JPH04359812A - Ceramic capacitor and its manufacture - Google Patents

Ceramic capacitor and its manufacture

Info

Publication number
JPH04359812A
JPH04359812A JP3161035A JP16103591A JPH04359812A JP H04359812 A JPH04359812 A JP H04359812A JP 3161035 A JP3161035 A JP 3161035A JP 16103591 A JP16103591 A JP 16103591A JP H04359812 A JPH04359812 A JP H04359812A
Authority
JP
Japan
Prior art keywords
mol
composition
sio2
point
li2o
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3161035A
Other languages
Japanese (ja)
Other versions
JP2521857B2 (en
Inventor
Hiroshi Kishi
弘志 岸
Hisamitsu Shizuno
寿光 静野
Shinya Kusumi
真也 久住
Hiroshi Saito
博 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP3161035A priority Critical patent/JP2521857B2/en
Priority to TW081100645A priority patent/TW242191B/zh
Priority to KR1019920007166A priority patent/KR100245448B1/en
Priority to DE69201108T priority patent/DE69201108T2/en
Priority to EP92109455A priority patent/EP0517213B1/en
Priority to US07/894,471 priority patent/US5453409A/en
Publication of JPH04359812A publication Critical patent/JPH04359812A/en
Application granted granted Critical
Publication of JP2521857B2 publication Critical patent/JP2521857B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

PURPOSE:To provide a ceramic capacitor having a dielectric layer of a dielectric ceramic composition which is obtained by sintering at <=1200 deg.C in a non- oxidative atmoshpere and has dielectric constant epsilon>=7000, tandelta <=2.5, and resistivity rho at least 1X10<6>MOMEGA.cm and give its manufacturing method. CONSTITUTION:A composition, is provided, consisting of mainly a basic component {(Ba1-w-xCawMgx)O}k(Ti1-y-zZryRz)O2-z/2 and containing an additive component B2O3-SiO2-Li2O2 in a ratio of 0.2-5 pts.wt. to 100 pts.wt. of the main component is used as a dielectric layer.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、1又は2以上の誘電体
磁器層を少なくとも2以上の内部電極によって各々挟持
させてなる単層または積層構造の磁器コンデンサ及びそ
の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ceramic capacitor having a single-layer or laminated structure in which one or more dielectric ceramic layers are sandwiched between at least two internal electrodes, and a method for manufacturing the same.

【0002】0002

【従来の技術】従来、積層磁器コンデンサを製造する場
合は、誘電体磁器原料粉末から成る未焼結磁器シート(
グリーンシート)に白金又はパラジウム等の貴金属を主
成分とする導電性ペーストを所望パターンで印刷し、こ
の未焼結磁器シートを複数枚積み重ねて圧着し、酸化性
雰囲気中において1300℃〜1600℃で焼成させて
いた。この焼成により、未焼結磁器シートは誘電体磁器
層となり、導電性ペーストは内部電極となるものである
[Prior Art] Conventionally, when manufacturing multilayer ceramic capacitors, unsintered porcelain sheets (
A conductive paste containing noble metals such as platinum or palladium as a main component is printed on a green sheet in a desired pattern, and a plurality of unsintered porcelain sheets are stacked and pressed together and heated at 1300°C to 1600°C in an oxidizing atmosphere. It was fired. By this firing, the unsintered ceramic sheet becomes a dielectric ceramic layer, and the conductive paste becomes an internal electrode.

【0003】そして、このように、導電性ペーストとし
て白金またはパラジウム等の貴金属を主成分とするもの
を使用すれば、酸化性雰囲気中において1300℃〜1
600℃という高温で焼成させても、この導電性ペース
トを酸化させることなく目的とする内部電極を得ること
ができるものである。しかし、白金やパラジウム等の貴
金属は高価であるため、このような積層磁器コンデンサ
を製造すると必然的にコスト高になるという問題があっ
た。
[0003] As described above, if a conductive paste containing a noble metal such as platinum or palladium as a main component is used, the conductive paste can be heated to 1,300°C to 1,300°C in an oxidizing atmosphere.
Even if the conductive paste is fired at a high temperature of 600° C., the intended internal electrode can be obtained without oxidizing the conductive paste. However, since noble metals such as platinum and palladium are expensive, manufacturing such multilayer ceramic capacitors inevitably leads to high costs.

【0004】そこで、上述の問題を解決することができ
るものとして、本件出願人は特公昭60−20851号
公報、特開昭61−147404号公報、特開昭61−
147405号公報、特開昭61−147406号公報
等に開示されている発明を提案した。
[0004] Therefore, in order to solve the above-mentioned problem, the present applicant has proposed Japanese Patent Publication No. 60-20851, Japanese Patent Application Laid-open No. 147404-1982, and Japanese Patent Application Laid-Open No. 61-1989.
The inventions disclosed in Japanese Patent Application Laid-open No. 147405 and Japanese Patent Application Laid-Open No. 147406/1983 were proposed.

