JPH04359866A - Reversible electrode - Google Patents

Reversible electrode

Info

Publication number
JPH04359866A
JPH04359866A JP3136158A JP13615891A JPH04359866A JP H04359866 A JPH04359866 A JP H04359866A JP 3136158 A JP3136158 A JP 3136158A JP 13615891 A JP13615891 A JP 13615891A JP H04359866 A JPH04359866 A JP H04359866A
Authority
JP
Japan
Prior art keywords
electrode
compound
electroconductive
battery
highpolymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3136158A
Other languages
Japanese (ja)
Other versions
JP3111506B2 (en
Inventor
Yasushi Uemachi
裕史 上町
Yoshiko Sato
佳子 佐藤
Teruhisa Kanbara
神原 輝寿
Tadashi Tonomura
正 外邨
Kenichi Takeyama
竹山 健一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP03136158A priority Critical patent/JP3111506B2/en
Publication of JPH04359866A publication Critical patent/JPH04359866A/en
Application granted granted Critical
Publication of JP3111506B2 publication Critical patent/JP3111506B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To enhance the oxidative/reductive reaction speed of a reversible electrode, which consists of electroconductive highpolymer compound and is used to electrochemical elements such as a battery, electrochromic display element, sensor, and memory. CONSTITUTION:As a material to electrode is used a compound, in which a thiol radical is introduced to each side chain of electroconductive highpolymer, and formation of a disulphide bond between side chains is utilized to electrode reactions. Use of this type of compound to an electrode of a battery permits achieving a secondary battery having as large an energy density as 150wh/kg or more. The disulphide type compound presents slow oxidative/reactive reactions, and it is difficult to take out a large current with this solely, but combining with electroconductive highpolymer accelerates the oxidative/reductive reactions of the disulpide type compound due to the electrode catalyst action of electroconductive molecles, which together with the effect of greatly increasing the contact area substantially with the electrolyte, should enable electrolysis (charging and discharging) with large current even at room temperature.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、電池、エレクトロクロ
ミック表示素子、センサ、メモリなどの電気化学素子に
用いられる導電性有機化合物よりなる可逆性電極に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reversible electrode made of a conductive organic compound used in electrochemical devices such as batteries, electrochromic display devices, sensors, and memories.

【0002】0002

【従来の技術】1971年に白川らにより導電性のポリ
アセチレン電極が発見されて以来、導電性高分子電極が
盛んに検討されている。導電性高分子を電極材料に用い
ると、軽量で高エネルギ密度の電池、大面積のエレクト
ロクロミック素子、微小電極を用いた生物化学センサな
どの電気化学素子の実現が期待できる。しかし、ポリア
セチレンは空気中の水分や酸素に対して化学的に活性で
、空気中では不安定な化合物であり、電気化学素子に用
いる電極として実用性に乏しいという問題を有していた
。近年、この問題を克服するために、他のπ電子共役系
導電性高分子が検討され、ポリアニリン、ポリピロール
、ポリアセン、ポリチオフェンなど、空気中で比較的安
定な導電性高分子が見いだされ、これらの導電性高分子
を正極に用いたリチウム二次電池が開発されつつある。
2. Description of the Related Art Since conductive polyacetylene electrodes were discovered by Shirakawa et al. in 1971, conductive polymer electrodes have been actively studied. When conductive polymers are used as electrode materials, it is expected that electrochemical devices such as lightweight, high-energy-density batteries, large-area electrochromic devices, and biochemical sensors using microelectrodes will be realized. However, polyacetylene is a compound that is chemically active against moisture and oxygen in the air and is unstable in the air, making it impractical as an electrode for use in electrochemical devices. In recent years, in order to overcome this problem, other π-electron conjugated conductive polymers have been investigated, and conductive polymers that are relatively stable in air, such as polyaniline, polypyrrole, polyacene, and polythiophene, have been discovered. Lithium secondary batteries using conductive polymers as positive electrodes are being developed.

