JPH0436141B2 - - Google Patents

Info

Publication number
JPH0436141B2
JPH0436141B2 JP59034350A JP3435084A JPH0436141B2 JP H0436141 B2 JPH0436141 B2 JP H0436141B2 JP 59034350 A JP59034350 A JP 59034350A JP 3435084 A JP3435084 A JP 3435084A JP H0436141 B2 JPH0436141 B2 JP H0436141B2
Authority
JP
Japan
Prior art keywords
formula
compound
group
examples
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59034350A
Other languages
Japanese (ja)
Other versions
JPS60178838A (en
Inventor
Osamu Takazawa
Kunio Kojo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
T Hasegawa Co Ltd
Original Assignee
T Hasegawa Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by T Hasegawa Co Ltd filed Critical T Hasegawa Co Ltd
Priority to JP59034350A priority Critical patent/JPS60178838A/en
Publication of JPS60178838A publication Critical patent/JPS60178838A/en
Publication of JPH0436141B2 publication Critical patent/JPH0436141B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、公知化合物β−ヒドロキシカルボニ
ル化合物類とくに下記式(1) 但し式中、R1及びR2は、夫々、水素原子、ア
ルキル基、アルケニル基もしくはアリール基を示
すか、或はR1及びR2は一緒になつて(−CH2)−o
〔ここで、nは3〜5の整数を示す〕を示し、そ
して、R5は水素原子、アルキル基、アルケニル
基もしくはアリール基を示す、 で表わされる香料、農薬、医薬などの分野におけ
る合成中間体として重要なβ−ヒドロキシカルボ
ニル化合物類の製法に関し、従来法における副生
物の生成のトラブルを回避でき、且つ従来法に比
して簡単な操作及び安価且つ入手容易な原料を用
いて、好収率をもつ工業的に有利に、上記式(1)β
−ヒドロキシカルボニル化合物を新しい合成径路
で製造できる製法に関する。 更に詳しくは、本発明は下記式(2) 但し式中、R1およびR2は、夫々、水素原子、
アルキル基、アルケニル基もしくはアリール基を
示すか、或はR1及びR2は一緒になつて(−CH2)−o
〔ここで、nは3〜5の整数を示す〕を示し、そ
して、R3およびR4は、夫々、アルキル基もしく
はフエニル基を示すか、或はR3及びR4は一緒に
なつて(−CH2)−n〔ここで、mは4又は5を示す〕
もしくは(−CH2)−2O (−CH2)−2を示す、 で表わされるエナミン化合物と、下記式(3) R5CHO (3) 但し式中、R5は水素原子、アルキル基、アル
ケニル基もしくはアリール基を示す、 で表わされるアルデヒド類とを、ルイス酸の存在
下に接触せしめることを特徴とする下記式(1) 但し式中、R1、R2及びR5は前記したと同義、 で表わされるβ−ヒドロキシカルボニル化合物類
の製法に関する。 従来、式(1)β−ヒドロキシカルボニル化合物類
の合成法として、種々の合成法が提案されてい
る。例えば塩基性条件下にカルボニル化合物どう
しによるアルドール縮合反応を利用する方法、イ
ミンとカルボニル化合物との反応を利用する方
法、又、酸性条件下の反応としては、例えばシリ
ールエノールエーテル、エノールエステルあるい
はエノールエーテルとカルボニル化合物との反応
を利用する合成法が知られている。 しかしながら、上記従来提案に於いては、副生
成物の生成が回避し難く、又、反応に用いる原料
が高価であり且その合成が煩雑であつて工業的製
法には適さない欠点がある。 本発明者等は、上述のような従来提案の不利益
乃至欠陥を克服して工業的に有利に式(1)のβ−ヒ
ドロキシカルボニル化合物類を製造できる新しい
合成経路を開発すべく研究を行つてきた。 その結果、工業的に容易に合成でき且つ安価な
前記式(2)エナミン化合物と前記式(3)アルデヒド類
とを、ルイス酸の存在下に接触せしめるという新
しい合成経路によつて、安易な操作で且つ好収率
をもつて式(1)化合物を工業的に有利に製造できる
ことを発見した。 従つて、本発明の目的は、新しい合成経路によ
つて式(1)化合物を工業的に有利に製造できる式(1)
化合物の製造を提供するにある。 本発明の上記目的及び更に多くの他の目的なら
びに利点は以下の記載から一層明らかとなるであ
ろう。 本発明によれば、前記式(2)エナミン化合物と前
記式(3)アルデヒド類とをルイス酸の存在下に接触
させることにより、一挙に式(1)目的化合物を形成
することができる。該式(2)エナミン化合物は、た
とえば、対応するカルボニル化合物とアミンとを
触媒の存在下に常法に従つて反応させることによ
り容易に合成することができる。 上記式(2)エナミン化合物形成工程を含めて、本
発明方法を図式的に示すと、以下のように示すこ
とができる。 上記に於て、R1、R2、R3、R4、R5は前記した
と同義である。上記例に於て、式(4)カルボニル化
合物と式(5)アミンの反応は、それ自体公知のエナ
ミン化合物合成法に従つて〔(文献例:G.Stork
etal.,J.Am.Chem.Soc.,85、207(1963)〕、たと
えば炭酸カリウム、p−トルエンスルホン酸など
の如き触媒の存在下に、式(4)化合物と式(5)化合物
とを接触せしめることにより容易に行うことがで
きる。 例えば、シクロヘキサノン(1.5モル)、モルホ
リン(1.8モル)およびp−トルエンスルホン酸
(1.5g)のトルエン(300ml)の溶液を加熱還流
し、共沸する水を除去することにより、1−(N