【0005】ここで、特公昭60−20851号公報に
は、     {(Bax Cay Srz )O}k (T
in Zr1−n )O2 からなる基本成分と、Li
2 OとSiO2 とMO(但し、MOはBaO,Ca
O及びSrOから選択された1種または2種以上の酸化
物)からなる添加成分とを含む誘電体磁器組成物が開示
されている。
[0005] Here, in Japanese Patent Publication No. 60-20851, {(Bax Cay Srz )O}k (T
A basic component consisting of in Zr1-n)O2 and Li
2 O, SiO2 and MO (however, MO is BaO, Ca
A dielectric ceramic composition containing an additive component consisting of one or more oxides selected from O and SrO is disclosed.

【0006】また、特開昭61−147404号公報に
は、     {(Ba1−x−y Cax Sry )O}
k (Ti1−z Zrz )O2 からなる基本成分
と、B2 O3 とSiO2 とLi2 Oからなる添
加成分とを含む誘電体磁器組成物が開示されている。
[0006] Furthermore, in Japanese Patent Application Laid-open No. 147404/1983, {(Ba1-x-y Cax Sry)O}
A dielectric ceramic composition is disclosed that includes a basic component consisting of k(Ti1-zZrz)O2 and additional components consisting of B2O3, SiO2, and Li2O.

【0007】また、特開昭61−147405号公報に
は、     {(Ba1−x−y Cax Sry )O}
k (Ti1−z Zrz )O2 からなる基本成分
と、B2 O3 とSiO2 からなる添加成分とを含
む誘電体磁器組成物が開示されている。
[0007] Furthermore, in Japanese Patent Application Laid-Open No. 147405/1986, {(Ba1-x-y Cax Sry)O}
A dielectric ceramic composition is disclosed that includes a basic component consisting of k (Ti1-z Zrz )O2 and additional components consisting of B2 O3 and SiO2.

【0008】また、特開昭61−147406号公報に
は、     {(Ba1−x−y Cax Sry )O}
k (Ti1−z Zrz )O2 からなる基本成分
と、B2 O3 とSiO2 とMO(但し、MOはB
aO,CaO及びSrOから選択された1種または2種
以上の酸化物)からなる添加成分とを含む誘電体磁器組
成物が開示されている。
[0008] Furthermore, in Japanese Patent Application Laid-Open No. 147406/1986, {(Ba1-x-y Cax Sry)O}
A basic component consisting of k(Ti1-z Zrz)O2, B2O3, SiO2, and MO (however, MO is B
A dielectric ceramic composition containing an additive component consisting of one or more oxides selected from aO, CaO, and SrO is disclosed.

【0009】これらの公報に開示されている誘電体磁器
組成物は、比誘電率εが5000以上、抵抗率ρが1×
106 MΩ・cm以上であり、これらの誘電体磁器組
成物を誘電体層として使用すれば、Ni等の卑金属を主
成分とする導電性ペーストを内部電極の材料として用い
、還元性雰囲気中における1200℃以下の温度の焼成
で、電気的特性の優れた磁器コンデンサを低コストで得
ることができるものである。
The dielectric ceramic compositions disclosed in these publications have a relative dielectric constant ε of 5000 or more and a resistivity ρ of 1×
106 MΩ・cm or more, and if these dielectric ceramic compositions are used as a dielectric layer, a conductive paste containing a base metal such as Ni as the main component is used as the material for the internal electrode, and the Ceramic capacitors with excellent electrical characteristics can be obtained at low cost by firing at a temperature of 0.degree. C. or lower.

【0010】0010

【発明が解決しようとする課題】ところで、近年におけ
る電子回路の高密度化に伴ない、磁器コンデンサ、特に
積層磁器コンデンサの小型化の要求は非常に強いので、
積層磁器コンデンサの誘電体層を構成する誘電体磁器組
成物の比誘電率εを、他の電気的特性を悪化させること
なく、上記各公報に開示されている誘電体磁器組成物の
比誘電率εよりも更に増大させることが望まれていた。
[Problem to be Solved by the Invention] In recent years, with the increasing density of electronic circuits, there has been a strong demand for smaller ceramic capacitors, especially multilayer ceramic capacitors.
The dielectric constant ε of the dielectric ceramic composition constituting the dielectric layer of the multilayer ceramic capacitor can be adjusted to the dielectric constant ε of the dielectric ceramic composition disclosed in the above publications without deteriorating other electrical properties. It was desired to further increase ε.