【0003】これらの高分子電極は、電極反応に際して
カチオンのみならず電解質中のアニオンをも取り込むた
め、電解質はイオンの移動媒体として作用するだけでな
く電池反応に関与する。そのため電池の放電容量に見合
う量の電解質を電池内に保有する必要があり、反応に消
費される電解質の量だけ電池の重量が増加して、電池の
エネルギ密度は20〜50Wh/kg 程度に低下する
。このため、ニッケルカドミウム蓄電池、鉛蓄電池など
の通常の二次電池に較べ、この電池のエネルギ密度は2
分の1程度に小さくなるという問題を有している。
These polymer electrodes take in not only cations but also anions in the electrolyte during the electrode reaction, so the electrolyte not only acts as an ion transfer medium but also participates in the battery reaction. Therefore, it is necessary to hold an amount of electrolyte in the battery that corresponds to the discharge capacity of the battery, and the weight of the battery increases by the amount of electrolyte consumed in the reaction, reducing the energy density of the battery to about 20 to 50 Wh/kg. do. Therefore, compared to normal secondary batteries such as nickel-cadmium storage batteries and lead-acid batteries, the energy density of this battery is 2.
The problem is that the size is reduced to about one-fold.

【0004】これに対し、高エネルギ密度電池の実現が
期待できる有機材料として、米国特許第4,833,0
48号にジスルフィド系化合物が提案されている。この
化合物は、最も簡単にはR−S−S−R(Rは脂肪族あ
るいは芳香族の有機基、Sは硫黄)と表わされる。この
ジスルフィド系化合物のS−S結合は電解還元により開
裂し、電解浴中のカチオン(Mn+)とでR−Sー・M
+ で表される塩を生成する。また、この塩は、電解酸
化により再び元のR−S−S−Rに戻るという性質を持
つものである。また、カチオン(Mn+)を供給、捕捉
する金属Mn+とジスルフィド系化合物を組み合わせた
金属ーイオウ二次電池が前述の米国特許に提案されてお
り、150Wh/Kg以上と、通常の二次電池に匹敵あ
るいはそれ以上のエネルギ密度が期待されている。
On the other hand, US Pat. No. 4,833,0 is an organic material that can be expected to realize high energy density batteries.
No. 48 proposes disulfide compounds. This compound is most simply represented as R-S-S-R (R is an aliphatic or aromatic organic group, S is sulfur). The S-S bond of this disulfide compound is cleaved by electrolytic reduction, and R-S-M
Produces a salt represented by +. Moreover, this salt has the property of returning to the original R-S-S-R by electrolytic oxidation. In addition, a metal-sulfur secondary battery that combines metal Mn+ that supplies and captures cations (Mn+) and a disulfide compound is proposed in the above-mentioned US patent, and has a capacity of 150Wh/Kg or more, which is comparable to ordinary secondary batteries or Higher energy density is expected.

【0005】なお、電極触媒をジスルフィド系化合物電
極に導入することは、上記の米国特許第4833048
号あるいはJ.Electrochem Soc., 
Vol.136, p.2570−2575(1989
)に述べられているが、電極触媒としては有機金属化合
物が開示されているのみである。さらに、その効果につ
いては具体的に示されていないばかりか、導電性高分子
がジスルフィド系化合物の電解に際し電極触媒として作
用することは全く示されていない。
[0005] Introducing an electrocatalyst into a disulfide compound electrode is described in the above-mentioned US Pat. No. 4,833,048.
No. or J. Electrochem Soc. ,
Vol. 136, p. 2570-2575 (1989
), but only organometallic compounds are disclosed as electrode catalysts. Furthermore, not only is this effect not specifically demonstrated, but there is also no indication that conductive polymers act as electrocatalysts during electrolysis of disulfide compounds.

【0006】なお、電極触媒をジスルフィド系化合物電
極に導入することは、前述の米国特許第4833048
号あるいはJ.Electrochem Soc., 
Vol.136, p.2570−2575(1989
)に述べられているが、電極触媒としては有機金属化合
物が開示されているのみである。その効果については具
体的に示されていないばかりか、導電性高分子がジスル
フィド系化合物の電解に際し電極触媒として作用するこ
とは全く示されていない。
[0006] Introducing an electrocatalyst into a disulfide compound electrode is described in the above-mentioned US Pat. No. 4,833,048.
No. or J. Electrochem Soc. ,
Vol. 136, p. 2570-2575 (1989
), but only organometallic compounds are disclosed as electrode catalysts. Not only is this effect not specifically demonstrated, but there is also no evidence that conductive polymers act as electrocatalysts during electrolysis of disulfide compounds.

