JPH04362162A - Amorphous alloy thin strip having crystallized layer at inside of sheet thickness and excellent in magnetic property - Google Patents

Amorphous alloy thin strip having crystallized layer at inside of sheet thickness and excellent in magnetic property

Info

Publication number
JPH04362162A
JPH04362162A JP3135196A JP13519691A JPH04362162A JP H04362162 A JPH04362162 A JP H04362162A JP 3135196 A JP3135196 A JP 3135196A JP 13519691 A JP13519691 A JP 13519691A JP H04362162 A JPH04362162 A JP H04362162A
Authority
JP
Japan
Prior art keywords
amorphous alloy
thickness
crystallized
crystallized layer
thin strip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3135196A
Other languages
Japanese (ja)
Inventor
Shun Sato
駿 佐藤
Toshio Yamada
山田 利男
Tsutomu Ozawa
小澤 勉
Hideo Hagiwara
英夫 萩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP3135196A priority Critical patent/JPH04362162A/en
Publication of JPH04362162A publication Critical patent/JPH04362162A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15341Preparation processes therefor

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Continuous Casting (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To offer an amorphous alloy thin strip excellent in magnetic properties by providing the inside of its sheet thickness with at least one crystallized layer. CONSTITUTION:This is an amorphous alloy thin strip in which its compsn. is expressed by TMa Sib, Bc, Cd and Me, having a feature of having at least one crystallized layer at the inside of its sheet thickness, formed by executing jetting via a multiple slit nozzle having plural slit-shaped opening parts and executing rapid cooling by a cooling substrate and excellent in magnetic properties; where TM denotes at least one kind among Fe, Co and Ni, M denotes at least one kink among Al, Ti and Zr as well as, by atom, a satisfies 70 to 85%, b satisfies 4 to 18%, c satisfies 7 to 18%, d satisfies 0 to 4%, e satisfies 0.01 to 0.3% and a+b+c+d+e=100. In this way, because the number of crystallized layers at the inside of the sheet thickness and each thickness can be controlled, its properties can be controlled in a wide range compared to the case of the conventional amorphous alloy thin strip in which crystallization is limited only to its surface layer.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、チョークコア、センサ
、リアクトルなどに用いられる非晶質磁性材料に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an amorphous magnetic material used for choke cores, sensors, reactors, etc.

【0002】0002

【従来の技術】液体急冷法によって製造される非晶質金
属は、電磁気特性、機械的性質、耐食性などが結晶性金
属に比べてすぐれていることから、広い分野で応用が検
討されてきた。特に、電磁気特性に関しては、保磁力が
小さく、透磁率が高く、鉄損が小さいという特徴が鉄心
材料に適合し、この分野の実用化が最も進んでいる。例
えば、電力トランスには高飽和磁束密度のFe基合金、
可飽和リアクトルやコモンモードチョークには高角型比
、高透磁率のCo基合金が用いられている。
BACKGROUND OF THE INVENTION Amorphous metals produced by liquid quenching have superior electromagnetic properties, mechanical properties, corrosion resistance, etc. compared to crystalline metals, and have therefore been considered for application in a wide range of fields. In particular, regarding electromagnetic properties, the characteristics of low coercive force, high magnetic permeability, and low iron loss are suitable for iron core materials, and practical application in this field is most advanced. For example, for power transformers, Fe-based alloys with high saturation magnetic flux density,
Co-based alloys with a high squareness ratio and high magnetic permeability are used for saturable reactors and common mode chokes.

【0003】これらの用途はいずれも非晶質合金の特徴
を十分に生かしたものであるが、用途によっては非晶質
合金の特徴が欠点となる場合もある。例えば、高周波ト
ランスにおいては、周波数に対する鉄損増加率がフェラ
イトに比べて大きく、ある周波数以上ではフェライトよ
り磁気特性が劣る。また、平滑チョークにおいて高い飽
和磁束密度を利用するためFe基非晶質合金の適用が検
討されているが、カットコアにすると磁歪により非晶質
合金本来の軟磁気特性が大幅に劣化するという問題があ
る。
[0003] All of these uses take full advantage of the characteristics of amorphous alloys, but depending on the application, the characteristics of amorphous alloys may become disadvantageous. For example, in a high-frequency transformer, the iron loss increase rate with respect to frequency is greater than that of ferrite, and above a certain frequency, the magnetic properties are inferior to that of ferrite. In addition, the application of Fe-based amorphous alloys is being considered in order to utilize high saturation magnetic flux density in smooth chokes, but there is a problem that using cut cores will significantly degrade the soft magnetic properties inherent in amorphous alloys due to magnetostriction. There is.