【0011】そこで、本発明の目的は、非酸化性雰囲気
中における1200℃以下の温度の焼成で得られるもの
であるにもかかわらず、誘電体層を構成している誘電体
磁器組成物の比誘電率εが7000以上、誘電体損失t
anδが2.5%以下、抵抗率ρが1×106 MΩ・
cm以上と、その電気的特性が従来のものより更に優れ
た磁器コンデンサ及びその製造方法を提供することにあ
る。
Therefore, an object of the present invention is to reduce the ratio of the dielectric ceramic composition constituting the dielectric layer, although it can be obtained by firing at a temperature of 1200° C. or lower in a non-oxidizing atmosphere. Dielectric constant ε is 7000 or more, dielectric loss t
anδ is 2.5% or less, resistivity ρ is 1×106 MΩ・
The object of the present invention is to provide a ceramic capacitor whose electrical characteristics are even better than those of conventional capacitors, and a method for manufacturing the same.

【0012】0012

【課題を解決するための手段】本発明に係る磁器コンデ
ンサは、誘電体磁器組成物からなる1又は2以上の誘電
体磁器層と、この誘電体磁器層を挟持している少なくと
も2以上の内部電極とを備えた磁器コンデンサにおいて
、前記誘電体磁器組成物が、100.0重量部の基本成
分と、0.2〜5.0重量部の添加成分との混合物を焼
成したものからなり、前記基本成分が、{(Ba1−w
−x Caw Mgx )O}k (Ti1−y−z 
Zry Rz )O2−z/2 (但し、Rは、Sc,
Y,Gd,Dy,Ho,Er,Yb,Tb,Tm及びL
uから選択された1種または2種以上の元素、w,x,
y,z,kは、 0.00≦w≦0.27 0.001≦x≦0.03 0.05≦y≦0.26 0.002≦z≦0.04 1.00≦k≦1.04 を満足する数値)で表わされる物質からなり、前記添加
成分がB2 O3 とSiO2 とLi2 Oとからな
り、前記B2 O3 と前記SiO2 と前記Li2 
Oとの組成範囲が、これらの組成をモル%で示す三角図
において、前記B2 O3 が1モル%、前記SiO2
 が50モル%、前記Li2 Oが49モル%の組成を
示す第1の点Aと、前記B2 O3 が50モル%、前
記SiO2 が1モル%、前記Li2 Oが49モル%
の組成を示す第2の点Bと、前記B2 O3 が80モ
ル%、前記SiO2 が1モル%、前記Li2 Oが1
9モル%の組成を示す第3の点Cと、前記B2 O3 
が89モル%、前記SiO2 が10モル%、前記Li
2Oが1モル%の組成を示す第4の点Dと、前記B2 
O3 が19モル%、前記SiO2 が80モル%、前
記Li2 Oが1モル%の組成を示す第5の点Eと、前
記B2 O3 が1モル%、前記SiO2 が80モル
%、前記Li2 Oが19モル%の組成を示す第6の点
Fとをこの順に結ぶ6本の直線で囲まれた領域内にある
ものである。
[Means for Solving the Problems] A ceramic capacitor according to the present invention includes one or more dielectric ceramic layers made of a dielectric ceramic composition, and at least two or more internal layers sandwiching the dielectric ceramic layers. The dielectric ceramic composition is made of a fired mixture of 100.0 parts by weight of a basic component and 0.2 to 5.0 parts by weight of an additive component, and The basic component is {(Ba1-w
-x Caw Mgx )O}k (Ti1-y-z
Zry Rz )O2-z/2 (However, R is Sc,
Y, Gd, Dy, Ho, Er, Yb, Tb, Tm and L
One or more elements selected from u, w, x,
y, z, k are: 0.00≦w≦0.27 0.001≦x≦0.03 0.05≦y≦0.26 0.002≦z≦0.04 1.00≦k≦1 .04), the additive components are B2 O3, SiO2, and Li2 O, and the B2 O3, SiO2, and Li2
In the triangular diagram showing these compositions in mol %, the composition range with O is 1 mol % for the B2 O3 and 1 mol % for the SiO2
A first point A having a composition of 50 mol% of B2 O, 49 mol% of Li2O, 50 mol% of B2O3, 1 mol% of SiO2, and 49 mol% of Li2O.
A second point B showing the composition of
A third point C having a composition of 9 mol% and the B2O3
is 89 mol%, the SiO2 is 10 mol%, and the Li
A fourth point D showing a composition of 1 mol% 2O, and the above B2
A fifth point E has a composition of 19 mol% O3, 80 mol% SiO2, and 1 mol% Li2O, and 1 mol% B2O3, 80 mol% SiO2, and 1 mol% Li2O. It is located within a region surrounded by six straight lines connecting in this order to the sixth point F showing a composition of 19 mol %.