【0007】[0007]

【発明が解決しょうとする課題】しかし、このような従
来のジスルフィド系化合物は、米国特許第4,833,
048号の発明者らがJ.Electrochem.S
oc, Vol.136, No.9, p.2570
〜2575(1989)で報告しているように、例えば
[(C2H5)2NCSS−]2 の電解では、酸化と
還元の電位が1v 以上離れており、このような材料に
おける電気化学反応は、その電子移動が極めて遅いので
、室温付近では実用に見合う大きな電流、例えば1mA
/cm2以上の電流を取り出すことが困難であり、電子
移動が速くなる100〜200℃の高温での使用に限ら
れるという課題を有していた。
[Problems to be Solved by the Invention] However, such conventional disulfide compounds are
The inventors of No. 048 J. Electrochem. S
oc, Vol. 136, No. 9, p. 2570
~2575 (1989), for example, in the electrolysis of [(C2H5)2NCSS-]2, the oxidation and reduction potentials are separated by more than 1 V, and the electrochemical reaction in such materials is Because the movement is extremely slow, a large current suitable for practical use, such as 1 mA, is required near room temperature.
It is difficult to extract a current of /cm2 or more, and the problem is that it is limited to use at high temperatures of 100 to 200°C, where electron transfer is rapid.

【0008】本発明はこのような課題を解決するもので
、ジスルフィド系化合物を電池の電極材料として用いる
ことにより、高エネルギ密度という特徴を損なわず、か
つ室温でも大電流充放電が可能で、可逆性に優れた電極
を提供することを目的とするものである。
The present invention solves these problems, and by using a disulfide compound as an electrode material of a battery, it does not impair the characteristic of high energy density, and can be charged and discharged at a large current even at room temperature, and is reversible. The purpose of this invention is to provide an electrode with excellent properties.

【0009】[0009]

【課題を解決するための手段】この課題を解決するため
に本発明は、側鎖にチオール基を有するモノマ化合物を
重合して形成した導電性高分子を主体として可逆性電極
を構成したものである。
[Means for Solving the Problem] In order to solve this problem, the present invention consists of a reversible electrode mainly composed of a conductive polymer formed by polymerizing a monomer compound having a thiol group in its side chain. be.

【0010】また、導電性高分子の側鎖に導入したチオ
ール基間で酸化還元反応を行うようにしたものである
[0010] Furthermore, the oxidation-reduction reaction is carried out between thiol groups introduced into the side chains of the conductive polymer.


0011】
[
0011

【作用】重合して導電性高分子を形成するモノマ化合物
にチオール基を有する側鎖を導入して重合することによ
り、分子内にジスルフィド結合を有する導電性高分子を
得ることができる。この導電性高分子では、ジスルフィ
ド結合が電子移動過程における反応の活性化エネルギを
低減する電極触媒として作用する。つまり、ジスルフィ
ド系化合物単独では1v 以上であった酸化反応と還元
反応との電位差を、チオール基と導電性高分子の相互作
用により、これを0.1v あるいはそれ以下までに低
下することができる。このため、電極反応が促進される
とともに、電解質との実質的な接触面積が格段に増大さ
れるとともに、室温でも大電流での電解(充放電)が可
能となる。
[Operation] By introducing a side chain having a thiol group into a monomer compound that is polymerized to form a conductive polymer, a conductive polymer having disulfide bonds in the molecule can be obtained. In this conductive polymer, disulfide bonds act as an electrocatalyst that reduces the activation energy of the reaction in the electron transfer process. That is, the potential difference between the oxidation reaction and the reduction reaction, which was 1 V or more when using the disulfide compound alone, can be reduced to 0.1 V or less by the interaction between the thiol group and the conductive polymer. Therefore, the electrode reaction is promoted, the substantial contact area with the electrolyte is significantly increased, and electrolysis (charging and discharging) at a large current is possible even at room temperature.

【0012】また、分子内にジスルフィド結合を形成す
るチオール基を導入することで、電極反応の主体となる
これらチオール基を有する分子種が酸化還元反応時に電
解質に漏れでることを防ぐことができ、充放電特性の向
上が期待できることとなる。
[0012] Furthermore, by introducing a thiol group that forms a disulfide bond into the molecule, it is possible to prevent molecular species having these thiol groups, which are the main body of the electrode reaction, from leaking into the electrolyte during the redox reaction. This means that improvements in charge and discharge characteristics can be expected.

