JPH04361182A - Correction method of rotation vibration of sample tube in nmr device - Google Patents

Correction method of rotation vibration of sample tube in nmr device

Info

Publication number
JPH04361182A
JPH04361182A JP3136759A JP13675991A JPH04361182A JP H04361182 A JPH04361182 A JP H04361182A JP 3136759 A JP3136759 A JP 3136759A JP 13675991 A JP13675991 A JP 13675991A JP H04361182 A JPH04361182 A JP H04361182A
Authority
JP
Japan
Prior art keywords
sample tube
nmr
ssb
observation
signals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3136759A
Other languages
Japanese (ja)
Inventor
Hiroshi Ikeda
博 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP3136759A priority Critical patent/JPH04361182A/en
Publication of JPH04361182A publication Critical patent/JPH04361182A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To reduce the magnitude of SSB caused by rotational vibration hard to dissolve by mechanical accuracy. CONSTITUTION:In an NMR device to do the NMR observation by holding a sample tube 3 in a rotor 1 supported with an air bearing and rotating a sample tube 3 in a probe 5 together with a rotor 1, two oscillators 8, 9 are used for driving one with the pulse corresponding to the repetition period of the NMR observation using a CPU 1 and for irradiating the other with two signals of continuous wave with frequency adjacent to each other, then NMR signals are observed. Then, beat signals of the two frequencies and their spinning side band signals are taken in, the repetition period resulting in the least spinning side band and the pressure of the air bearing is detected and the correction of rotation vibration of the sample tube 3 is done. As a result, the NMR observation can be done with the condition of the least SSB magnitude caused by the rotational vibration hard to dissolve by mechanical accuracy.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、エアベアリングで支持
したロータに試料管を保持してプローブ内で試料管をロ
ータと一体回転させNMR観測を行うNMR装置におけ
る試料管の回転振れ補正方式に関する。
[Field of Industrial Application] The present invention relates to a rotational shake correction method for a sample tube in an NMR apparatus in which the sample tube is held on a rotor supported by an air bearing and rotated integrally with the rotor within a probe for NMR observation. .

【0002】0002

【従来の技術】液体の試料を観察するNMR装置では、
プローブ内で試料管をエアベアリングで支持し、試料の
不均一性を除去するために10〜20Hz程度で回転さ
せて観測を行っている。この場合、回転体を構成する試
料管やロータの機械的な仕上げ加工・組立精度から、そ
りをなくし同心性を維持するには限界があり、そのため
試料管に回転振れが生じる。通常、試料は固有の誘電率
を持っているため、共振器内で回転振れによる同調ずれ
が生じる。この誘電率は、高い周波数になるほど効いて
くる。このような試料管の回転振れによる同調ずれは、
試料を含めた回転体の回転数に依存して発生し、所謂ス
ピニングサイドバンド(SSB)の信号となってスペク
トルに現れる。その他にSSBは、静磁場や高周波磁場
の不均一、内部の電場の変動によって起こる。
[Prior Art] In an NMR apparatus for observing a liquid sample,
The sample tube is supported within the probe with an air bearing and is rotated at a frequency of about 10 to 20 Hz for observation in order to eliminate sample non-uniformity. In this case, there is a limit to eliminating warpage and maintaining concentricity due to the mechanical finishing and assembly accuracy of the sample tube and rotor that make up the rotating body, which causes rotational wobbling in the sample tube. Normally, the sample has a unique dielectric constant, which causes tuning deviation due to rotational vibration within the resonator. This dielectric constant becomes more effective as the frequency increases. This kind of synchronization error due to rotational vibration of the sample tube is caused by
This occurs depending on the rotation speed of the rotating body including the sample, and appears in the spectrum as a so-called spinning side band (SSB) signal. In addition, SSB is caused by non-uniformity in the static magnetic field or high-frequency magnetic field, and fluctuations in the internal electric field.

【0003】共振器内で回転する試料は、誘電体として
共振器の容量成分の一部分となって、回転運動の変動が
容量の変化として作用している。それゆえ、NMR装置
では、強磁場になるほど高い周波数での同調が必要にな
るため、回転運動の変動が与える影響も増大する。
[0003] The sample rotating within the resonator acts as a dielectric and becomes part of the capacitance component of the resonator, and fluctuations in rotational motion act as changes in capacitance. Therefore, in an NMR apparatus, the stronger the magnetic field, the higher the need for tuning at a higher frequency, which increases the influence of fluctuations in rotational motion.