【0013】ここで、基本成分の組成式中におけるCa
の原子数の割合、すなわちwの値の範囲を0.00≦w
≦0.27としたのは、wの値がこの範囲の場合には、
所望の電気的特性を有し、温度特性が平坦で、抵抗率ρ
の高い誘電体磁器組成物を得ることができるが、wの値
が0.27を越えた場合には、焼成温度が1250℃と
高くなり、比誘電率εs も7000未満となるからで
ある。
Here, Ca in the compositional formula of the basic component
The ratio of the number of atoms, that is, the range of the value of w, is 0.00≦w
The reason for setting ≦0.27 is that when the value of w is within this range,
It has the desired electrical characteristics, flat temperature characteristics, and resistivity ρ.
Although it is possible to obtain a dielectric ceramic composition with a high value of w, if the value of w exceeds 0.27, the firing temperature will be as high as 1250° C. and the dielectric constant εs will also be less than 7000.

【0014】なお、このCaは、上述したように磁器コ
ンデンサの温度特性を平坦にし、また抵抗率ρの向上を
図るために添加する元素であるため、あえて含有させな
くても、すなわちwの値を零としても所望の電気的特性
を有する焼結体を得ることができる。従って、wの値の
下限として零の場合を含めた。
[0014] As mentioned above, this Ca is an element added to flatten the temperature characteristics of the ceramic capacitor and to improve the resistivity ρ, so even if it is not intentionally included, the value of w It is possible to obtain a sintered body having desired electrical properties even when the value is zero. Therefore, the case of zero was included as the lower limit of the value of w.

【0015】次に、基本成分の組成式中におけるMgの
原子数の割合、すなわちxの値の範囲を0.001≦x
≦0.03としたのは、xの値がこの範囲の場合には所
望の電気的特性を有する誘電体磁器組成物を得ることが
できるが、xの値が0.03を越えた場合には、誘電体
磁器組成物の比誘電率εs が急激に低下して7000
未満となるからである。
Next, the ratio of the number of Mg atoms in the composition formula of the basic component, that is, the range of the value of x, is set to 0.001≦x
The reason for setting ≦0.03 is that when the value of x is within this range, a dielectric ceramic composition having the desired electrical properties can be obtained, but when the value of x exceeds 0.03, The dielectric constant εs of the dielectric ceramic composition suddenly decreased to 7000.
This is because it is less than

【0016】なお、Mgはキュリー点を低温側にシフト
させるとともに、温度特性を平坦にする作用及び抵抗率
ρを向上させる作用を有するが、xの値が0.03以下
の範囲において極微量であってもそれなりの効果を有す
る。しかし、量産する時の電気的特性のバラツキを考慮
してxの値は0.001以上とすることが望ましい。
[0016] Although Mg has the effect of shifting the Curie point to the lower temperature side, flattening the temperature characteristics, and improving the resistivity ρ, Mg is present in extremely small amounts in the range where the value of x is 0.03 or less. Even if there is, it has some effect. However, in consideration of variations in electrical characteristics during mass production, it is desirable that the value of x be 0.001 or more.

【0017】次に、基本成分の組成式中におけるZrの
原子数の割合、すなわちyの値の範囲を0.05≦y≦
0.26としたのは、yの値がこの範囲の場合には所望
の電気的特性を有する誘電体磁器組成物を得ることがで
きるが、yの値が0.05未満及び0.26を越えた場
合には、誘電体磁器組成物の比誘電率εs が7000
未満となるからである。
Next, the ratio of the number of Zr atoms in the compositional formula of the basic component, that is, the range of the value of y, is set to 0.05≦y≦
The reason for setting 0.26 is that when the value of y is within this range, a dielectric ceramic composition having desired electrical properties can be obtained, but when the value of y is less than 0.05 and 0.26 is If the dielectric constant εs of the dielectric ceramic composition exceeds 7000
This is because it is less than

【0018】また、基本成分の組成式中におけるRの原
子数の割合、すなわちzの値の範囲を0.002≦z≦
0.04としたのは、zの値がこの範囲の場合には所望
の電気的特性を有する誘電体磁器組成物を得ることがで
きるが、0.002未満の場合には、誘電体磁器組成物
の誘電体損失tanδが大幅に悪化し、抵抗率ρも1×
104 MΩ・cm未満となり、また、0.04を越え
た場合には、焼成温度が1250℃であっても緻密な焼
結体を得ることができないからである。
[0018] Furthermore, the ratio of the number of atoms of R in the composition formula of the basic component, that is, the range of the value of z, is set to 0.002≦z≦
The reason why the value of z is set to 0.04 is that when the value of z is within this range, a dielectric ceramic composition having the desired electrical properties can be obtained, but when the value of z is less than 0.002, the dielectric ceramic composition can be obtained. The dielectric loss tan δ of the material deteriorates significantly, and the resistivity ρ also decreases to 1×
This is because if it is less than 104 MΩ·cm and exceeds 0.04, a dense sintered body cannot be obtained even if the firing temperature is 1250°C.