【0013】[0013]

【実施例】本発明の導電性高分子に導入する基としては
、米国特許第4833048号に述べられてる一般式(
R(S)y)nで表される基を用いることができる。R
は脂肪族基、芳香族基、Sは硫黄、yは1以上の整数、
nは2以上の整数である。  本発明の導電性高分子を
形成するモノマ化合物としては、チオフェン、ピロール
、アニリン、フランやベンゼンなどが用いられ、これら
のモノマを重合した導電性高分子にヨー素などのアニオ
ンをドープしたものなどが有効に用いられる。また、多
孔性のフィブリル構造をとることができる重合条件のも
のが望ましい。
[Example] The group introduced into the conductive polymer of the present invention has the general formula (
A group represented by R(S)y)n can be used. R
is an aliphatic group, an aromatic group, S is sulfur, y is an integer of 1 or more,
n is an integer of 2 or more. As the monomer compound forming the conductive polymer of the present invention, thiophene, pyrrole, aniline, furan, benzene, etc. are used, and conductive polymers made by polymerizing these monomers are doped with anions such as iodine. is used effectively. Further, it is desirable that the polymerization conditions are such that a porous fibril structure can be formed.

【0014】ジスルフィド化合物が還元され塩を形成す
る際の金属イオンとしては、上記の米国特許に述べられ
ているアルカリ金属イオン、アルカリ土類金属イオンに
加えて、プロトンを用いることもできる。アルカリ金属
イオンとしてリチウムイオンを用いる場合は、リチウム
イオンを供給および捕捉する電極として、金属リチウム
あるいはリチウム−アルミニウムなどのリチウム合金を
用い、リチウムイオンを伝導する電解質を用いると電圧
が3〜4v の電池が構成できる。また、前述の金属イ
オンとしてプロトンを用い、プロトンを供給および捕捉
する電極としてLaNi5などの金属水素化物を用い、
プロトンを伝導する電解質を用いると電圧が1〜2v 
の電池を構成することもできる。
[0014] In addition to the alkali metal ions and alkaline earth metal ions mentioned in the above-mentioned US patent, protons can also be used as metal ions when the disulfide compound is reduced to form a salt. When using lithium ions as alkali metal ions, metallic lithium or a lithium alloy such as lithium-aluminum is used as the electrode for supplying and capturing lithium ions, and an electrolyte that conducts lithium ions is used to create a battery with a voltage of 3 to 4 V. can be configured. In addition, protons are used as the aforementioned metal ions, and metal hydrides such as LaNi5 are used as electrodes for supplying and capturing protons.
When using an electrolyte that conducts protons, the voltage is 1 to 2 V.
It is also possible to configure a battery of

【0015】(1)チオフェン誘導体の合成100ml
のベンゼンに水素化ナトリウムを2.4g(0.1mo
l)を加えた後、12.1g(0.05mol)の3,
4−ジブロモチオフェンを加え、1時間還流した。この
溶液にエチレングリコール6.02g(0.1mol)
を混合し、3時間還流し、3,4−ジヒドロキシブロモ
チオフェン誘導体を得た。この溶液に11g(0.1m
ol)の3−クロロ−1−プロパンチオールを加え3時
間還流した。こうして、(化1)に示す3,4の位置の
側鎖にチオール基を導入した3,4ジチオ−チオフェン
誘導体(以降チオフェン誘導体1とする)9.5g(0
.025mol)を得た。
(1) Synthesis of thiophene derivative 100ml
of benzene and 2.4 g (0.1 mo
After adding 12.1 g (0.05 mol) of 3,
4-Dibromothiophene was added and the mixture was refluxed for 1 hour. Add 6.02 g (0.1 mol) of ethylene glycol to this solution.
The mixture was mixed and refluxed for 3 hours to obtain a 3,4-dihydroxybromothiophene derivative. Add 11 g (0.1 m
3-chloro-1-propanethiol (ol) was added and the mixture was refluxed for 3 hours. In this way, 9.5 g (0
.. 025 mol) was obtained.