【0004】0004

【発明が解決しようとする課題】上記回転運動の変動が
NMR装置に与える影響を低減するため、従来は、回転
体を構成する試料管やロータ等のそりや同心度に対し機
械的な仕上げ加工・組立精度を限りなく高めるようにし
、また、その精度を維持するために使用する材料に格別
の配慮を払っていた。
[Problem to be Solved by the Invention] In order to reduce the influence of the above-mentioned fluctuations in rotational motion on the NMR apparatus, conventional methods have been used to mechanically finish warpage and concentricity of the sample tubes and rotors that make up the rotating body.・We tried to maximize assembly accuracy and paid particular attention to the materials used to maintain that accuracy.

【0005】しかしながら、上記機械的な精度には限界
がある。因みに実験から要求される回転体としての回転
軸に対する振れの許容度は、数百MHzの周波数を使う
場合で大体10μm付近とされるが、現段階では、極め
て難しいレベルである。
[0005] However, there is a limit to the mechanical precision described above. Incidentally, the tolerance of runout for the rotating shaft of a rotating body required from experiments is approximately 10 μm when using a frequency of several hundred MHz, but this is at an extremely difficult level at this stage.

【0006】本発明の目的は、機械的な精度上で解消す
ることが難しい回転振れに起因するSSBの量を低減さ
せることである。
An object of the present invention is to reduce the amount of SSB caused by rotational runout that is difficult to eliminate due to mechanical accuracy.

【0007】[0007]

【課題を解決するための手段】そのために本発明は、エ
アベアリングで支持したロータに試料管を保持してプロ
ーブ内で試料管をロータと一体回転させNMR観測を行
うNMR装置において、一方をNMR観測の繰り返し周
期に対応するパルスで駆動し、他方を連続波とする2つ
の近接する周波数の信号で照射してNMR信号を観測す
ることによって、2つの周波数のビート信号とそのスピ
ニングサイドバンドの信号を取り込み、スピニングサイ
ドバンドの量が最小となる繰り返し周期とエアベアリン
グの圧力を検出し、試料管の回転振れによる補正を行う
ことを特徴とするものである。
[Means for Solving the Problems] To this end, the present invention provides an NMR apparatus in which a sample tube is held on a rotor supported by an air bearing, and the sample tube is rotated integrally with the rotor within a probe for NMR observation. By observing the NMR signal by driving it with a pulse corresponding to the observation repetition period and irradiating it with two adjacent frequency signals, one of which is a continuous wave, the beat signal of two frequencies and the signal of its spinning sideband can be detected. The system is characterized in that it captures the amount of spinning sidebands, detects the repetition period and air bearing pressure that minimize the amount of spinning sidebands, and performs corrections due to rotational runout of the sample tube.

【0008】[0008]

【作用】本発明のNMR装置における試料管の回転振れ
補正方式では、一方をNMR観測の繰り返し周期に対応
するパルスで駆動し、他方を連続波とする2つの近接す
る周波数の信号で照射してNMR信号を観測することに
よって、2つの周波数のビート信号とそのスピニングサ
イドバンドの信号を取り込み、スピニングサイドバンド
の量が最小となる繰り返し周期とエアベアリングの圧力
を検出するので、機械的な精度上で解消することが難し
い回転振れに起因するSSBの量を最小にする条件でN
MR観測を行うことができる。
[Operation] In the rotational shake correction method of the sample tube in the NMR apparatus of the present invention, one is driven with a pulse corresponding to the repetition period of NMR observation, and the other is irradiated with two adjacent frequency signals as a continuous wave. By observing the NMR signal, we capture the beat signal of two frequencies and its spinning sideband signal, and detect the repetition period and air bearing pressure that minimize the amount of the spinning sideband. N under conditions that minimize the amount of SSB caused by rotational runout that is difficult to eliminate with
MR observation can be performed.

【0009】[0009]

【実施例】以下、本発明の実施例を図面を参照しつつ説
明する。図1は本発明のNMR装置における試料管の回
転振れ補正方式の1実施例を説明するための図である。
Embodiments Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a diagram for explaining one embodiment of a rotational shake correction method for a sample tube in an NMR apparatus of the present invention.

【0010】図1において、ロータ1は、例えばホルダ
ー2を含み一体化され構成されたものであり、図示しな
いがエアベアリングで支持されてホルダー2に試料管3
を保持し、試料管3がプローブ5の共振器4の中にあっ
て10〜20Hz程度で一体回転する。デュプレクサ又
はゲート6は、パワーアンプ7側の照射系とヘッドアン
プ12側の観測系を分離するものである。発信器8、9
は、それぞれ近接する周波数fA 、fB の信号を発
生するものであり、パルサ10により発信が制御される
。CPU11は、パルサ10を通してNMR観測の繰り
返し周期に応じ2つの近接する周波数fA 、fB の
信号を制御しながらプローブ5に印加し、ヘッドアンプ
12を通してNMR信号を観測することによって、SS
Bの量が最小となる条件を検出するものである。
[0010] In FIG. 1, a rotor 1 includes, for example, a holder 2 and is integrally constructed, and is supported by an air bearing (not shown) and a sample tube 3 is attached to the holder 2.
The sample tube 3 is held in the resonator 4 of the probe 5 and rotates integrally at a frequency of about 10 to 20 Hz. The duplexer or gate 6 separates the irradiation system on the power amplifier 7 side from the observation system on the head amplifier 12 side. Transmitter 8, 9
generate signals of frequencies fA and fB that are close to each other, and the emission is controlled by the pulser 10. The CPU 11 applies signals of two adjacent frequencies fA and fB to the probe 5 while controlling them according to the repetition period of NMR observation through the pulser 10, and observes the NMR signals through the head amplifier 12, thereby detecting the SS.
This is to detect the conditions under which the amount of B is the minimum.

【0011】SSBは、先に述べたようにホルダや試料
管のそれぞれの偏心から生じるものであり、周期性があ
る。したがって、その量は、NMR観測の繰り返し周期
によって変化する。本発明のNMR装置における試料管
の回転振れ補正方式は、この点に着目し、繰り返し周期
を変化させた時にSSBが最小となる周期を検出し、そ
の周期を採用することによって、SSBを低減するもの
である。以下にその検出動作を説明する。
As mentioned above, SSB is caused by the eccentricity of the holder and sample tube, and has periodicity. Therefore, the amount changes depending on the repetition period of NMR observation. The rotational shake correction method of the sample tube in the NMR apparatus of the present invention focuses on this point, detects the period in which SSB is minimum when changing the repetition period, and reduces SSB by adopting that period. It is something. The detection operation will be explained below.

【0012】CPU11は、発信器8による周波数fA
 の信号は周期を順次変えながらパルス状でプローブに
印加し、発信器9による周波数fBの信号は連続波でプ
ローブに印加するようにパルサ10を制御する。この場
合の周波数fA の信号は(ロ)に示すような周期t1
 のパルスで繰り返し、パルス幅は所謂フリップアング
ルを与える時間オーダである。これに対してCPU11
では、観測系から取り込んだ信号をFT(フーリエ変換
)処理することによりパルスの周期に同期して(ハ)に
示すような|fA −fB |のビート信号S1 とそ
の両側にSSBの信号S2 が取り込まれる。そこで、
CPU11では、これらの信号を積算カウントし、SS
Bの量としてα1 =|S2 |/S1を演算により求
めて記憶する。同様にパルスの周期t1 をt2 、t
3 、……、tn に変えてプローブ4に周波数fA 
、fB の信号を印加し、それぞれの周期でのSSBの
量α2 、α3 、……、αn を求めて記憶する。そ
して、α1 〜αn から最小値αx を検出し、対応
する周期tx を求める。
[0012] The CPU 11 receives the frequency fA from the oscillator 8.
The pulser 10 is controlled so that the signal of frequency fB from the oscillator 9 is applied to the probe in the form of a continuous wave. In this case, the signal of frequency fA has a period t1 as shown in (b).
The pulse width is on the order of time giving the so-called flip angle. On the other hand, CPU11
Now, by performing FT (Fourier transform) processing on the signal taken in from the observation system, the beat signal S1 of |fA - fB | and the SSB signal S2 on both sides are generated in synchronization with the pulse period as shown in (c). It is captured. Therefore,
The CPU 11 integrates these signals and counts them as SS.
As the amount of B, α1 = |S2 |/S1 is calculated and stored. Similarly, the pulse period t1 is t2, t
3, ..., tn and set the frequency fA to probe 4.
, fB are applied, and the SSB amounts α2, α3, . . . , αn in each period are determined and stored. Then, the minimum value αx is detected from α1 to αn, and the corresponding period tx is determined.

【0013】上記のようにして求めた周期tx により
実際の観測時におけるパルス励起の繰り返し周期を決定
することにより、回転振れにより生じるSSBの量を低
減することができる。また、実際の試料の観測に際し、
周期tx が適当でない場合には、この周期tx の整
数倍の周期を採用することによって、同様の効果を得る
ことができる。
By determining the repetition period of pulse excitation during actual observation using the period tx determined as described above, it is possible to reduce the amount of SSB caused by rotational runout. In addition, when observing actual samples,
If the period tx is not appropriate, a similar effect can be obtained by adopting a period that is an integral multiple of the period tx.

【0014】SSBの量は、上記のように照射の繰り返
し周期の変化に連動するが、エアベアリングの圧力によ
っても変化する。この点に着目しこの調整によってSS
Bの量が最小となる条件を検出し、その条件を採用する
ことによって、機械的な精度上で解消することが難しい
回転振れに起因するSSBの量の低減を図ることができ
る。以下にその実施例を説明する。
The amount of SSB is linked to changes in the repetition period of irradiation as described above, but also changes depending on the pressure of the air bearing. Focusing on this point and making this adjustment, SS
By detecting a condition in which the amount of B is the minimum and adopting that condition, it is possible to reduce the amount of SSB caused by rotational runout that is difficult to eliminate in terms of mechanical accuracy. Examples thereof will be described below.

【0015】図2は本発明のNMR装置における試料管
の回転振れ補正方式の他の実施例を説明するための図で
あり、図1に示す励起の繰り返し周期を変える代わりに
エアベアリングの各部の圧力を制御して、SSBの量の
最小となる条件を検出するように構成したものである。 P1 、P2 、P3 、P4 がそのエアベアリング
22の各部の圧力を示し、圧力コントローラ24は、圧
力P1 、P2 、P3 、P4 をコントロールする
ものである。そして、CPU25は、例えば図1に示す
構成と同じパルサ31、発信器30、31、デュプレク
サ又はゲート28を通して励起の繰り返し周期Tc を
固定した状態で順次エアベアリング22の圧力P1 、
P2 、P3 、P4を変えるように圧力コントローラ
24を制御する。他方、観測系のデュプレクサ又はゲー
ト28、ヘッドアンプ33を通してFT後のNMR信号
を観測し、SSBの量を最小とするエアベアリングの各
部の圧力P1 、P2、P3 、P4 の値を求める。
FIG. 2 is a diagram for explaining another embodiment of the sample tube rotational shake correction method in the NMR apparatus of the present invention, in which instead of changing the excitation repetition period shown in FIG. It is configured to control the pressure and detect the condition that minimizes the amount of SSB. P1, P2, P3, and P4 indicate the pressures of each part of the air bearing 22, and the pressure controller 24 controls the pressures P1, P2, P3, and P4. Then, the CPU 25 sequentially calculates the pressure P1 of the air bearing 22, while fixing the excitation repetition period Tc through the same pulser 31, transmitters 30, 31, duplexer, or gate 28 as shown in FIG. 1, for example.
The pressure controller 24 is controlled to change P2, P3, and P4. On the other hand, the NMR signal after FT is observed through the duplexer or gate 28 and head amplifier 33 of the observation system, and the values of pressures P1, P2, P3, and P4 at each part of the air bearing that minimize the amount of SSB are determined.

【0016】すなわち、CPU25では、図1で説明し
たと同様に、圧力コントローラ24を通して圧力P1 
、P2 、P3 、P4 を変化させながら、それぞれ
の圧力下において、観測系からFT処理することにより
パルスの周期に同期して図1(ハ)に示すような|fA
 −fB |のビート信号S1 とその両側にSSBの
信号S2 を取り込む。そして、これらの信号を積算カ
ウントし、それぞれの圧力下でのSSBの量α2 、α
3 、……、αn を求めて記憶し、α1 〜αn か
ら最小値αx を検出して対応する圧力P1 、P2 
、P3 、P4 を求める。
That is, the CPU 25 controls the pressure P1 through the pressure controller 24 as explained in FIG.
, P2, P3, and P4 under the respective pressures, and by performing FT processing from the observation system, |fA as shown in Fig. 1(C) is synchronized with the pulse period.
The beat signal S1 of -fB | and the SSB signal S2 on both sides thereof are taken in. Then, these signals are integrated and counted, and the amount of SSB under each pressure α2, α
3,..., αn is determined and stored, the minimum value αx is detected from α1 to αn, and the corresponding pressures P1, P2 are calculated.
, P3 and P4 are determined.

【0017】なお、本発明は、上記の実施例に限定され
るものではなく、種々の変形が可能である。例えば上記
の実施例では、回転振れ補正用試料を用いて説明したが
、実際の観測用試料を用いてもよいし、NMR信号S1
 とSSBの信号S2 とをモニタしてSSBの量が最
小になる条件を検出するように構成してもよい。
Note that the present invention is not limited to the above-described embodiments, and various modifications are possible. For example, in the above embodiment, explanation was given using a rotational shake correction sample, but an actual observation sample may also be used, or the NMR signal S1
It may be configured to monitor the SSB signal S2 and the SSB signal S2 to detect a condition in which the amount of SSB is minimized.

【0018】また、図2の実施例では、繰り返し周期T
c として任意の値を用いたが、図1に示す実施例を適
用してSSBの量が最小となる周期tx により図2の
実施例を適用してもよい。このようにすることによって
、さらにSSBの量を低減することができる。
Furthermore, in the embodiment of FIG. 2, the repetition period T
Although an arbitrary value is used for c, the embodiment shown in FIG. 2 may be applied by applying the embodiment shown in FIG. 1 and setting the period tx at which the amount of SSB is the minimum. By doing so, the amount of SSB can be further reduced.

【0019】[0019]

【発明の効果】以上説明したように、本発明によれば、
NMR観測における高周波信号の繰り返し周期、エアベ
アリングの圧力をSSBの量が最小となる値に選択する
ので、機械的な加工精度等の限界からなくすことができ
ない回転振れに起因するSSBの量を低減することがで
き、NMR観察においてスペクトルの帰属を容易に判断
することができる。
[Effects of the Invention] As explained above, according to the present invention,
The repetition period of the high-frequency signal in NMR observation and the pressure of the air bearing are selected to minimize the amount of SSB, thereby reducing the amount of SSB caused by rotational runout that cannot be eliminated due to limits such as mechanical processing accuracy. Therefore, the spectral assignment can be easily determined in NMR observation.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】  本発明のNMR装置における試料管の回転
振れ補正方式の1実施例を説明するための図である。
FIG. 1 is a diagram for explaining one embodiment of a rotational shake correction method for a sample tube in an NMR apparatus of the present invention.

【図2】  本発明のNMR装置における試料管の回転
振れ補正方式の他の実施例を説明するための図である。
FIG. 2 is a diagram for explaining another embodiment of the sample tube rotational shake correction method in the NMR apparatus of the present invention.

【符号の説明】[Explanation of symbols]

1…ロータ、2…ホルダ、3…試料管、4…共振器、5
…プローブ、6…デュープレクサ又はゲート、7…パワ
ーアンプ、8と9…発信器、10…パルサ、11…CP
U、12…ヘッドアンプ
1...Rotor, 2...Holder, 3...Sample tube, 4...Resonator, 5
...Probe, 6...Duplexer or gate, 7...Power amplifier, 8 and 9...Transmitter, 10...Pulser, 11...CP
U, 12...Head amplifier

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  エアベアリングで支持したロータに試
料管を保持してプローブ内で試料管をロータと一体回転
させNMR観測を行うNMR装置において、一方をNM
R観測の繰り返し周期に対応するパルスで駆動し、他方
を連続波とする2つの近接する周波数の信号で照射して
NMR信号を観測することによって、2つの周波数のビ
ート信号とそのスピニングサイドバンドの信号を取り込
み、スピニングサイドバンドの量が最小となる繰り返し
周期とエアベアリングの圧力を検出し、試料管の回転振
れによる補正を行うことを特徴とするNMR装置におけ
る試料管の回転振れ補正方式。
Claim 1: In an NMR device that performs NMR observation by holding a sample tube on a rotor supported by an air bearing and rotating the sample tube integrally with the rotor within a probe, one side is
By observing the NMR signal by driving it with a pulse corresponding to the repetition period of R observation and irradiating it with signals of two adjacent frequencies, the other of which is a continuous wave, the beat signal of the two frequencies and its spinning sideband can be detected. A method for correcting rotational shake of a sample tube in an NMR apparatus, which captures a signal, detects the repetition period and air bearing pressure that minimize the amount of spinning sidebands, and performs correction due to rotational shake of the sample tube.
JP3136759A 1991-06-07 1991-06-07 Correction method of rotation vibration of sample tube in nmr device Withdrawn JPH04361182A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3136759A JPH04361182A (en) 1991-06-07 1991-06-07 Correction method of rotation vibration of sample tube in nmr device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3136759A JPH04361182A (en) 1991-06-07 1991-06-07 Correction method of rotation vibration of sample tube in nmr device

Publications (1)

Publication Number Publication Date
JPH04361182A true JPH04361182A (en) 1992-12-14

Family

ID=15182844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3136759A Withdrawn JPH04361182A (en) 1991-06-07 1991-06-07 Correction method of rotation vibration of sample tube in nmr device

Country Status (1)

Country Link
JP (1) JPH04361182A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108872290A (en) * 2018-04-24 2018-11-23 厦门大学 A kind of small-sized nuclear magnetic resonance spectrometer rotates and upgrades the method and device of resolution ratio automatically

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108872290A (en) * 2018-04-24 2018-11-23 厦门大学 A kind of small-sized nuclear magnetic resonance spectrometer rotates and upgrades the method and device of resolution ratio automatically

Similar Documents

Publication Publication Date Title
KR101437190B1 (en) Arrangement for measuring a rate of rotation using a vibration sensor
US6654424B1 (en) Method and device for tuning a first oscillator with a second oscillator and rotation rate sensor
CN112815964B (en) Harmonic oscillator vibration characteristic detection device and method based on plane interdigital electrode
EP2397818A1 (en) Oscillator circuit, method for manufacturing oscillator circuit, inertial sensor using the oscillator circuit, and electronic device
JPH04361182A (en) Correction method of rotation vibration of sample tube in nmr device
JP2737420B2 (en) Ultrasonic motor drive system
JPH1176193A (en) Magnetic resonance imaging
JP4449262B2 (en) Measuring method, measuring apparatus using vibrator, and driving apparatus for vibrator
JPH03218733A (en) Magnetic resonance imaging device
KR20060017650A (en) Method for monitoring a vibrating gyroscope
JP2778843B2 (en) Active damping device
DE4214712A1 (en) DEVICE AND METHOD FOR DETECTING IMBALANCE AND LOCATION BY FREQUENCY MODULATION
Gallacher et al. Initial test results from a 3-axis vibrating ring gyroscope
JPS612047A (en) Nuclear magnetic resonator device
DE102019215737A1 (en) Readout circuit for a MEMS gyroscope and method for operating such a readout circuit
JP3052594B2 (en) Sensitivity adjustment method of electrostatic sensor and electrostatic sensor
US7296468B2 (en) Digital coriolis gyroscope
US20220146367A1 (en) Resonant frequency vibrational test
CN115558891B (en) Sensor device
CN107850431B (en) Rotational speed sensor and method for multiple analysis processes by multi-frequency operation
JP2003185555A (en) Frequency detecting method and scanning probe microscope using the same
SU1270601A1 (en) Device for registering amplitude-frequency characteristic of object
JP2003185556A (en) Distance control method and scanning probe microscope using the same
JP2685487B2 (en) Inspection equipment using nuclear magnetic resonance
SU693226A1 (en) Electron-paramagnetic analyzer of composition

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980903