【0019】なお、R成分のSc,Y,Gd,Dy,H
o,Er,Yb,Tb,Tm及びLuはほゞ同様に働き
、これ等から選択された1つを使用しても、または複数
を使用しても同様な結果が得られる。また、基本成分の
組成式中におけるR成分のうちで、Tb,Tm及びLu
は後記する表3中に記載しなかったが、これらも他のR
成分と同様の作用効果を有するものである。
[0019] Note that the R components Sc, Y, Gd, Dy, H
o, Er, Yb, Tb, Tm and Lu work in almost the same way, and the same result can be obtained even if one selected from them or a plurality of them are used. Also, among the R components in the basic component composition formula, Tb, Tm and Lu
are not listed in Table 3 below, but these are also included in other R
It has the same effects as the ingredients.

【0020】基本成分の組成式中における{(Ba1−
w−x Caw Mgx )O}の割合、すなわちkの
値の範囲を1.00≦k≦1.04としたのは、kの値
がこの範囲の場合には所望の電気的特性を有する誘電体
磁器組成物を得ることができるが、1.00未満になっ
た場合には、誘電体磁器組成物の抵抗率ρが1×106
 MΩ・cm未満と大幅に低くなり、またtanδが悪
化し、1.04を越えた場合には、焼成温度が1250
℃であっても緻密な焼結体を得ることができなくなるか
らである。
{(Ba1-
w−x Caw Mgx )O}, that is, the range of the value of k is set to 1.00≦k≦1.04, because when the value of k is within this range, the dielectric has the desired electrical characteristics. However, if the resistivity ρ of the dielectric ceramic composition is less than 1.00, the resistivity ρ of the dielectric ceramic composition is 1×106.
If the tan δ becomes significantly lower than MΩ・cm and exceeds 1.04, the firing temperature should be set to 1250
This is because a dense sintered body cannot be obtained even at ℃.

【0021】なお、基本成分の中には、本発明の目的を
阻害しない範囲で微量のMnO2 (好ましくは0.0
5〜0.1重量%)等の鉱化剤を添加し、焼結性を向上
させてもよい。また、その他の物質を必要に応じて添加
してもよい。また、基本成分を得るための出発原料とし
ては、後述する実施例で示した以外の酸化物を使用して
もよいし、水酸化物またはその他の化合物を使用しても
よい。
[0021] The basic components may contain a trace amount of MnO2 (preferably 0.0
A mineralizing agent such as 5% to 0.1% by weight) may be added to improve sinterability. Further, other substances may be added as necessary. Further, as a starting material for obtaining the basic component, oxides other than those shown in the examples described below, hydroxides, or other compounds may be used.

【0022】次に、添加成分の添加量を、100重量部
の基本成分に対して0.2〜5.0重量部としたのは、
添加成分の添加量がこの範囲の場合には1190〜12
00℃の焼成で所望の電気的特性を有する焼結体を得る
ことができるが、添加成分の添加量が0.2重量部未満
になった場合は焼成温度が1250℃であっても緻密な
焼結体を得ることができないし、また、添加成分の添加
量が5.0重量部を越えた場合は比誘電率εs が70
00未満となるからである。
[0022] Next, the addition amount of the additive component was set to 0.2 to 5.0 parts by weight based on 100 parts by weight of the basic component.
If the amount of the additive component is within this range, 1190 to 12
A sintered body with the desired electrical properties can be obtained by firing at 00°C, but if the amount of additive components is less than 0.2 parts by weight, it will not be dense even if the firing temperature is 1250°C. It is not possible to obtain a sintered body, and if the amount of additive components exceeds 5.0 parts by weight, the dielectric constant εs will be 70.
This is because it becomes less than 00.