【0016】[0016]

【化1】[Chemical formula 1]

【0017】(2)サイクリクボルタンメトリこのよう
にして得られたチオフェン誘導体1(1mol/l)を
モノマとしてプロピレンカーボネート中、過塩素酸リチ
ウムを支持電解質として飽和カロメル参照電極に対し 
1.2〜1.5Vで定電位電解することで、厚さ約20
μmのフィブリル構造を有するチオフェン誘導体重合膜
を黒鉛電極上に形成した。この電極を、室温で、LiC
lO4 を1M 溶解したジメチルホルムアミド中でA
g/AgCl参照電極に対し−0.7〜+0.2V の
間で電位を 50mV/sec の速度で直線的に増減
させ電解したところ図1の曲線Aで示される電流電圧特
性を得た。 また、比較例として、チオフェン誘導体1重合膜のみを
有する黒鉛電極についても同様な電解を行い図1の曲線
Bで示される電流電圧特性を得た。曲線Aは、チオフェ
ン誘導体1重合膜のみを有する黒鉛電極の電流電圧曲線
Bと、2,5−ジメルカプト−1,3,4−チアジアゾ
ールの酸化還元に対応する電流ピークとが重なった電流
電圧特性を与えている。2,5−ジメルカプト−1,3
,4−チアジアゾールの酸化還元に対応する電流ピーク
のうち特に還元反応に対応する電流ピーク位置が−0.
6V から−0.2V 付近まで移動し、イオン電子混
合伝導体高分子であるチオフェン誘導体1重合物の存在
で2,5−メルカプト−1,3,4−チアジアゾールの
酸化還元が促進されていることがわかる。これに対し、
重合物を有しない黒鉛電極で得られた曲線Bでは、2,
5−ジメルカプト−1,3,4チアジアゾールの酸化還
元に対応する電流ピークが得られるが、酸化ピークと還
元ピークとの電位差が 0.6V 近くに及び、酸化還
元は準可逆で反応の速度は遅く、この電極を電池の正極
に用いると、充電と放電の電圧差が 0.6V 以上に
大きくなるとともに、大電流での充放電では効率低下の
大きい電池となる。
(2) Cyclic voltammetry The thus obtained thiophene derivative 1 (1 mol/l) was used as a monomer in propylene carbonate, and lithium perchlorate was used as a supporting electrolyte against a saturated calomel reference electrode.
By constant potential electrolysis at 1.2 to 1.5V, a thickness of about 20
A thiophene derivative polymer film having a micrometer fibril structure was formed on a graphite electrode. This electrode was heated with LiC at room temperature.
A in dimethylformamide containing 1M lO4
When electrolysis was carried out by linearly increasing and decreasing the potential between -0.7 and +0.2 V with respect to the g/AgCl reference electrode at a rate of 50 mV/sec, the current-voltage characteristics shown by curve A in FIG. 1 were obtained. Further, as a comparative example, similar electrolysis was performed on a graphite electrode having only a thiophene derivative 1 polymer film, and the current-voltage characteristics shown by curve B in FIG. 1 were obtained. Curve A represents the current-voltage characteristics in which the current-voltage curve B of the graphite electrode having only the thiophene derivative 1 polymer film overlaps with the current peak corresponding to the redox of 2,5-dimercapto-1,3,4-thiadiazole. giving. 2,5-dimercapto-1,3
, 4-thiadiazole, the current peak position corresponding to the reduction reaction is particularly at -0.
6V to around -0.2V, indicating that the redox of 2,5-mercapto-1,3,4-thiadiazole is promoted by the presence of monopolymer of thiophene derivative, which is a mixed ionic and electronic conductor polymer. Recognize. On the other hand,
In curve B obtained with a graphite electrode without polymer, 2,
A current peak corresponding to the redox of 5-dimercapto-1,3,4thiadiazole is obtained, but the potential difference between the oxidation peak and the reduction peak is close to 0.6 V, and the redox is semi-reversible and the reaction rate is slow. When this electrode is used as the positive electrode of a battery, the voltage difference between charging and discharging increases to 0.6 V or more, and the efficiency of the battery decreases significantly when charging and discharging at a large current.

【0018】なお、本実施例においては、チオフェンを
用いた場合について説明したが、その他の導電性高分子
においても、本実施例と同様の効果を示す。さらに本実
施例の重合膜を粉砕し、集電体と混合して電極を構成し
ても同様の効果を発揮することは自明である。
[0018] In this example, the case where thiophene was used was explained, but other conductive polymers also exhibit the same effects as in this example. Furthermore, it is obvious that the same effect can be obtained even if the polymer film of this example is crushed and mixed with a current collector to form an electrode.