【0004】これらの問題を回避する方策として、非晶
質合金のすぐれた軟磁気特性を若干犠牲にする手段がと
られている。それは非晶質合金薄帯の表面を結晶化させ
る方法である。薄帯表面に形成された結晶は磁区を細分
化し、高周波における鉄損を低減させる。この方法は高
周波トランスにおいて採用されている。また平滑チョー
クにおいては、表面の結晶化層が圧縮応力をもたらし磁
化曲線を磁界軸方向にねかせる作用をするので、カット
工程を省略しても所定の直流重畳特性が得られることが
期待される。
In order to avoid these problems, measures have been taken to somewhat sacrifice the excellent soft magnetic properties of amorphous alloys. It is a method of crystallizing the surface of an amorphous alloy ribbon. The crystals formed on the ribbon surface subdivide the magnetic domains and reduce iron loss at high frequencies. This method is employed in high frequency transformers. Furthermore, in a smooth choke, the crystallized layer on the surface exerts compressive stress and causes the magnetization curve to lie in the direction of the magnetic field axis, so it is expected that the desired DC superimposition characteristics can be obtained even if the cutting step is omitted.

【0005】非晶質合金薄帯の表面層を結晶化させる具
体的方法としては、■表面が結晶化する条件でアニール
する、■Alを少量添加して酸化性雰囲気で急冷する(
特公平2−26767号公報)、などの方法が知られて
いる。しかしながら、これらの方法は、それぞれ問題点
がある。■表面結晶化法においては、アニールの困難さ
がある。すなわち、表面の薄い層のみを結晶化するため
にはアニール条件を厳密に設定する必要があるが、コア
の巻き厚が大きくなるとコア内外に温度差を生じて、適
正アニール温度の範囲が狭くなる。
Specific methods for crystallizing the surface layer of an amorphous alloy ribbon include: (1) Annealing under conditions that will crystallize the surface; (2) Adding a small amount of Al and rapidly cooling in an oxidizing atmosphere (
Methods such as Japanese Patent Publication No. 2-26767) are known. However, each of these methods has its own problems. ■In the surface crystallization method, there are difficulties in annealing. In other words, in order to crystallize only the thin layer on the surface, it is necessary to set the annealing conditions strictly, but as the core winding thickness increases, a temperature difference occurs between the inside and outside of the core, narrowing the range of appropriate annealing temperatures. .

【0006】また、■Al添加法は、上記特公平2−2
6767号公報によれば、平滑チョークに要求される恒
透磁性を付与するためにはAlを0.3〜5原子%の添
加量が必要である。しかし、Alを0.3〜5原子%も
添加すると薄帯製造性に問題が生じた。すなわち、Al
によるノズル詰まりが頻発して長時間の連続鋳造ができ
なくなることである。
[0006] Also, ■Al addition method is described in the above-mentioned Japanese Patent Publication No. 2-2.
According to Japanese Patent No. 6767, in order to provide the constant magnetic permeability required for a smooth choke, it is necessary to add Al in an amount of 0.3 to 5 atomic %. However, when 0.3 to 5 at % of Al was added, a problem arose in ribbon productivity. That is, Al
This causes frequent nozzle clogging, making it impossible to perform continuous casting for long periods of time.

【0007】ノズル詰まりを回避するためにAl添加量
を減らしても磁化曲線をねかせる効果はある。X軸方向
に倒れた磁化曲線をもたらす作用が0.03〜0.1%
程度の微量のAl添加による非晶質薄帯表面層の結晶化
によるものであることはH.C.Fiedlerらが明
らかにしている(1981年発行、米国General
  Electric社の技術レポート  81CRD
199)。しかし、この程度の微量のAlによる表面結
晶化層では、高い磁界までの一定の透磁率を保持させる
ことはできない。たとえば、0.1%のAlを添加した
Fe−Si−B合金薄帯のアニール後の磁化特性は、1
Oe程度の磁界までは倒れた直線的な磁化特性を示すが
、1Oeを超えると、磁束密度は急激に立ち上がる傾向
を示す。すなわち、高い磁界まで恒透磁率を示さない。
[0007] Even if the amount of Al added is reduced in order to avoid nozzle clogging, there is an effect of making the magnetization curve stale. The effect of creating a magnetization curve tilted in the X-axis direction is 0.03 to 0.1%.
According to H. C. Fiedler et al. (published in 1981, U.S. General
Electric's technical report 81CRD
199). However, a surface crystallized layer made of such a small amount of Al cannot maintain a constant magnetic permeability up to a high magnetic field. For example, the magnetization characteristics after annealing of a Fe-Si-B alloy ribbon containing 0.1% Al are 1
Up to a magnetic field of approximately Oe, the magnetization characteristic exhibits a rectangular linear magnetization characteristic, but when the magnetic field exceeds 1 Oe, the magnetic flux density tends to rise rapidly. That is, it does not exhibit constant magnetic permeability up to high magnetic fields.

【0008】以上のように、従来の方法で非晶質薄帯を
部分的に結晶化させようとすると、結晶化は薄帯表面層
から進行するため、非晶質合金の特性を多様に制御する
ことは困難であった。もし非晶質薄帯の板厚内部の任意
の薄い層を選択的に結晶化させることができれば非晶質
合金の特性制御の自由度は大きくなるはずであるが、こ
れまでの経験からこのようなことは不可能と考えられて
きた。
As described above, when trying to partially crystallize an amorphous ribbon using the conventional method, crystallization proceeds from the surface layer of the ribbon, so it is difficult to control the properties of the amorphous alloy in various ways. It was difficult to do so. If it were possible to selectively crystallize any thin layer within the thickness of the amorphous ribbon, the degree of freedom in controlling the properties of the amorphous alloy would increase, but from past experience It was thought to be impossible.

【0009】[0009]

【発明が解決しようとする課題】本発明は、非晶質合金
薄帯の板厚内部の薄い層の選択的な結晶化によって得ら
れる板厚内部に結晶化した薄い層を有する非晶質合金薄
帯を提供することを目的とする。
The present invention provides an amorphous alloy having a thin layer crystallized inside the thickness of an amorphous alloy ribbon obtained by selective crystallization of a thin layer inside the thickness of the amorphous alloy ribbon. The purpose is to provide thin strips.

【0010】0010

【課題を解決するための手段】本発明の要旨とするとこ
ろは、組成がTMa Sib Bc Cd Me で表
示される合金であって、該合金の溶湯を複数の開口部を
もつ多重スリットノズルを介して、移動する冷却基板の
上に噴出して急冷凝固させることにより製造される、板
厚内部に少なくとも一層の結晶化層を有することを特徴
とする磁気特性にすぐれた非晶質合金薄帯にある。
[Means for Solving the Problems] The gist of the present invention is to provide an alloy whose composition is represented by TMa Sib Bc Cd Me, in which a molten metal of the alloy is passed through a multi-slit nozzle having a plurality of openings. An amorphous alloy ribbon with excellent magnetic properties, characterized by having at least one crystallized layer within the thickness of the plate, is produced by jetting it onto a moving cooling substrate and rapidly solidifying it. be.

【0011】ただし、TMはFe,Co,Niの少なく
とも1種、MはAl,Ti,Zrの少なくとも1種で、
a,b,c,d,eはそれぞれ、原子%で、a:70〜
85、b:4〜18、c:7〜18、d:0〜4、e:
0.01〜0.3、かつa+b+c+d+e=100で
ある。本発明の構成の要点は、特定の組成の合金を多重
スリットノズル法を用いて急冷することにある。すなわ
ち、結晶化促進元素を微量含む合金を多重スリットノズ
ルを用いて急冷法で薄帯に鋳造するとき、従来知られて
いない板厚内部に結晶化した薄い層が形成されることを
見出し、この知見に基づいて本発明は完成されたのであ
る。
[0011] However, TM is at least one of Fe, Co, and Ni, M is at least one of Al, Ti, and Zr,
a, b, c, d, e are each atomic %, a: 70 ~
85, b: 4-18, c: 7-18, d: 0-4, e:
0.01 to 0.3, and a+b+c+d+e=100. The gist of the configuration of the present invention is to rapidly cool an alloy of a specific composition using a multi-slit nozzle method. In other words, we discovered that when an alloy containing a small amount of crystallization-promoting elements is cast into a thin strip by a rapid cooling method using a multi-slit nozzle, a thin crystallized layer is formed within the thickness of the plate, which was previously unknown. The present invention was completed based on this knowledge.

【0012】次に、本発明の構成について詳細に説明す
る。合金組成は、主成分として強磁性金属元素であるF
e,Co,Niの少なくとも1種を含み、かつ非晶質形
成元素の半金属元素Si,B,Cを含有する。さらに、
結晶化を促進するために微量のAl,Ti,Zrの少な
くとも1種を添加する。それぞれの元素の含有量を限定
する理由は以下の通りである。
Next, the configuration of the present invention will be explained in detail. The alloy composition consists of F, a ferromagnetic metal element, as the main component.
It contains at least one of e, Co, and Ni, and also contains metalloid elements Si, B, and C, which are amorphous forming elements. moreover,
A trace amount of at least one of Al, Ti, and Zr is added to promote crystallization. The reason for limiting the content of each element is as follows.

【0013】基本組成である強磁性元素、および半金属
元素の範囲は、主に非晶質形成能と磁気特性の観点から
決められた。具体的には、強磁性元素の含有量が少ない
と飽和磁束密度が低くなるため下限を70原子%(以下
%で表す)とした。上限を85%としたのは、85%を
超えると半金属の総含有量が15%未満に減少し、非晶
質相が形成しにくくなるためである。
The range of the basic composition of ferromagnetic elements and metalloid elements was determined mainly from the viewpoints of amorphous formation ability and magnetic properties. Specifically, if the content of the ferromagnetic element is small, the saturation magnetic flux density becomes low, so the lower limit was set to 70 atomic % (hereinafter expressed in %). The reason why the upper limit is set to 85% is that if it exceeds 85%, the total metalloid content will decrease to less than 15%, making it difficult to form an amorphous phase.

【0014】半金属含有量の範囲は、非晶質形成能、熱
的安定性、製造安定性、機械的性質などの観点から規程
された。Siは主として、熱的安定性、非晶質形成能を
高めるために必要である。Siは、4%を下回ると熱的
安定性に問題が生じるので下限を4%とし、18%を超
えると薄帯が脆くなるので上限を18%とした。
The range of the metalloid content was determined from the viewpoints of amorphous formation ability, thermal stability, manufacturing stability, mechanical properties, etc. Si is mainly necessary to enhance thermal stability and ability to form an amorphous state. If Si is less than 4%, a problem will occur in thermal stability, so the lower limit is set to 4%, and if it exceeds 18%, the ribbon becomes brittle, so the upper limit is set to 18%.

【0015】またBは、7%未満のとき非晶質の形成が
困難となり、18%を超えても非晶質形成能を高める効
果がないので経済性を考慮して上限を18%とした。C
は必須元素ではないが、少量含まれていると製造性、磁
気特性、非晶質形成能が向上するという、本発明者らの
見出した知見に基づいて添加している。ただし過量の添
加は熱的安定性を損なうため上限を4%とした。
[0015] Furthermore, when B is less than 7%, it becomes difficult to form an amorphous state, and even when it exceeds 18%, there is no effect of increasing the ability to form an amorphous state, so the upper limit was set at 18% in consideration of economic efficiency. . C
is not an essential element, but is added based on the knowledge discovered by the present inventors that when contained in a small amount, manufacturability, magnetic properties, and amorphous formation ability are improved. However, since addition of an excessive amount impairs thermal stability, the upper limit was set at 4%.

【0016】なお、軟磁気特性や耐食性、機械的性質の
向上を目的として本発明の合金に5%以下のCr,Mo
,Nb,W,Taを添加することができる。次に本発明
の非晶質合金薄帯の製造方法であるが、基本的には多重
スリットノズル法を用いる。この方法は、特公昭63−
40629号公報に開示されるものである。その要点は
図1に示すように、相互の間隔dが0.5〜4.0mm
である複数の平行なスリット状開口部を備えた多重スリ
ットノズルを用いて、金属の溶湯を図1に矢印で示す方
向に移動する冷却基板の上に噴出し、薄帯とする方法で
ある。ただし、本発明においては、スリットの幅Wは0
.1〜2.0mmであり、スリット間隔dは0.5〜6
.0mmの範囲である。
Furthermore, for the purpose of improving soft magnetic properties, corrosion resistance, and mechanical properties, 5% or less of Cr and Mo are added to the alloy of the present invention.
, Nb, W, and Ta can be added. Next, regarding the method for manufacturing the amorphous alloy ribbon of the present invention, basically a multiple slit nozzle method is used. This method is
This is disclosed in Japanese Patent No. 40629. The key point is that the mutual distance d is 0.5 to 4.0 mm, as shown in Figure 1.
In this method, a multi-slit nozzle equipped with a plurality of parallel slit-like openings is used to eject molten metal onto a cooling substrate moving in the direction shown by the arrow in FIG. 1 to form a thin ribbon. However, in the present invention, the width W of the slit is 0.
.. 1 to 2.0 mm, and the slit interval d is 0.5 to 6.
.. The range is 0mm.

【0017】図1に示す多重ノズルのスリットの数nお
よび一連のスリット幅W1 ,W2 …Wn は、それ
ぞれ板厚内部の結晶化層の数および結晶化層を形成した
い板厚方向の位置に応じて決定する。例えば、板厚中心
に1つの結晶化層を形成したいときは、n=2、すなわ
ちダブルスリットノズルを採用し、個々のスリット幅は
同じ大きさにする。また、薄帯のロール両側に寄った位
置に結晶化層を形成させたいときは上流側のスリット幅
を相対的に狭くし、反対に、自由面に近づけたいときは
下流側を狭くすればよい。ただし、同じスリット幅でも
上流側の方が熱の伝達がよい傾向があるので、それを考
慮して個々のスリット幅を決める必要がある。熱伝達率
はロールの材質、ロールの径、冷却方式(水冷か非水冷
か)などの要因に依存するので使用する装置の特性を前
もって把握しておく必要がある。スリット間隔の大きさ
は、隣接する上流側のスリットの幅に応じて決定する。 通常、上流側のスリットの幅が大きくなるほどスリット
間隔が広くなるように設定する。なお、結晶化層を2層
以上形成させたいときは、スリットの数を結晶化層の数
より一枚多くすればよい。また、結晶化層の厚みは、結
晶化促進元素の添加量によって制御する。添加量を多く
すれば結晶化層は厚くなる。結晶化層の厚みはスリット
間隔や、スリット幅、さらにロールの冷却能にも依存す
るのでこれらのパラメータによっても制御することは可
能である。たとえばスリット間隔を広くすると結晶化層
の厚みは大きくなる。
The number n of slits and the series of slit widths W1, W2, . . . Wn of the multiple nozzle shown in FIG. to be determined. For example, when it is desired to form one crystallized layer at the center of the plate thickness, n=2, that is, a double slit nozzle is used, and the individual slit widths are made the same size. Also, if you want to form a crystallized layer closer to both sides of the ribbon roll, you can make the slit width relatively narrower on the upstream side, and conversely, if you want to get it closer to the free surface, you can make it narrower on the downstream side. . However, even if the slit width is the same, heat transfer tends to be better on the upstream side, so it is necessary to take this into consideration when determining the width of each slit. The heat transfer coefficient depends on factors such as the roll material, roll diameter, and cooling method (water-cooled or non-water-cooled), so it is necessary to understand the characteristics of the equipment used in advance. The size of the slit interval is determined depending on the width of the adjacent upstream slit. Usually, the slit interval is set to become wider as the width of the upstream slit becomes larger. Note that when it is desired to form two or more crystallized layers, the number of slits may be one more than the number of crystallized layers. Further, the thickness of the crystallized layer is controlled by the amount of the crystallization promoting element added. The larger the amount added, the thicker the crystallized layer will be. The thickness of the crystallized layer depends on the slit interval, the slit width, and the cooling capacity of the roll, so it can be controlled using these parameters as well. For example, increasing the slit interval increases the thickness of the crystallized layer.

【0018】上述した方法によって作製された薄帯の断
面構造を模式的に表すと図2に示すとおりである。図2
(a)はダブルノズルで作製された薄帯、(b)は3重
ノズルで作製された薄帯である。いずれも板厚内部の結
晶化層に比べて薄い結晶化層が自由面に形成されている
。用途によっては表面の結晶化層が有害となる。このよ
うな場合はエッチングにより表面結晶化層を除去して用
いる。本発明において、板厚内部の結晶化層の厚みは、
結晶化層一枚あたり板厚の20%以下とするのがよい。 その理由は、結晶化層が厚くなるほど薄帯の機械的性質
が劣化するためである。
The cross-sectional structure of the ribbon produced by the method described above is schematically shown in FIG. 2. Figure 2
(a) is a ribbon produced using a double nozzle, and (b) is a ribbon produced using a triple nozzle. In both cases, a crystallized layer thinner than the crystallized layer inside the plate thickness is formed on the free surface. Depending on the application, the crystallized layer on the surface can be harmful. In such a case, the surface crystallized layer is removed by etching. In the present invention, the thickness of the crystallized layer inside the plate thickness is
It is preferable that the amount of each crystallized layer be 20% or less of the board thickness. The reason is that the thicker the crystallized layer, the worse the mechanical properties of the ribbon.

【0019】前記した方法によって作製された本発明の
非晶質合金薄帯の磁気特性を図3によって説明する。図
3(a)はダブルノズルで作製した板厚中心層に3μm
の結晶化層を有する板厚40μmのFe80.5Si6
.5B12C0.9 Al0.1 非晶質合金薄帯のヒ
ステリシス曲線を示している。図のように、高い外部磁
界まで直線的で、かつX軸方向に大きく傾いている。こ
の特性は、ギャップレスのチョークコア材料として適し
ている。この他、本発明の非晶質合金薄帯は、2つのキ
ュリー温度を示すので温度センサに利用できる。また、
特徴的な応力依存性を利用して力学量センサにも応用で
きる。
The magnetic properties of the amorphous alloy ribbon of the present invention produced by the method described above will be explained with reference to FIG. Figure 3(a) shows a thickness of 3 μm in the central layer of the plate produced using a double nozzle.
Fe80.5Si6 with a thickness of 40 μm and a crystallized layer of
.. 5B12C0.9 Al0.1 The hysteresis curve of the amorphous alloy ribbon is shown. As shown in the figure, it is linear up to a high external magnetic field and is tilted greatly in the X-axis direction. This property makes it suitable as a gapless choke core material. In addition, since the amorphous alloy ribbon of the present invention exhibits two Curie temperatures, it can be used as a temperature sensor. Also,
It can also be applied to mechanical quantity sensors by utilizing the characteristic stress dependence.

【0020】[0020]

【実施例】実施例1 組成がFe80.5Si6.5 B12C0.9Al0
.1 (原子%)である合金を溶解し、この溶湯を2枚
のスリット状開口部をもつ石英製の多重スリットノズル
を介して、直径600mmφのCu製ロールの外周面に
噴出し、急冷して板厚40μm、幅25mmの薄帯を作
製した。ただし、スリットの幅はいずれも0.4mmで
、スリットの間隔は2mmとした。得られた薄帯の板厚
方向の構造変化をX線回折により調べた。具体的には薄
帯のロール面を樹脂で覆い、自由面側からフッ化水素の
過酸化水素水溶液によるエッチングにより板厚を減らし
ながら、X線回折を行い回折パターンの変化を観測する
。それによると自由面の表面には厚さ0.5μm、板厚
のほぼ中心には約3μmの結晶化層が形成されており、
それ以外は非晶質であることが判明した。この薄帯12
cmを380℃でN2 中アニールした後、自由面の結
晶化層をエッチングで除去したサンプルの磁気特性を単
板試験器により測定した。50Hzにおけるヒステリシ
ス曲線は図3(a)のようであった。図から明らかなよ
うに本発明の非晶質合金薄帯は30Oeの高い磁界にお
いても飽和せず、直線性もすぐれている。
[Example] Example 1 Composition is Fe80.5Si6.5 B12C0.9Al0
.. 1 (at%), and this molten metal was jetted onto the outer circumferential surface of a Cu roll with a diameter of 600 mm through a multi-slit nozzle made of quartz having two slit-shaped openings, and then rapidly cooled. A thin strip with a thickness of 40 μm and a width of 25 mm was produced. However, the width of each slit was 0.4 mm, and the interval between the slits was 2 mm. The structural changes in the thickness direction of the obtained ribbon were investigated by X-ray diffraction. Specifically, the roll surface of the thin strip is covered with resin, and while the thickness is reduced by etching from the free surface side with a hydrogen fluoride/hydrogen peroxide aqueous solution, X-ray diffraction is performed to observe changes in the diffraction pattern. According to this, a crystallized layer with a thickness of 0.5 μm is formed on the surface of the free surface, and a crystallized layer with a thickness of about 3 μm is formed almost at the center of the plate thickness.
The rest was found to be amorphous. This thin strip 12
After annealing the sample at 380° C. in N2, the crystallized layer on the free surface was removed by etching, and the magnetic properties of the sample were measured using a single plate tester. The hysteresis curve at 50 Hz was as shown in FIG. 3(a). As is clear from the figure, the amorphous alloy ribbon of the present invention does not saturate even in a high magnetic field of 30 Oe and has excellent linearity.

【0021】一方、同一組成の合金を通常の単一スリッ
トノズルを用いてつくられた板厚30μmの薄帯のヒス
テリシス曲線は図3(b)のように5Oeの磁界でほぼ
飽和した。すなわち、本発明の非晶質合金薄帯は、従来
の表面層のみが結晶化した非晶質合金薄帯に比べて高い
磁界まで透磁率が一定に保持される。 実施例2 組成が、■Fe71.99 Co10Si6 B12Z
r0.01、■Fe62.9Co6 Ni6 Si16
B9 Ti0.1 の2種類の合金を用いて実施例1と
同じ方法、装置により急冷薄帯を作製した。いずれの薄
帯もほぼ板厚中心部に約2μmの結晶化した層が形成さ
れていた。380℃でアニールした後の磁気特性は、い
ずれも従来法の単一スリット法で作製された薄帯に比べ
て高い磁界まで磁束密度は飽和せず、透磁率の直線性も
すぐれていた。
On the other hand, the hysteresis curve of a 30 μm thick ribbon made of an alloy of the same composition using a conventional single slit nozzle was almost saturated in a magnetic field of 5 Oe, as shown in FIG. 3(b). That is, the amorphous alloy ribbon of the present invention maintains a constant magnetic permeability up to a higher magnetic field than the conventional amorphous alloy ribbon in which only the surface layer is crystallized. Example 2 The composition is ■Fe71.99 Co10Si6 B12Z
r0.01, ■Fe62.9Co6 Ni6 Si16
Quenched ribbons were produced using the same method and equipment as in Example 1 using two types of alloys: B9 Ti0.1. In each ribbon, a crystallized layer of approximately 2 μm was formed approximately at the center of the thickness. The magnetic properties after annealing at 380° C. were such that the magnetic flux density did not saturate even at high magnetic fields and the linearity of magnetic permeability was excellent compared to ribbons produced by the conventional single slit method.

【0022】[0022]

【発明の効果】本発明に従えば、従来の方法では得られ
ない板厚内部に結晶化した層を有する非晶質合金薄帯を
提供できる。結晶化層の数、個々の厚みは制御可能であ
るから、結晶化が表面の薄い層だけに限られた従来のも
のに比べて特性を広い範囲で制御できる。この結果、ギ
ャップレスチョーク、応力センサなどに適した特性の材
料が容易に得られる。
According to the present invention, it is possible to provide an amorphous alloy ribbon having a crystallized layer within the thickness, which cannot be obtained by conventional methods. Since the number of crystallized layers and the thickness of each layer can be controlled, the properties can be controlled over a wider range than in conventional structures in which crystallization is limited to only a thin layer on the surface. As a result, a material with characteristics suitable for gapless chokes, stress sensors, etc. can be easily obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の非晶質合金薄帯の製造において用いる
多重スリットノズルの構造を示す説明図である。
FIG. 1 is an explanatory diagram showing the structure of a multi-slit nozzle used in manufacturing the amorphous alloy ribbon of the present invention.

【図2】本発明の板厚内部に結晶化層を有する非晶質合
金薄帯の板厚方向断面図である。
FIG. 2 is a cross-sectional view in the thickness direction of an amorphous alloy ribbon having a crystallized layer within the thickness of the present invention.

【図3】本発明の非晶質合金薄帯のヒステリシス曲線を
従来材と比較する図である。
FIG. 3 is a diagram comparing the hysteresis curve of the amorphous alloy ribbon of the present invention with that of a conventional material.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  組成がTMa Sib Bc Cd 
Me で表示される合金であって、該合金の溶湯を複数
の開口部をもつ多重スリットノズルを介して、移動する
冷却基板の上に噴出して急冷凝固させることにより製造
される、板厚内部に少なくとも一層の結晶化層を有する
ことを特徴とする磁気特性にすぐれた非晶質合金薄帯。 ただし、TMはFe,Co,Niの少なくとも1種、M
はAl,Ti,Zrの少なくとも1種で、a,b,c,
d,eはそれぞれ、原子%で、a:70〜85、b:4
〜18、c:7〜18、d:0〜4、e:0.01〜0
.3、かつa+b+c+d+e=100である。
[Claim 1] Composition is TMa Sib Bc Cd
An alloy represented by Me, which is manufactured by spouting the molten metal of the alloy onto a moving cooling substrate through a multi-slit nozzle having a plurality of openings and rapidly solidifying it. An amorphous alloy ribbon with excellent magnetic properties characterized by having at least one crystallized layer. However, TM is at least one of Fe, Co, Ni, M
is at least one of Al, Ti, and Zr, and a, b, c,
d and e are respectively atomic %, a: 70-85, b: 4
~18, c: 7-18, d: 0-4, e: 0.01-0
.. 3, and a+b+c+d+e=100.
JP3135196A 1991-06-06 1991-06-06 Amorphous alloy thin strip having crystallized layer at inside of sheet thickness and excellent in magnetic property Withdrawn JPH04362162A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3135196A JPH04362162A (en) 1991-06-06 1991-06-06 Amorphous alloy thin strip having crystallized layer at inside of sheet thickness and excellent in magnetic property