−モルホリノ)−1−シクロヘキセンを約80%の
収率で得ることができる。 例えば、上述のようにして得ることのできる式
(2)エナミン化合物に於いて、R1及びR2のアルキ
ル基の例としては、メチル、エチル、プロピル、
イソプロピル、ブチル、イソブチルなどの如き
C1〜C4の直鎖もしくは分枝のアルキル基を例示
することができる。又、アルケニル基の例として
は、ビニル、1−プロペニル、イソプロペニル、
2−メチル−1−プロペニル、1−ブテニル、6
−メチル−5−ヘプテン−2−イルなどの如き
C2〜C8の直鎖もしくは分枝のアルケニル基を例
示することができる。更に、アリール基としては
フエニル基などの如きアリール基を例示すること
ができる。更に、R1及びR2は一緒になつて、−
(CH23−〔シクロペンテン〕、−(CH24−〔シクロ
ヘキセン〕又は−(CH25−〔シクロヘプテン〕を
示すことができる。 このような式(2)化合物の例としては、たとえ
ば、1−(N−モルホリノ)−1−シクロヘキセ
ン、1−(N−ピロリジノ)−1−シクロヘキセ
ン、1−(N−ピペリジノ)−1−シクロヘキセ
ン、5−メチル−2−(N−モルホリノ)−2,4
−ヘキサジエン、3−メチル−1−(N−モルホ
リノ)−1−ブテン、α−(N−モルホリノ)スチ
レン、3,7−ジメチル−1−(N−モルホリノ)
−1,6−オクタジエン、1−(N−モルホリノ)
−1−シクロペンテン、1−(N−モルホリノ)−
1−ヘキセン、1−(N−ピペリジノ)−1−ヘキ
セン、1−(N−モルホリノ)−1−プロペンなど
を例示することができる。 本発明方法によれば、上記の如き式(2)エナミン
化合物と、式(3)化合物とを、ルイス酸の存在下に
接触せしめて式(1)目的化合物を得ることができ
る。 上記反応は、好ましくはハロゲン系有機溶媒中
で、ルイス酸の存在下に式(2)化合物と式(3)化合物
とを接触せしめることにより行うことができる。
反応温度は適当に選択できるが、例えば約−20℃
〜約50℃、より好ましくは約0℃〜約30℃の如き
反応温度が例示できる。又、反応時間は適宜に選
択でき、たとえば約0.1時間〜約10時間、より好
ましくは約0.5時間〜約1時間程度の反応時間を
例示することができる。反応に際して、式(2)化合
物に対する式(3)化合物の使用量も適宜に選択で
き、例えば、式(2)化合物1モルに対して式(3)化合
物約1〜約1.5モル程度の使用量を例示すること
ができる。更に、ルイス酸の使用量も適宜に選択
でき、例えば式(2)化合物1モルに対して約1.1〜
1.5モル程度、より好ましくは約1.3モル前後の使
用量を例示することができる。 さらに、上記ハロゲン系有機溶媒の例として
は、例えば、ジクロロメタン、クロロホルム、
1,1−ジクロロエタン、1,2−ジクロロエタ
ン、トリクロロエチレン、あるいはこれらの適当
な混合物例を例示できる。これらの有機溶媒の使
用量には特別の制約はなく適宜に選択でき、式(2)
化合物に対し例えば、約5〜約20重量倍程度の範
囲が例示できる。又、ルイス酸の例としては、四
塩化チタン、四塩化スズ、塩化アルミニウム、塩
化亜鉛、三フツ化ホウ素エーテル錯体、臭化亜
鉛、三フツ化ホウ素酢酸錯体、などを挙げること
ができる。 上記(2)エナミン化合物との反応に用いる式(3)化
合物に於て、R5のアルキル基の例としては例え
ば、メチル、エチル、プロピル、イソプロピル、
ブチル、イソブチル、ペンチル、ヘキシル、ヘプ
チル、オクチルなどの如きC1〜C8のアルキル基
を例示することができる。又アルケニル基の例と
しては、例えば、1−プロペニル、イソプロペニ
ル、1−ブテニル、1−ペンテニル、2,6−ジ
メチル−5−ヘプテニルなどの如きC2〜C8のア
ルケニル基を挙げることができる。更に又、アリ
ール基の具体例としては、例えばフエニル、ベン
ジルフエネチル、3,4−メチレンジオキシフエ
ニルなどが例示できる。反応生成物は、溶媒を留
去したのち、所望によりシリカゲルカラムクロマ
トグラフイーや減圧蒸留等の手段で精製すること
ができる。 本発明方法によれば上記式(1)β−ヒドロキシカ
ルボニル化合物が、容易な操作で、安価且つ入手
容易な原料を用いて好収率で工業的に有利に得ら
れる。 上述のようにして得られた式(1)化合物の例とし
ては、たとえば以下の如き化合物、その他後記実
施例に示すような化合物を例示することができ
る。2−(α−ヒドロキシベンジル)シクロヘキ
サノン、2−(1−ヒドロキシ−2−ブテニル)−
シクロヘキサノン、2−(1−ヒドロキシ−2−
メチルプロピル)シクロヘキサノン、4−ヒドロ
キシ−3−(2−メチル−1−プロペニル)−4−
フエニル−2−ブタノン、4−ヒドロキシ−3−
(2−メチル−1−プロペニル)−2−ノナノン、
4−ホルミル−2−メチル−3−オクタノール、
4−ホルミル−1−フエニル−3−オクタノー
ル、4−ホルミル−5,9−ジメチル−8−デセ
ン−3−オール、6−ホルミル−7,11−ジメチ
ル−10−ドデセン−5−オール、2−ホルミル−
1−(3,4−メチレンジオキシフエニル)−1−
プロパノール。 次に、実施例により、本発明方法実施の数態様
を説明する。 実施例 1 2−(α−ヒドロキシベンジル)シクロヘキサノ
ンの合成 ベンズアルデヒド(1.27g、12mmol)の塩化
メチレン(20ml)溶液を−40℃に冷却し、三フツ
化ホウ素エーテル錯体(1.85g、13mmol)を加
え、引き続き1−(N−モルホリノ)−1−シクロ
ヘキセン(1.67g、10mmol)を加え、更に室温
に戻して30分間かくはんする。反応後、水を加
え、室温下で1時間かくはんする。有機層を分離
して洗浄し、更に重ソウ水で洗浄後、乾燥、濃縮
する。残渣をシリカゲルカラムクロマトグラフイ
ーで分離精製することにより、2−(α−ヒドロ
キシベンジル)シクロヘキサノンのスレオ体1.46
g(72%)、エリスロ体0.42g(20%)を得た。
合計収率92% 実施例 2 4−ホルミル−2−メチル−3−オクタノールの
合成 イソブチルアルデヒド(0.432g、6mmol)の
塩化メチレン(10ml)溶液を−40℃に冷却し、三
フツ化ホウ素エーテル錯体(0.923g、6.5mmol)
を加え、更に1−(N−モルホリノ)−1−ヘキセ
ン(0.845g、5mmol)を加えたのち室温で1時
間かくはんする。反応後、水を加え室温下1時間
かくはんしたのち、有機層を分離洗浄し、更に重
ソウ水で洗浄する。乾燥、濃縮ししたのち残渣を
シリカゲルカラムクロマトグラフイーで分離精製