【0019】(3)充放電サイクル特性本実施例により
得られたチオフェン誘導体1(1mol/l)をモノマ
としてプロピレンカーボネート中、過塩素酸リチウムを
支持電解質として飽和カロメル参照電極に対し1.2〜
1.5V で定電位電解することで、厚さ約20μmの
フィブリル構造を有するチオフェン誘導体重合膜を黒鉛
電極上に形成した。この電極を、作用極とし、Li線を
参照電極とし、対極にLi箔、ジメチルホルムアミドに
LiClO4を1M 溶解した電解質溶液の構成で電池
を作成した。この電池を用いて、充電電位を4.0V 
で15時間充電後、終止電圧2.0V 、放電電流0.
5mAとしてサイクル特性試験を行った。このようにし
て、図2の曲線Aで示されるサイクル寿命特性曲線を得
た。図2の横軸はサイクル数、縦軸は1サイクル目の放
電容量を100としたときの放電容量である。また、比
較例として、ポリチオフェンとスルフィド化合物である
2,5−ジメルカプト−1,3,4−チアゾールとポリ
エチレンオキサイドを重量比3:1:1で混合し作成し
た複合電極を作用極とし、同様の電池を組み、同様の条
件でサイクル特性試験をおこなった。このようにして、
図2の曲線Bで示される充放電サイクル特性曲線を得た
。曲線Bは、10サイクル程度で充放電効率が低下して
いるが、曲線Aでは、充放電サイクル特性が50サイク
ルと向上している。
(3) Charge/discharge cycle characteristics Thiophene derivative 1 (1 mol/l) obtained in this example was used as a monomer in propylene carbonate, lithium perchlorate was used as a supporting electrolyte, and 1.2 to 1.2 to 1.2 to a saturated calomel reference electrode was used as a supporting electrolyte.
By performing constant potential electrolysis at 1.5 V, a thiophene derivative polymer film having a fibril structure with a thickness of about 20 μm was formed on the graphite electrode. A battery was prepared using this electrode as a working electrode, a Li wire as a reference electrode, a Li foil as a counter electrode, and an electrolyte solution containing 1M LiClO4 dissolved in dimethylformamide. Using this battery, the charging potential was set to 4.0V.
After charging for 15 hours, the final voltage was 2.0V and the discharge current was 0.
A cycle characteristic test was conducted at 5 mA. In this way, a cycle life characteristic curve shown by curve A in FIG. 2 was obtained. The horizontal axis of FIG. 2 is the number of cycles, and the vertical axis is the discharge capacity when the discharge capacity of the first cycle is set as 100. In addition, as a comparative example, a composite electrode prepared by mixing polythiophene, 2,5-dimercapto-1,3,4-thiazole, which is a sulfide compound, and polyethylene oxide at a weight ratio of 3:1:1 was used as a working electrode, and a similar electrode was used. A battery was assembled and a cycle characteristic test was conducted under the same conditions. In this way,
A charge/discharge cycle characteristic curve shown by curve B in FIG. 2 was obtained. In curve B, the charge/discharge efficiency decreases after about 10 cycles, but in curve A, the charge/discharge cycle characteristics improve at 50 cycles.

【0020】なお、本発明は電池の他に、電極を対極に
用いることで発色・退色速度の速いエレクトロクロミッ
ク素子、応答速度の早いグルコースセンサなどの生物化
学センサを得ることができるし、また、書き込み・読み
出し速度の速い電気化学アナログメモリを構成すること
もできる。
[0020] In addition to batteries, the present invention can provide biochemical sensors such as electrochromic elements with fast color development and fading speed and glucose sensors with fast response speed by using the electrode as a counter electrode. It is also possible to configure an electrochemical analog memory with fast writing and reading speeds.