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3135196A JPH04362162A (en) 1991-06-06 1991-06-06 Amorphous alloy thin strip having crystallized layer at inside of sheet thickness and excellent in magnetic property

Publications (1)

Publication Number Publication Date
JPH04362162A true JPH04362162A (en) 1992-12-15

Family

ID=15146096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3135196A Withdrawn JPH04362162A (en) 1991-06-06 1991-06-06 Amorphous alloy thin strip having crystallized layer at inside of sheet thickness and excellent in magnetic property

Country Status (1)

Country Link
JP (1) JPH04362162A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001031085A3 (en) * 1999-10-26 2001-09-20 Stuart Energy Sys Corp Amorphous metal/metallic glass electrodes for electrochemical processes
US6303015B1 (en) 1994-06-17 2001-10-16 Steven J. Thorpe Amorphous metallic glass electrodes for electrochemical processes
WO2022244819A1 (en) 2021-05-18 2022-11-24 日本製鉄株式会社 Fe-based amorphous alloy and fe-based amorphous alloy thin strip

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6303015B1 (en) 1994-06-17 2001-10-16 Steven J. Thorpe Amorphous metallic glass electrodes for electrochemical processes
WO2001031085A3 (en) * 1999-10-26 2001-09-20 Stuart Energy Sys Corp Amorphous metal/metallic glass electrodes for electrochemical processes
WO2022244819A1 (en) 2021-05-18 2022-11-24 日本製鉄株式会社 Fe-based amorphous alloy and fe-based amorphous alloy thin strip
KR20230169307A (en) 2021-05-18 2023-12-15 닛폰세이테츠 가부시키가이샤 Fe-based amorphous alloy and Fe-based amorphous alloy strip

Similar Documents

Publication Publication Date Title
KR101162080B1 (en) Soft magnetic ribbon, magnetic core, magnetic part and process for producing soft magnetic ribbon
KR101147571B1 (en) Iron-based soft magnetic alloy, thin ribbon of amorphous alloy, and magnetic part
JP5664934B2 (en) Soft magnetic alloy and magnetic component using the same
EP2128291B1 (en) Magnetic alloy and magnetic part
KR102282630B1 (en) Fe-BASED SOFT MAGNETIC ALLOY RIBBON AND MAGNETIC CORE COMPRISING SAME
JP5445891B2 (en) Soft magnetic ribbon, magnetic core, and magnetic parts
JP2008231534A5 (en)
JPS6133900B2 (en)
JP2550449B2 (en) Amorphous alloy ribbon for transformer core with high magnetic flux density
JP3877893B2 (en) High permeability metal glass alloy for high frequency
EP1482064B1 (en) Soft magnetic metallic glass alloy
JPS6362579B2 (en)
JPH0375343A (en) Soft magnetic alloy
JPS6119701B2 (en)
JP3434844B2 (en) Low iron loss, high magnetic flux density amorphous alloy
JP2001295005A (en) Fe BASE AMORPHOUS ALLOY THIN STRIP FOR NANOCRYSTAL SOFT MAGNETIC ALLOY AND MAGNETIC PARTS
JPH04362162A (en) Amorphous alloy thin strip having crystallized layer at inside of sheet thickness and excellent in magnetic property
JP5445924B2 (en) Soft magnetic ribbon, magnetic core, magnetic component, and method of manufacturing soft magnetic ribbon
CN100432270C (en) Fe-base amorphous alloy thin strip of excellent soft magnetic characteristic, iron core produced therefrom and master alloy for quench solidification thin strip production for use therein
JPH11131199A (en) Soft magnetic glass alloy
JPH07310149A (en) Ferrous amorphous alloy thin strip
US5456770A (en) Amorphous magnetic alloy with high magnetic flux density
JPH08283919A (en) Iron-base amorphous alloy foil and its production
JPH05132744A (en) Production of amorphous alloy strip having high saturation magnetic flux density and amorphous alloy iron core
JPH05222494A (en) Amorphous alloy sheet steel for transformer iron core having high magnetic flux density

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980903