することにより4−ホルミル−2−メチル−3−
オクタノールのスレオ体、エリスロ体の混合物を
0.622g(72%)を得た。 実施例 3〜16 前記実施例1〜2と同様にして、後掲表−1に
示した式(2)エナミン化合物、式(3)化合物およびル
イス酸を用いて各種のβ−ヒドロキシカルボニル
化合物類を合成した。その結果を表−1に示す。
The present invention relates to known compounds β-hydroxycarbonyl compounds, particularly those represented by the following formula (1). However, in the formula, R 1 and R 2 each represent a hydrogen atom, an alkyl group, an alkenyl group, or an aryl group, or R 1 and R 2 together represent (-CH 2 ) -o
[Here, n represents an integer of 3 to 5], and R 5 represents a hydrogen atom, an alkyl group, an alkenyl group, or an aryl group. Regarding the production of β-hydroxycarbonyl compounds, which are important for human body, it avoids the trouble of producing by-products in conventional methods, and has a high yield by using simpler operations and cheaper and easily available raw materials than conventional methods. Industrially advantageously, the above formula (1) β
- A method for producing hydroxycarbonyl compounds using a new synthetic route. More specifically, the present invention is based on the following formula (2) However, in the formula, R 1 and R 2 are each a hydrogen atom,
represents an alkyl, alkenyl or aryl group, or R 1 and R 2 taken together (-CH 2 ) -o
[Here, n represents an integer of 3 to 5], and R 3 and R 4 each represent an alkyl group or a phenyl group, or R 3 and R 4 taken together ( -CH 2 ) - n [Here, m indicates 4 or 5]
or (-CH 2 )- 2 O (-CH 2 )- 2 and an enamine compound represented by the following formula (3) R 5 CHO (3) where R 5 is a hydrogen atom, an alkyl group, The following formula (1) is characterized by contacting an aldehyde represented by an alkenyl group or an aryl group in the presence of a Lewis acid. However, in the formula, R 1 , R 2 and R 5 have the same meanings as described above, and relate to a method for producing β-hydroxycarbonyl compounds represented by the following. Conventionally, various synthetic methods have been proposed as methods for synthesizing β-hydroxycarbonyl compounds of formula (1). For example, a method using an aldol condensation reaction between carbonyl compounds under basic conditions, a method using a reaction between an imine and a carbonyl compound, and a method using a reaction under acidic conditions such as silyl enol ether, enol ester, or enol A synthetic method using a reaction between an ether and a carbonyl compound is known. However, in the above-mentioned conventional proposals, it is difficult to avoid the production of by-products, and the raw materials used for the reaction are expensive and the synthesis thereof is complicated, making them unsuitable for industrial production methods. The present inventors have conducted research to overcome the disadvantages and defects of the conventional proposals as described above and to develop a new synthetic route that can industrially advantageously produce β-hydroxycarbonyl compounds of formula (1). It came. As a result, a new synthetic route in which the enamine compound of the formula (2), which can be easily synthesized industrially and is inexpensive, and the aldehyde of the formula (3) are brought into contact in the presence of a Lewis acid, enables easy operation. It has been discovered that the compound of formula (1) can be industrially advantageously produced with a good yield. Therefore, an object of the present invention is to obtain a compound of formula (1) that can be industrially advantageously produced by a new synthetic route.
Provides for the production of compounds. The above objects and many other objects and advantages of the present invention will become more apparent from the following description. According to the present invention, the target compound of formula (1) can be formed all at once by bringing the enamine compound of formula (2) and the aldehyde of formula (3) into contact in the presence of a Lewis acid. The enamine compound of formula (2) can be easily synthesized, for example, by reacting a corresponding carbonyl compound and an amine in the presence of a catalyst according to a conventional method. The method of the present invention, including the step of forming the enamine compound of formula (2) above, can be schematically illustrated as follows. In the above, R 1 , R 2 , R 3 , R 4 and R 5 have the same meanings as described above. In the above example, the reaction between the carbonyl compound of formula (4) and the amine of formula (5) was carried out in accordance with the enamine compound synthesis method known per se [(Literature example: G. Stork
etal., J.Am.Chem.Soc., 85 , 207 (1963)], a compound of formula (4) and a compound of formula (5) in the presence of a catalyst such as potassium carbonate, p-toluenesulfonic acid, etc. This can be easily done by bringing them into contact with each other. For example, 1-(N
-morpholino)-1-cyclohexene can be obtained in a yield of about 80%. For example, the formula that can be obtained as above
(2) Examples of alkyl groups for R 1 and R 2 in enamine compounds include methyl, ethyl, propyl,
Such as isopropyl, butyl, isobutyl, etc.
Examples include C 1 -C 4 straight chain or branched alkyl groups. Examples of alkenyl groups include vinyl, 1-propenyl, isopropenyl,
2-methyl-1-propenyl, 1-butenyl, 6
-such as methyl-5-hepten-2-yl, etc.
Examples include C2 - C8 straight-chain or branched alkenyl groups. Furthermore, examples of the aryl group include aryl groups such as phenyl group. Furthermore, R 1 and R 2 together are −
It can represent ( CH2 ) 3- [cyclopentene], -( CH2 ) 4- [cyclohexene] or -( CH2 ) 5- [cycloheptene]. Examples of such compounds of formula (2) include 1-(N-morpholino)-1-cyclohexene, 1-(N-pyrrolidino)-1-cyclohexene, and 1-(N-piperidino)-1-cyclohexene. , 5-methyl-2-(N-morpholino)-2,4
-Hexadiene, 3-methyl-1-(N-morpholino)-1-butene, α-(N-morpholino)styrene, 3,7-dimethyl-1-(N-morpholino)
-1,6-octadiene, 1-(N-morpholino)
-1-cyclopentene, 1-(N-morpholino)-
Examples include 1-hexene, 1-(N-piperidino)-1-hexene, and 1-(N-morpholino)-1-propene. According to the method of the present invention, the target compound of formula (1) can be obtained by bringing the enamine compound of formula (2) as described above into contact with the compound of formula (3) in the presence of a Lewis acid. The above reaction can be carried out by bringing the compound of formula (2) and the compound of formula (3) into contact in the presence of a Lewis acid, preferably in a halogenated organic solvent.
The reaction temperature can be selected appropriately, for example about -20℃
For example, the reaction temperature may be from about 50°C to about 50°C, more preferably from about 0°C to about 30°C. Further, the reaction time can be selected as appropriate, for example, about 0.1 hour to about 10 hours, more preferably about 0.5 hour to about 1 hour. During the reaction, the amount of the compound of formula (3) to be used relative to the compound of formula (2) can be selected as appropriate; for example, the amount of the compound of formula (3) to be used is about 1 to about 1.5 mol per 1 mol of the compound of formula (2). can be exemplified. Furthermore, the amount of Lewis acid to be used can be selected as appropriate, for example from about 1.1 to 1 mole of the compound of formula (2).
An example of an amount used is about 1.5 mol, more preferably about 1.3 mol. Furthermore, examples of the halogenated organic solvents include dichloromethane, chloroform,
Examples include 1,1-dichloroethane, 1,2-dichloroethane, trichloroethylene, or a suitable mixture thereof. There is no particular restriction on the amount of these organic solvents to be used, and they can be selected as appropriate, and formula (2)
For example, the amount may be about 5 to about 20 times the weight of the compound. Examples of Lewis acids include titanium tetrachloride, tin tetrachloride, aluminum chloride, zinc chloride, boron trifluoride ether complex, zinc bromide, and boron trifluoride acetic acid complex. In the compound of formula (3) used in the reaction with the enamine compound (2) above, examples of the alkyl group for R 5 include methyl, ethyl, propyl, isopropyl,
Examples include C1 - C8 alkyl groups such as butyl, isobutyl, pentyl, hexyl, heptyl, octyl and the like. Examples of alkenyl groups include C2 to C8 alkenyl groups such as 1-propenyl, isopropenyl, 1-butenyl, 1-pentenyl, 2,6-dimethyl-5-heptenyl, and the like. . Furthermore, specific examples of the aryl group include phenyl, benzylphenethyl, 3,4-methylenedioxyphenyl, and the like. After distilling off the solvent, the reaction product can be purified, if desired, by means such as silica gel column chromatography or vacuum distillation. According to the method of the present invention, the β-hydroxycarbonyl compound of the formula (1) can be industrially advantageously obtained in good yield with easy operation and using inexpensive and easily available raw materials. Examples of the compound of formula (1) obtained as described above include the following compounds and other compounds shown in Examples below. 2-(α-hydroxybenzyl)cyclohexanone, 2-(1-hydroxy-2-butenyl)-
Cyclohexanone, 2-(1-hydroxy-2-
methylpropyl)cyclohexanone, 4-hydroxy-3-(2-methyl-1-propenyl)-4-
Phenyl-2-butanone, 4-hydroxy-3-
(2-methyl-1-propenyl)-2-nonanone,
4-formyl-2-methyl-3-octanol,
4-formyl-1-phenyl-3-octanol, 4-formyl-5,9-dimethyl-8-decen-3-ol, 6-formyl-7,11-dimethyl-10-dodecen-5-ol, 2- Formyl-
1-(3,4-methylenedioxyphenyl)-1-
Propanol. Examples now illustrate several aspects of carrying out the method of the invention. Example 1 Synthesis of 2-(α-hydroxybenzyl)cyclohexanone A solution of benzaldehyde (1.27 g, 12 mmol) in methylene chloride (20 ml) was cooled to -40°C, and boron trifluoride ether complex (1.85 g, 13 mmol) was added. Then, 1-(N-morpholino)-1-cyclohexene (1.67 g, 10 mmol) was added, and the mixture was returned to room temperature and stirred for 30 minutes. After the reaction, water is added and stirred at room temperature for 1 hour. The organic layer is separated and washed, further washed with hydrogenated sodium hydroxide solution, dried and concentrated. By separating and purifying the residue using silica gel column chromatography, the threo isomer 1.46 of 2-(α-hydroxybenzyl)cyclohexanone was obtained.
g (72%) and 0.42 g (20%) of erythro form were obtained.
Total yield 92% Example 2 Synthesis of 4-formyl-2-methyl-3-octanol A solution of isobutyraldehyde (0.432 g, 6 mmol) in methylene chloride (10 ml) was cooled to -40°C, and a boron trifluoride ether complex was prepared. (0.923g, 6.5mmol)
After adding 1-(N-morpholino)-1-hexene (0.845 g, 5 mmol), the mixture was stirred at room temperature for 1 hour. After the reaction, water was added and the mixture was stirred at room temperature for 1 hour, and then the organic layer was separated and washed, and further washed with hydrogenated sodium chloride water. After drying and concentrating, the residue was separated and purified using silica gel column chromatography to obtain 4-formyl-2-methyl-3-
A mixture of threo and erythro octanol
0.622g (72%) was obtained. Examples 3 to 16 In the same manner as in Examples 1 to 2, various β-hydroxycarbonyl compounds were prepared using the enamine compound of formula (2), the compound of formula (3), and Lewis acid shown in Table 1 below. Synthesized. The results are shown in Table-1.

【表】【table】

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 下記式(2) 但し式中、R1およびR2は、夫々、水素原子、
アルキル基、アルケニル基もしくはアリール基を
示すか、或はR1及びR2は一緒になつて(−CH2)−o
〔ここで、nは3〜5の整数を示す〕を示し、そ
して、R3およびR4は、夫々、アルキル基もしく
はフエニル基を示すか、或はR3及びR4は一緒に
なつて(−CH2)−n〔ここで、mは4又は5を示す〕
もしくは(−CH2)−2O (−CH2)−2を示す、 で表わされるエナミン化合物と、下記式(3) R5CHO (3) 但し式中、R5は水素原子、アルキル基、アル
ケニル基もしくはアリール基を示す、 で表わされるアルデヒド類とを、ルイス酸の存在
下に接触せしめることを特徴とする下記式(1) 但し式中、R1、R2及びR5は前記したと同義、 で表わされるβ−ヒドロキシカルボニル化合物類
の製法。
[Claims] 1. The following formula (2) However, in the formula, R 1 and R 2 are each a hydrogen atom,
represents an alkyl, alkenyl or aryl group, or R 1 and R 2 taken together (-CH 2 ) -o
[Here, n represents an integer of 3 to 5], and R 3 and R 4 each represent an alkyl group or a phenyl group, or R 3 and R 4 taken together ( -CH 2 ) - n [Here, m indicates 4 or 5]
or (-CH 2 )- 2 O (-CH 2 )- 2 and an enamine compound represented by the following formula (3) R 5 CHO (3) where R5 is a hydrogen atom, an alkyl group, or an alkenyl group. The following formula (1) is characterized by contacting an aldehyde represented by a group or an aryl group in the presence of a Lewis acid. However, in the formula, R 1 , R 2 and R5 have the same meanings as described above.
JP59034350A 1984-02-27 1984-02-27 Production of beta-hydroxycarbonyl compound Granted JPS60178838A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59034350A JPS60178838A (en) 1984-02-27 1984-02-27 Production of beta-hydroxycarbonyl compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59034350A JPS60178838A (en) 1984-02-27 1984-02-27 Production of beta-hydroxycarbonyl compound

Publications (2)

Publication Number Publication Date
JPS60178838A JPS60178838A (en) 1985-09-12
JPH0436141B2 true JPH0436141B2 (en) 1992-06-15

Family

ID=12411698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59034350A Granted JPS60178838A (en) 1984-02-27 1984-02-27 Production of beta-hydroxycarbonyl compound

Country Status (1)

Country Link
JP (1) JPS60178838A (en)

Also Published As

Publication number Publication date
JPS60178838A (en) 1985-09-12

Similar Documents

Publication Publication Date Title
US6809223B2 (en) Process for stereoselective synthesis of prostacyclin derivatives
Zweifel et al. Allenic zinc reagents. A remarkably regio-and diastereoselective synthesis of 2-substituted homopropargylic alcohols
Tatone et al. Optically active heteroaromatic compounds. VII. Synthesis of the three optically active sec-butylpyridines
EP1756027B1 (en) Process for producing indenol esters or ethers
CN1421429A (en) Process for producing 2-alkyl-2-cyclopentenone
US7173148B2 (en) Process for producing 1-acetoxy-3-(substituted phenyl)propene compound
JPH0436141B2 (en)
JP2835785B2 (en) Process for producing optically active 2- (1-hydroxyalkyl) benzaldehydes
JP2000080082A (en) Production of 5-halogeno-2-substituted pyridine
JP3785849B2 (en) Process for producing optically active norbornene aldehydes
EP3464235B1 (en) Process for the preparation of polysantol-type compounds
JP4311241B2 (en) Process for producing 1-alkylcarbonyloxy-3-substituted phenyl-propene compound
JPS6247171B2 (en)
JP2002069026A (en) Method for manufacturing (e)-3-methyl-2- cyclopentadecenone
JPS6210494B2 (en)
JPH0155255B2 (en)
JP2579547B2 (en) Preparation of alkoxycarbonyl compounds
JP4064645B2 (en) New production method of polysubstituted cycloalkenes
JP3191114B2 (en) Method for producing 4-alkylidene-3,5,5-trimethyl-2-cyclohexen-1-one
JPS6254411B2 (en)
RU2023131280A (en) METHOD FOR OBTAINING BTK INHIBITORS
JP2791572B2 (en) Macrocyclic compound and method for producing the same
JPH0228586B2 (en) SHINKINAGANMA * DERUTAAFUHOWAARUFUA * ARUFUAAJIKUROROKARUBONIRUKAGOBUTSU
JPS621395B2 (en)
JPH0552313B2 (en)