【0021】[0021]

【発明の効果】以上の実施例の説明からも明らかなよう
に本発明によれば、重合することにより導電性高分子を
形成するモノマ化合物に、チオール基を有する側鎖を導
入した化合物を重合して生成した重合物を主体としてな
る電極では、従来のジスルフィド系化合物のみで構成し
た電極では困難であった大電流での電解が可能となる。 そして、この電極を正極に用い、金属リチウムを負極に
用いることにより、大電流での充放電が可能な高エネル
ギ密度二次電池を構成することができる。
Effects of the Invention As is clear from the explanation of the above examples, according to the present invention, a compound in which a side chain having a thiol group is introduced into a monomer compound that forms a conductive polymer by polymerization. An electrode made mainly of the polymer produced by this method enables electrolysis at a large current, which was difficult with conventional electrodes made only of disulfide compounds. By using this electrode as a positive electrode and using metallic lithium as a negative electrode, a high energy density secondary battery capable of charging and discharging at a large current can be constructed.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の複合電極および比較例の電極の電流−
電圧特性を示す図
[Figure 1] Current of the composite electrode of the present invention and the electrode of the comparative example -
Diagram showing voltage characteristics

【図2】本発明の複合電極および比較例の電極の充放電
サイクル特性を示す図
[Fig. 2] A diagram showing the charge/discharge cycle characteristics of the composite electrode of the present invention and the electrode of a comparative example.

【符号の説明】[Explanation of symbols]

A  本発明の一実施例の可逆性電極の特性B  従来
例の可逆性電極の特性
A Characteristics of the reversible electrode according to an embodiment of the present invention B Characteristics of the conventional reversible electrode

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】側鎖にチオール基を有するモノマ化合物を
重合して形成した導電性高分子を主体としてなる可逆性
電極。
1. A reversible electrode mainly composed of a conductive polymer formed by polymerizing a monomer compound having a thiol group in its side chain.
【請求項2】導電性高分子の側鎖に導入したチオール基
間で酸化還元反応を行う請求項1記載の可逆性電極
2. The reversible electrode according to claim 1, wherein a redox reaction is carried out between thiol groups introduced into the side chains of the conductive polymer.
JP03136158A 1991-06-07 1991-06-07 Reversible electrode Expired - Fee Related JP3111506B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03136158A JP3111506B2 (en) 1991-06-07 1991-06-07 Reversible electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03136158A JP3111506B2 (en) 1991-06-07 1991-06-07 Reversible electrode

Publications (2)

Publication Number Publication Date
JPH04359866A true JPH04359866A (en) 1992-12-14
JP3111506B2 JP3111506B2 (en) 2000-11-27

Family

ID=15168677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03136158A Expired - Fee Related JP3111506B2 (en) 1991-06-07 1991-06-07 Reversible electrode

Country Status (1)

Country Link
JP (1) JP3111506B2 (en)

Also Published As

Publication number Publication date
JP3111506B2 (en) 2000-11-27

Similar Documents

Publication Publication Date Title
Naoi et al. Electrochemistry of Poly (2, 2′‐dithiodianiline): A New Class of High Energy Conducting Polymer Interconnected with S‒S Bonds
US5324599A (en) Reversible electrode material
US5571292A (en) Method of producing a composite electrode
KR100854837B1 (en) Redox active reversible electrode and secondary battery using the same
US6090504A (en) High capacity composite electrode and secondary cell therefrom
CN101111954A (en) Positive electrode material for lithium secondary cell
US6057056A (en) Composite electrode and secondary battery therefrom
JPH0520874B2 (en)
JP3116451B2 (en) Reversible electrode
JP3257018B2 (en) Battery charge / discharge method
JP2940198B2 (en) Solid electrode composition
JP3089707B2 (en) Solid electrode composition
JP3969906B2 (en) Redox active polymer and electrode using the same
JPH04359866A (en) Reversible electrode
JP3239374B2 (en) Electrode composition
JP3047492B2 (en) Solid electrode composition
JP2955177B2 (en) Composite electrode, method for producing the same, and lithium secondary battery
JPH04264363A (en) Reversible compound electrode
JP3237261B2 (en) Reversible composite electrode and lithium secondary battery using the same
JP3048798B2 (en) Reversible electrode and lithium secondary battery comprising the same
KR20040060835A (en) Redox-active polymer and electrode comprising the same
JPH056708A (en) Reversible electrode
JP2607571B2 (en) Novel conductive polymer and secondary battery using it as cathode material
Gao et al. POLYTHIOPHENE ELECTRODES FOR LITHIUM ION BATTERIES
Beck Design and Materials for Metal-Free Rechargeable Batteries

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080922

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees