B takes a path that largely protrudes outward from the high magnetic flux density region, so that the conductor plate 10
The size and shape of the device must be determined, which can become a bottleneck in miniaturization. The present invention has been made in view of the above-mentioned background, and an object of the present invention is to provide a magnetic damper device that has a stronger braking force while reducing the overall size of the device.

【0009】[0009]

【課題を解決するための手段】上記した目的を達成する
ため、本発明に係る磁気ダンパ装置では、ヨークの対向
面の一方ないしは双方に磁石を配置することにより構成
される磁気回路と、この磁気回路の高磁束密度を有する
空隙に非接触状態で配置された電気的良導体からなる導
体板とを備えた磁気ダンパ装置において、同一ヨーク面
に配置される前記磁石の磁極が3極以上存在するととも
に、それら複数の磁石のうち、前記導体板の相対移動方
向の少なくとも一方端部側に位置する磁石の該相対移動
方向の幅を隣接する他の磁石のそれに比し狭くした。
[Means for Solving the Problems] In order to achieve the above object, a magnetic damper device according to the present invention includes a magnetic circuit constituted by placing a magnet on one or both opposing surfaces of a yoke, and a magnetic In a magnetic damper device comprising a conductor plate made of a good electrical conductor disposed in a non-contact manner in an air gap having a high magnetic flux density in a circuit, there are three or more magnetic poles of the magnets disposed on the same yoke surface, and Among the plurality of magnets, the width of the magnet located on at least one end side in the direction of relative movement of the conductive plate is narrower than that of other adjacent magnets.

【0010】0010

【作用】以上の構成の磁気ダンパ装置にあっては、高磁
束密度の空隙で磁界の向きが複数存在し、導体板が相対
移動したとき、前記磁石の極数に応じたそれぞれ隣同士
逆方向の起電力が発生するため、高磁束密度空隙内での
導体板に渦電流がより多く流れ、その分だけ外部側に向
かう渦電流は減少し、前記空隙内での渦電流を多くする
ことができる。しかも、移動方向両端に位置する永久磁
石により形成される高磁束密度領域で発生する渦電流の
多くは、隣接する広幅な永久磁石により形成される高磁
束密度領域との間でループが形成され、両端の高磁束密
度領域の外側辺を中心として流れる渦電流の量は小さく
なる。よって、制動力発生に有効に寄与される高磁束密
度領域内の渦電流の量が増大し、制動力が向上する。
[Function] In the magnetic damper device configured as described above, there are multiple directions of the magnetic field in the air gap with high magnetic flux density, and when the conductor plate moves relative to each other, the adjacent directions are opposite to each other depending on the number of poles of the magnet. Since an electromotive force of can. Moreover, most of the eddy currents generated in the high magnetic flux density regions formed by the permanent magnets located at both ends of the moving direction form loops with the high magnetic flux density regions formed by the adjacent wide permanent magnets. The amount of eddy current flowing around the outer sides of the high magnetic flux density regions at both ends becomes smaller. Therefore, the amount of eddy current in the high magnetic flux density region that effectively contributes to the generation of braking force is increased, and the braking force is improved.

【0011】[0011]

【実施例】以下、本発明の好適な実施例を添付図面を用
いて詳細に説明する。図1,図2は、導体板を直線移動
させる並進形磁気ダンパ装置に対して本発明の基本的な
構成である3極形の極配列を適用した場合の第1実施例
を示している。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will now be described in detail with reference to the accompanying drawings. FIGS. 1 and 2 show a first embodiment in which a three-pole pole arrangement, which is the basic structure of the present invention, is applied to a translational magnetic damper device that linearly moves a conductor plate.

【0012】図1において、一端がコ字形に連結された
上下のヨーク11,12の他端側対向面には、3つの永
久磁石がそれぞれ対向配置している。具体的には、上部
側ヨーク11にはS,N,S極の異極配列で三つの永久
磁石13,14,15が相互に当接状態で形成されてい
るとともに、下部側ヨーク12には前記各磁石に対向し
てN,S,N極の異極配列で三つの永久磁石17,18
,19が同様に形成され、対向面における各永久磁石の
図中矢印に示すN極からS極に向かう三方向の磁場によ
り磁気回路を構成している。この磁気回路の高磁束密度
を有する空隙dには、非接触状態で所定の奥行き寸法w
のアルミニウム板などの電気的良導体であって非磁性体
からなる導体板20が配置され、並進形磁気ダンパ装置
を構成している。
In FIG. 1, three permanent magnets are arranged facing each other on the opposing surfaces of the upper and lower yokes 11 and 12, each of which has one end connected in a U-shape. Specifically, the upper yoke 11 is formed with three permanent magnets 13, 14, and 15 in a different polar arrangement of S, N, and S poles in contact with each other, and the lower yoke 12 is formed with three permanent magnets 13, 14, and 15 in contact with each other. Opposed to each of the magnets are three permanent magnets 17 and 18 arranged in different polarities of N, S, and N poles.
, 19 are formed in the same manner, and a magnetic circuit is constructed by magnetic fields in three directions from the north pole to the south pole of each permanent magnet on the opposing surface, as indicated by the arrows in the figure. A gap d having a high magnetic flux density in this magnetic circuit has a predetermined depth w in a non-contact state.
A conductive plate 20 made of a non-magnetic electrically conductive material such as an aluminum plate is disposed to constitute a translational magnetic damper device.

【0013】ここで本発明では、図2に示すように、両
端部に位置する永久磁石13,15,17,19の、導
体板20の移動方向に対する幅D1を、中央に位置する
永久磁石14,18の幅D2に対して狭く設定してある
In the present invention, as shown in FIG. 2, the width D1 of the permanent magnets 13, 15, 17, 19 located at both ends in the direction of movement of the conductor plate 20 is determined by the width D1 of the permanent magnet 14 located at the center. , 18 is set narrower than the width D2 of .

【0014】以上の構成において、導体板20が図2に
示すように矢印方向に所定の速度vで相対移動すると、
上記空隙d内の磁束を切るため、フレミングの右手の法
則によって起電力E1,E2,E3が導体板20に誘導
され、その結果、導体板20上には、上述した先提案に
係る磁気ダンパ装置と同様に第1,第2の渦電流A,B
の2種類の渦電流が流れる。
In the above configuration, when the conductor plate 20 moves relatively in the direction of the arrow at a predetermined speed v as shown in FIG.
In order to cut the magnetic flux in the air gap d, electromotive forces E1, E2, and E3 are induced to the conductor plate 20 according to Fleming's right-hand rule, and as a result, on the conductor plate 20, the magnetic damper device according to the previously proposed Similarly, the first and second eddy currents A and B
Two types of eddy currents flow.

【0015】この渦電流が磁界との作用によって上記導
体板20にその導体板20の移動方向(矢印方向)と逆
向きの制動力を生じさせ、導体板20あるいはヨーク1
1,12側に連結された図示しない各種装置の振動の減
衰や運動に負荷を与える。そして、上述した本出願人の
先提案に係る磁気ダンパ装置と同様の原理により、中央
の実線で示す二つの第1の渦電流Aが主に流れ、その左
右の鎖線で示す外側に向かう第2の渦電流Bは中央より
流れにくいものとなる。
This eddy current generates a braking force on the conductor plate 20 in the direction opposite to the moving direction (arrow direction) of the conductor plate 20 due to the action of the magnetic field, and the conductor plate 20 or the yoke 1
Loads are applied to vibration damping and motion of various devices (not shown) connected to the 1 and 12 sides. Based on the same principle as the magnetic damper device previously proposed by the applicant mentioned above, the two first eddy currents A shown by the solid lines in the center mainly flow, and the second eddy currents A flowing outward, shown by the dashed lines on the left and right. The eddy current B becomes more difficult to flow than in the center.

【0016】しかも、本発明では、中央の永久磁石14
,18の幅D2を広くしているため、第1の渦電流Aは
、上記先提案のものよりさらに大きく流れ、第2の渦電
流Bはより小さくなる。これは以下の理由による。
Moreover, in the present invention, the central permanent magnet 14
, 18 is made wider, the first eddy current A flows even larger than the one proposed above, and the second eddy current B becomes smaller. This is due to the following reasons.

【0017】今、便宜上3組の永久磁石13と17,1
4と18,15と19により形成される導体板20上の
第1,第2,第3の高磁束密度領域21,22,23を
それぞれ破線で示すと、図中上側に位置する辺21a,
22a,23aには、それぞれプラス,マイナス,プラ
スの電位が生じる。なお、図示省略するが、下側の辺で
は上記と逆の電位が生じる。
Now, for convenience, three sets of permanent magnets 13, 17, 1
When the first, second, and third high magnetic flux density regions 21, 22, and 23 on the conductor plate 20 formed by 4 and 18, and 15 and 19 are shown by broken lines, the sides 21a and 21a located on the upper side in the figure,
Positive, negative, and positive potentials are generated at 22a and 23a, respectively. Although not shown, a potential opposite to the above is generated on the lower side.

【0018】従って、辺21aから流れ出た第1の渦電
流Aは辺22aの左側半分に流れ込み、また、辺23a
の右側半分から流れ出た第1の渦電流Aは、辺22aの
右側半分に流れ込む。つまり、両端の永久磁石13,1
5,17,19で形成される第1,第3の高磁束密度領
域21,23から流れ出て,或いは流れ込む渦電流の多
くは、隣接する中央の第2の高磁束密度領域22との間
で存在することになる。その結果、制動力発生に有効に
寄与できる第1の渦電流が増大し、ロスの多い第2の渦
電流Bの量は小さくなるのである。また、上述のごとく
第2の渦電流Bの量が小さくなるため、外側に突出する
量も小さくなり、その結果、導電体20の移動方向の長
さも小さくすることができ、結果として、導体板の面積
を小さくし、装置全体の小型化が図れる。
Therefore, the first eddy current A flowing out from side 21a flows into the left half of side 22a, and also flows into the left half of side 23a.
The first eddy current A flowing out from the right half of the side 22a flows into the right half of the side 22a. In other words, the permanent magnets 13, 1 at both ends
Most of the eddy currents flowing out or flowing from the first and third high magnetic flux density regions 21 and 23 formed by 5, 17, and 19 are generated between the adjacent central second high magnetic flux density region 22. It will exist. As a result, the first eddy current that can effectively contribute to the generation of braking force increases, and the amount of the second eddy current B, which has a large loss, decreases. Furthermore, as described above, since the amount of the second eddy current B becomes smaller, the amount of the second eddy current B that protrudes outward also becomes smaller, and as a result, the length of the conductor 20 in the moving direction can also be reduced, and as a result, the conductor plate The area of the device can be reduced, and the entire device can be made more compact.

【0019】次に、本発明の効果を確認するために、図
2に示す3つの磁極を有する磁気ダンパ装置における各
永久磁石の幅D1,D2の比率をパラメータとして制動
力を測定し、その結果を図3に示す。同図(A)に示す
ように、本実験では3つの磁極の幅がすべて等しい(D
1=D2)もの(比較例)と、両側に位置する磁極の幅
が中央のものに対し半分(2・D1=D2)のもの(本
発明品)を比較した。尚、それら2つの磁気ダンパ装置
は、それぞれ有する3つの磁極の幅を合わせた永久磁石
全体の幅は等しくしている。
Next, in order to confirm the effects of the present invention, the braking force was measured using the ratio of the widths D1 and D2 of each permanent magnet in a magnetic damper device having three magnetic poles shown in FIG. 2 as a parameter, and the results were is shown in Figure 3. As shown in Figure (A), in this experiment, the widths of all three magnetic poles were equal (D
1=D2) (comparative example) and one in which the width of the magnetic poles located on both sides is half that of the center (2·D1=D2) (product of the present invention). In addition, in these two magnetic damper devices, the total width of the permanent magnet, which is the width of the three magnetic poles each has, is made equal.

【0020】同図(B)から明らかなように、D1=D
2に設定した磁気ダンパ装置では、発生する最大制動量
Fは300(gf)であるのに対し、2・D1=D2に
設定した本発明に係る磁気ダンパ装置では、330(g
f)となり、制動力が増加する。しかも、本発明に係る
磁気ダンパ装置のほうが、導体板のはみ出し量Aが小さ
い量から最大制動力を発揮することができる。従って、
より小型化を図ることができるという効果も奏する。
As is clear from the same figure (B), D1=D
In the magnetic damper device set to 2, the maximum braking amount F generated is 300 (gf), whereas in the magnetic damper device according to the present invention, which is set to 2・D1=D2, the maximum braking amount F generated is 330 (gf).
f), and the braking force increases. Moreover, the magnetic damper device according to the present invention can exert the maximum braking force even when the protrusion amount A of the conductor plate is small. Therefore,
It also has the effect of being able to be made more compact.

【0021】図4(A),(B)は、本発明の第2実施
例を示している。本実施例では、上記した各実施例と相
違して、回転型磁気ダンパ装置に適用した例について示
している。
FIGS. 4A and 4B show a second embodiment of the present invention. This embodiment differs from the above embodiments in that it is applied to a rotating magnetic damper device.

【0022】まず、この回転型磁気ダンパ装置の基本構
成について説明すると、軸30に、上下一対の円盤型の
ヨーク32,34が装着され、この各ヨーク32,34
の対向面の所定位置に永久磁石が配設される。そして、
上下に対向配置された永久磁石の磁極は異なるようにし
ている。そして、従来一般の回転型磁気ダンパ装置では
、同一ヨーク一に配設される永久磁石は、1個ずづ所定
の間隔をおいて配設されているが、本実施例では、一方
のヨークの面上には周方向に沿って所定間隔おいて複数
対の異極同士が密着した3個の永久磁石56,57,5
8が配置されている。また、他方のヨークの対向面には
、上記の永久磁石56,57,58の配置とは磁極が逆
の複数対の異極の永久磁石の対が対向配置され、その間
に円盤状の導体板40が非接触状態で回転可能に設けら
れている。
First, the basic structure of this rotary magnetic damper device will be explained. A pair of upper and lower disk-shaped yokes 32 and 34 are attached to a shaft 30.
A permanent magnet is disposed at a predetermined position on the opposing surface. and,
The magnetic poles of the permanent magnets arranged vertically and oppositely are different from each other. In a conventional general rotary magnetic damper device, the permanent magnets arranged on the same yoke are arranged one by one at a predetermined interval, but in this embodiment, one of the permanent magnets is arranged on one yoke. On the surface, three permanent magnets 56, 57, 5 are arranged at predetermined intervals along the circumferential direction, and a plurality of pairs of different poles are in close contact with each other.
8 is placed. In addition, on the opposing surface of the other yoke, a plurality of pairs of permanent magnets with different polarities, whose magnetic poles are opposite to those of the permanent magnets 56, 57, and 58, are arranged facing each other, and a disc-shaped conductor plate is arranged between them. 40 is provided so as to be rotatable in a non-contact state.

【0023】ここで本発明では、中央の永久磁石57の
幅を、両端の永久磁石56,58に比し広く設定してい
る。したがって以上の構成によれば、各永久磁石56,
57,58間は各永久磁石間のエアギャップが存在しな
い分磁路が短くなるため、磁束密度が高くなり、磁束密
度の二乗に比例する制動力にとって有効となる。また、
導体板40が所定の速度vで矢印A方向に回転すると、
導体板40を挟んで対向する各永久磁石の磁束を切るた
め、フレミングの右手の法則によって起電力が導体板4
0に誘導され、その結果導体板40にはそれぞれ所定の
渦電流がループ状に流れる。
In the present invention, the width of the central permanent magnet 57 is set wider than that of the permanent magnets 56 and 58 at both ends. Therefore, according to the above configuration, each permanent magnet 56,
Between 57 and 58, there is no air gap between the permanent magnets, so the magnetic path is shortened, so the magnetic flux density becomes high, which is effective for the braking force proportional to the square of the magnetic flux density. Also,
When the conductor plate 40 rotates in the direction of arrow A at a predetermined speed v,
In order to cut the magnetic flux of each permanent magnet facing each other with the conductor plate 40 in between, the electromotive force is applied to the conductor plate 4 according to Fleming's right-hand rule.
0, and as a result, a predetermined eddy current flows in each conductor plate 40 in a loop shape.

【0024】この渦電流が磁界との作用によって上記導
体板40に上記矢印A方向と逆向きの制動力を生じさせ
、導体板40の軸30に連結された図示しない各種装置
の運動に負荷を与えるのであるが、この実施例において
は、上記した実施例と同様の原理により中央の実線で示
す第1の渦電流Aが主に流れ、その分だけその左右の破
線で示す外側に向かう第2の渦電流Bは中央より少なく
なる。
This eddy current generates a braking force on the conductor plate 40 in the direction opposite to the direction of the arrow A due to the action of the magnetic field, thereby applying a load to the movement of various devices (not shown) connected to the shaft 30 of the conductor plate 40. However, in this embodiment, the first eddy current A shown by the solid line in the center mainly flows based on the same principle as the above-mentioned embodiment, and the second eddy current A flows outward to the left and right of it, shown by the broken lines. The eddy current B at is smaller than that at the center.

【0025】尚、上記した各実施例では、いずれも隣接
する永久磁石同士を接触した状態に配置した例について
説明したが、本発明はこれに限ることなく、両永久磁石
間に所定のエアギャップを設けても良い。また、上記各
実施例では磁気回路を構成する磁石を永久磁石としたが
、例えば制動力を制御する必要があるなど、用途によっ
ては電磁石を用いても良い。また一方のヨークのみに磁
石を設けても良い。さらに導体板20として、上記各実
施例ではアルミニウム板などの金属製の電気的良導体で
あるが、非金属材料の電気的良導体を用いても良い。 さらには、上記した各実施例では、3つの磁極で一組と
したが、本発明ではこれに限ることなく、4つ以上を組
み合わせても良いのはもちろんである。
[0025] In each of the above-mentioned embodiments, an example was explained in which adjacent permanent magnets are arranged in contact with each other. may be provided. Further, in each of the embodiments described above, permanent magnets were used as the magnets constituting the magnetic circuit, but electromagnets may be used depending on the application, for example, when it is necessary to control the braking force. Alternatively, a magnet may be provided only on one yoke. Further, as the conductor plate 20, although in each of the above embodiments an electrically good conductor made of metal such as an aluminum plate is used, it is also possible to use an electrically good conductor made of a non-metallic material. Further, in each of the embodiments described above, a set of three magnetic poles was used, but the present invention is not limited to this, and it goes without saying that four or more magnetic poles may be combined.

【0026】[0026]

【発明の効果】以上各実施例によって詳細に説明したよ
うに、本発明による磁気ダンパ装置にあっては、高磁束
密度の空隙で磁界の向きが複数存在し、導体板が相対移
動したとき上記磁石の極数に応じたそれぞれ隣同士逆方
向の起電力が発生するため、高磁束密度空隙内での導体
板に渦電流がより多く流れ、その分だけ外部側に向かう
渦電流は減少することにより、上記空隙内での渦電流を
多くすることができ、導体板の面積も小さくできる。し
かも、同一ヨーク内で隣接する磁石のうち、上記相対移
動方向両端部に位置する磁極の幅を隣接する磁極の幅よ
り狭くしたため、両端部の外側に流れる渦電流が小さく
なり、発生した渦電流の大部分を制動力発生に寄与する
ことができ、、上記効果がよりいっそう向上される。し
たがって本発明によれば、装置が小形化し、しかも強力
な制動力を確保できる。
Effects of the Invention As described above in detail through each of the embodiments, in the magnetic damper device according to the present invention, there are multiple directions of the magnetic field in the air gap with high magnetic flux density, and when the conductor plate moves relative to each other, Since electromotive force is generated in opposite directions between adjacent magnets depending on the number of poles of the magnet, more eddy current flows in the conductor plate within the high magnetic flux density gap, and the eddy current directed to the outside is reduced accordingly. As a result, the eddy current within the gap can be increased, and the area of the conductor plate can also be reduced. Moreover, among adjacent magnets in the same yoke, the width of the magnetic poles located at both ends in the relative movement direction is narrower than the width of the adjacent magnetic poles, so the eddy current flowing outside of both ends becomes smaller, and the generated eddy current can contribute to the generation of braking force, and the above effects are further improved. Therefore, according to the present invention, the device can be miniaturized and a strong braking force can be ensured.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明に係る磁気ダンパ装置の第1実施例を示
す斜視図である。
FIG. 1 is a perspective view showing a first embodiment of a magnetic damper device according to the present invention.

【図2】(A)は図1に示した第1実施例の装置を示す
正面図である。 (B)はその平面図である。
2(A) is a front view showing the apparatus of the first embodiment shown in FIG. 1. FIG. (B) is a plan view thereof.

【図3】(A)は本発明の効果を実証するための実験に
用いた装置を示す概略構成図である。 (B)はその実験結果を示すグラフである。
FIG. 3(A) is a schematic configuration diagram showing an apparatus used in an experiment to demonstrate the effects of the present invention. (B) is a graph showing the experimental results.

【図4】(A)は本発明に係る磁気ダンパ装置の第2実
施例を示す正面図である。 (B)は同導体板を移動させたときの渦電流の発生状態
を示す説明図である。
FIG. 4(A) is a front view showing a second embodiment of the magnetic damper device according to the present invention. (B) is an explanatory diagram showing how eddy currents are generated when the conductive plate is moved.

【図5】(A)は従来の並進形磁気ダンパ装置の基本モ
デルを示す正面図である。 (B)は同導体板を移動させたときの渦電流の発生状態
を示す説明図である。
FIG. 5(A) is a front view showing a basic model of a conventional translational magnetic damper device. (B) is an explanatory diagram showing how eddy currents are generated when the conductive plate is moved.

【図6】本出願人の先提案に係る磁気ダンパ装置におけ
る導体板を移動させたときの渦電流の発生状態を示す説
明図である。
FIG. 6 is an explanatory diagram showing how eddy currents are generated when a conductor plate is moved in a magnetic damper device previously proposed by the present applicant.

【符号の説明】[Explanation of symbols]

11,12,32,34    ヨーク13,14,1
5,17,18,19,36,37,38,56,57
,58永久磁石 20,40    導体板
11, 12, 32, 34 Yoke 13, 14, 1
5, 17, 18, 19, 36, 37, 38, 56, 57
, 58 permanent magnet 20, 40 conductor plate

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  ヨークの対向面の一方ないしは双方に
磁石を配置することにより構成される磁気回路と、この
磁気回路の高磁束密度を有する空隙に非接触状態で配置
された電気的良導体からなる導体板とを備えた磁気ダン
パ装置において、同一ヨーク面に配置される前記磁石の
磁極が3極以上存在するとともに、それら複数の磁石の
うち、前記導体板の相対移動方向の少なくとも一方端部
側に位置する磁石の該相対移動方向の幅を隣接する他の
磁石のそれに比し狭くしてなることを特徴とする磁気ダ
ンパ装置。
[Claim 1] Consisting of a magnetic circuit formed by placing magnets on one or both of the opposing surfaces of the yoke, and a good electrical conductor placed in a non-contact state in the gap having a high magnetic flux density in this magnetic circuit. In a magnetic damper device comprising a conductor plate, there are three or more magnetic poles of the magnets arranged on the same yoke surface, and at least one end side of the plurality of magnets in the direction of relative movement of the conductor plate. A magnetic damper device characterized in that the width of the magnet located in the relative movement direction is narrower than that of other adjacent magnets.
JP3163312A 1991-06-10 1991-06-10 Magnetic damper device Expired - Lifetime JP3029703B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3163312A JP3029703B2 (en) 1991-06-10 1991-06-10 Magnetic damper device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3163312A JP3029703B2 (en) 1991-06-10 1991-06-10 Magnetic damper device

Publications (2)

Publication Number Publication Date
JPH04362334A true JPH04362334A (en) 1992-12-15
JP3029703B2 JP3029703B2 (en) 2000-04-04

Family

ID=15771444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3163312A Expired - Lifetime JP3029703B2 (en) 1991-06-10 1991-06-10 Magnetic damper device

Country Status (1)

Country Link
JP (1) JP3029703B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008138871A (en) * 2006-11-08 2008-06-19 Asml Netherlands Bv Eddy current damper and lithography device having the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4182280B2 (en) * 2002-06-07 2008-11-19 四国化工機株式会社 Rotary aseptic filling equipment
CN104265817B (en) * 2014-08-01 2016-02-10 北京交通大学 A kind of magnetic fluid damper containing the non-magnetic inertial mass of spherical crown surface

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008138871A (en) * 2006-11-08 2008-06-19 Asml Netherlands Bv Eddy current damper and lithography device having the same
US7869001B2 (en) 2006-11-08 2011-01-11 Asml Netherlands B.V. Eddy current damper, and lithographic apparatus having an eddy current damper
JP4719729B2 (en) * 2006-11-08 2011-07-06 エーエスエムエル ネザーランズ ビー.ブイ. Eddy current damper and lithographic apparatus having eddy current damper

Also Published As

Publication number Publication date
JP3029703B2 (en) 2000-04-04

Similar Documents

Publication Publication Date Title
JPS6140009A (en) Electric drive device having flat coil
US3599020A (en) Linear actuator with alternating magnetic poles
JP3584473B2 (en) Magnetic damper device
JP4600712B2 (en) Linear motor
JPH0638486A (en) Movable magnet type actuator
US6548919B2 (en) Linear motor
JPH1098868A (en) Pole layout system for electromagnetic brake
JPH04362334A (en) Magnetic damper equipment
EP0052651A1 (en) Linear solenoid device
JPH0568941B2 (en)
US4908592A (en) Electromagnetic actuating device
JPH04337140A (en) Magnetic damper device
JPS62126856A (en) Linear motor
JPH04254027A (en) Magnetic damper device
JP4720024B2 (en) Permanent magnet synchronous motor
JPH04341632A (en) Magnetic damper device
JPS6014491B2 (en) electromagnetic drive equipment
JPS6225861A (en) Linear motor
JPH04254028A (en) Rotating magnetic damper device
JPS62114463A (en) Linear motor
JP2001008391A (en) Dynamo-electric machine
JP3064309B2 (en) Linear motor
JPS626865Y2 (en)
JP2004096952A (en) Compound voice coil type linear motor
JPH08163850A (en) Single pole dc linear motor

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000125