【0023】添加成分の組成を、B2 O3 とSiO
2 とLi2 Oとの組成をモル%で示す三角図におい
て、前記した点A〜Fをこの順に結ぶ6本の直線で囲ま
れた範囲内としたのは、添加成分の組成をこの範囲の場
合には所望の電気的特性を有する焼結体を得ることがで
きるが、添加成分の組成がこの範囲を外れた場合は緻密
な焼結体を得ることができないからである。
[0023] The composition of the additive components is B2 O3 and SiO
In the triangular diagram showing the composition of Li2O and Li2O in mol%, the reason why the above-mentioned points A to F are placed within the range surrounded by six straight lines connecting them in this order is because if the composition of the added component is within this range. Although it is possible to obtain a sintered body having desired electrical properties, if the composition of the added components is outside this range, a dense sintered body cannot be obtained.

【0024】次に、本発明に係る磁器コンデンサの製造
方法は、前記の基本成分と添加成分とからなる未焼結の
磁器粉末からなる混合物を調製する工程と、前記混合物
からなる未焼結磁器シートを形成する工程と、前記未焼
結磁器シートを少なくとも2以上の導電性ペースト膜で
挟持させた積層物を形成する工程と、前記積層物を非酸
化性雰囲気中において焼成する工程と、前記焼成を受け
た積層物を酸化性雰囲気中において熱処理する工程とを
備えたものである。
Next, the method for manufacturing a ceramic capacitor according to the present invention includes the steps of preparing a mixture of unsintered porcelain powder consisting of the above-mentioned basic components and additive components, and preparing an unsintered porcelain powder of the above-mentioned mixture. a step of forming a sheet, a step of forming a laminate in which the unsintered porcelain sheet is sandwiched between at least two conductive paste films, a step of firing the laminate in a non-oxidizing atmosphere; The method includes a step of heat-treating the fired laminate in an oxidizing atmosphere.

【0025】ここで、非酸化性雰囲気としては、H2 
やCOなどの還元性雰囲気のみならず、N2 やArな
どの中性雰囲気であってもよい。また、非酸化性雰囲気
中における焼成温度は、電極材料を考慮して種々変更す
ることができる。ニッケルを内部電極とする場合には、
1050℃〜1200℃の範囲でニッケル粒子の凝集を
ほとんど生じさせることなく熱処理することができる。
Here, the non-oxidizing atmosphere is H2
In addition to a reducing atmosphere such as or CO, a neutral atmosphere such as N2 or Ar may be used. Furthermore, the firing temperature in the non-oxidizing atmosphere can be varied in consideration of the electrode material. When using nickel as the internal electrode,
Heat treatment can be performed in the range of 1050°C to 1200°C without causing almost any aggregation of the nickel particles.

【0026】また、酸化性雰囲気中における熱処理の温
度は、非酸化性雰囲気中における焼成温度より低い温度
であればよく、500〜1000℃の範囲が好ましい。 酸化性雰囲気としては、大気雰囲気に限定することなく
、例えば、N2 に数ppmのO2 を混合したような
低酸素濃度の雰囲気から任意の酸素濃度の雰囲気を使用
することができる。どのような温度あるいはどのような
酸素濃度の雰囲気にするかは、電極材料(ニッケル等)
の酸化と誘電体磁器層の酸化とを考慮して種々変更する
必要がある。後述する実施例ではこの熱処理の温度を6
00℃としたが、この温度に限定されるものではない。
The temperature of the heat treatment in an oxidizing atmosphere may be lower than the firing temperature in a non-oxidizing atmosphere, and is preferably in the range of 500 to 1000°C. The oxidizing atmosphere is not limited to the atmospheric atmosphere, and any atmosphere with any oxygen concentration can be used, from a low oxygen concentration atmosphere such as a mixture of several ppm of O2 to N2, for example. The temperature and oxygen concentration of the atmosphere depends on the electrode material (nickel, etc.)
It is necessary to make various changes in consideration of the oxidation of the dielectric ceramic layer and the oxidation of the dielectric ceramic layer. In the examples described later, the temperature of this heat treatment was set to 6.
Although the temperature was set at 00°C, the temperature is not limited to this.

【0027】また、実施例では非酸化性雰囲気中におけ
る熱処理と、酸化性雰囲気中における熱処理を1つの連
続した焼成プロファイルの中で行なっているが、もちろ
ん非酸化性雰囲気中における焼成工程と、酸化性雰囲気
における熱処理工程とを独立した工程に分けて行なうこ
とも可能である。
In addition, in the examples, heat treatment in a non-oxidizing atmosphere and heat treatment in an oxidizing atmosphere are performed in one continuous firing profile, but of course the firing process in a non-oxidizing atmosphere and the heat treatment in an oxidizing atmosphere are It is also possible to carry out the heat treatment step in a neutral atmosphere as separate steps.

【0028】また、実施例では外部電極としてZn電極
を使用しているが、電極の焼付け条件を選択することに
よりNi,Ag,Cu等の電極を用いることができるの
はもちろんであるし、Ni外部電極を未焼成積層体の端
面に塗布して積層体の焼成と外部電極の焼付けを同時に
行なうこともできる。
Furthermore, although a Zn electrode is used as the external electrode in the embodiment, it is of course possible to use an electrode made of Ni, Ag, Cu, etc. by selecting the baking conditions for the electrode. It is also possible to apply the external electrode to the end face of the unfired laminate and to simultaneously perform the firing of the laminate and the external electrode.

【0029】なお、本発明は積層磁器コンデンサ以外の
一般的な単層の磁器コンデンサにも勿論適用可能である
Note that the present invention is of course applicable to general single-layer ceramic capacitors other than multilayer ceramic capacitors.

【0030】[0030]

【実施例】まず、表3■の試料No.1の場合について
説明する。 基本成分の調製 表1に示す化合物を各々秤量し、これらの化合物をポッ
トミルに、複数個のアルミナボール及び2.5リットル
の水とともに入れ、15時間攪拌混合して、混合物を得
た。
[Example] First, sample No. 3 in Table 3. Case 1 will be explained. Preparation of Basic Components The compounds shown in Table 1 were each weighed, and these compounds were placed in a pot mill along with a plurality of alumina balls and 2.5 liters of water, and mixed with stirring for 15 hours to obtain a mixture.

【0031】[0031]

【表1】[Table 1]

【0032】ここで、表1の各化合物の重量(g)は、
前記基本成分の組成式{(Ba1−w−x Caw M
gx )O}k (Ti1−y−z Zry Rz )
O2−z/2 が   {(Ba0.925Ca0.0
7Mg0.005)O}1.01(Ti0.83Zr0
.15Er0.02)O1.99 …(1) となるよ
うに計算して求めた値である。
Here, the weight (g) of each compound in Table 1 is:
Compositional formula of the basic component {(Ba1-w-x Caw M
gx )O}k (Ti1-y-z Zry Rz)
O2-z/2 is {(Ba0.925Ca0.0
7Mg0.005)O}1.01(Ti0.83Zr0
.. 15Er0.02)O1.99 (1) This is the value calculated as follows.

【0033】次に、前記混合物をステンレスポットに入
れ、熱風式乾燥器を用い、150℃で4時間乾燥し、こ
の乾燥した混合物を粗粉砕し、この粗粉砕した混合物を
トンネル炉を用い、大気中において約1200℃で2時
間仮焼し、上記組成式(1) で表わされる組成の基本
成分の粉末を得た。
Next, the mixture was placed in a stainless steel pot and dried at 150° C. for 4 hours using a hot air dryer, and the dried mixture was coarsely ground. The powder was calcined for 2 hours at about 1200° C. to obtain a powder having the basic components represented by the above compositional formula (1).

【0034】添加成分の調製 また、表2に示す化合物を各々秤量し、これらの化合物
をポリエチレンポットに、複数個のアルミナボール及び
300ミリリットルのアルコールとともに加え、10時
間攪拌混合して、混合物を得た。
Preparation of additive components Also, weigh each of the compounds shown in Table 2, add these compounds to a polyethylene pot together with a plurality of alumina balls and 300 ml of alcohol, and stir and mix for 10 hours to obtain a mixture. Ta.

【0035】[0035]

【表2】[Table 2]

【0036】ここで、表2の各化合物の重量(g)は、
B2 O3 が1モル%、SiO2 が50モル%、L
i2 Oが49モル%の組成となるように計算して求め
た値である。
Here, the weight (g) of each compound in Table 2 is:
B2 O3 is 1 mol%, SiO2 is 50 mol%, L
This value was calculated so that the i2O content was 49 mol%.

【0037】次に、前記混合物を大気中において約10
00℃の温度で2時間仮焼し、これをアルミナポットに
複数個のアルミナボール及び300ミリリットルの水と
ともに入れ、15時間粉砕し、その後、150℃で4時
間乾燥させ、前記組成の添加成分の粉末を得た。
Next, the mixture was placed in the atmosphere for about 10 minutes.
This was calcined at a temperature of 00°C for 2 hours, put into an alumina pot together with several alumina balls and 300ml of water, pulverized for 15 hours, and then dried at 150°C for 4 hours to remove the additive components of the above composition. A powder was obtained.

【0038】スラリーの調製 次に、100重量部(1000g)の前記基本成分と、
2重量部(20g)の前記添加成分とをボールミルに入
れ、更に、これらの基本成分と添加成分との合計重量に
対して15重量%の有機バインダーと50重量%の水を
入れ、これらを混合及び粉砕して誘電体磁器組成物の原
料となるスラリーを得た。ここで、有機バインダーとし
ては、アクリル酸エステルポリマー、グリセリン及び縮
合リン酸塩の水溶液からなるものを使用した。
Preparation of slurry Next, 100 parts by weight (1000 g) of the above basic ingredients;
Put 2 parts by weight (20 g) of the above additive components into a ball mill, and further add 15% by weight of an organic binder and 50% by weight of water based on the total weight of these basic components and additive components, and mix these. and pulverized to obtain a slurry that would serve as a raw material for a dielectric ceramic composition. Here, the organic binder used was an aqueous solution of an acrylic ester polymer, glycerin, and condensed phosphate.

【0039】未焼結磁器シートの形成 次に、上記スラリーを真空脱泡機に入れて脱泡処理し、
この脱泡処理したスラリーをポリエステルフィルム上に
リバースコータを用いて所定の厚さで塗布し、この塗布
されたスラリーをこのポリエステルフィルムとともに1
00℃で加熱して乾燥させ、厚さ約25μmの長尺な未
焼結磁器シートを得た。そして、この長尺な未焼結磁器
シートを裁断して10cm角の未焼結磁器シートを得た
Formation of unsintered porcelain sheet Next, the above slurry was put into a vacuum defoaming machine and degassed.
This defoamed slurry is applied onto a polyester film to a predetermined thickness using a reverse coater, and this applied slurry is coated with this polyester film in one coat.
It was dried by heating at 00° C. to obtain a long unsintered porcelain sheet with a thickness of about 25 μm. Then, this long unsintered porcelain sheet was cut to obtain a 10 cm square unsintered porcelain sheet.

【0040】導電性ペーストの調製と印刷また、粒径平
均1.5μmのニッケル粉末10gと、エチルセルロー
ス0.9gをブチルカルビトール9.1gに溶解させた
ものとを攪拌機に入れて10時間攪拌し、内部電極用の
導電性ペーストを得た。そして、前記未焼結磁器シート
の片面にこの導電性ペーストからなるパターン(長さ1
4mm、幅7mm)を50個、スクリーン印刷法によっ
て形成させ、乾燥させた。
Preparation and printing of conductive paste Also, 10 g of nickel powder with an average particle size of 1.5 μm and 0.9 g of ethyl cellulose dissolved in 9.1 g of butyl carbitol were placed in a stirrer and stirred for 10 hours. , a conductive paste for internal electrodes was obtained. A pattern (length 1
4 mm in width and 7 mm in width) were formed by screen printing and dried.

【0041】未焼結磁器シートの積層 次に、この未焼結磁器シートを、導電性ペーストからな
るパターンが形成されている側を上にして2枚積層した
。この積層の際、隣接する上下の未焼結磁器シート間に
おいて、導電性ペーストからなるパターンが長手方向に
半分程ずれるようにした。そして、更に上記のようにし
て積層したものの上下両面に厚さ60μmの未焼結磁器
シートを各々4枚ずつ積層して積層物を得た。
Lamination of unsintered porcelain sheets Next, two of the unsintered porcelain sheets were laminated with the side on which the pattern of conductive paste was formed facing upward. During this lamination, the patterns made of conductive paste were shifted by about half in the longitudinal direction between the upper and lower adjacent unsintered porcelain sheets. Then, four unsintered porcelain sheets each having a thickness of 60 μm were laminated on the upper and lower surfaces of the laminated product as described above to obtain a laminate.

【0042】積層物の圧着と裁断 次に、約50℃の温度下において、この積層物に厚さ方
向から約40トンの荷重を加えて、この積層物を構成し
ている未焼結磁器シート相互を圧着させた。そして、こ
の積層物を格子状に裁断して、50個の積層体チップを
得た。
Pressing and cutting of the laminate Next, at a temperature of about 50° C., a load of about 40 tons was applied from the thickness direction to the unsintered porcelain sheet constituting the laminate. They were pressed together. Then, this laminate was cut into a grid shape to obtain 50 laminate chips.

【0043】積層体チップの焼成 次に、この積層体チップを雰囲気焼成が可能な炉に入れ
、この炉内を大気雰囲気にし、100℃/hの速度で6
00℃まで昇温させ、未焼結磁器シート中の有機バイン
ダーを燃焼除去させた。
Firing of the laminate chip Next, the laminate chip was placed in a furnace capable of firing in an atmosphere, the inside of the furnace was made into an atmospheric atmosphere, and the laminate chip was heated at a rate of 100°C/h for 6 hours.
The temperature was raised to 00°C to burn off the organic binder in the unsintered porcelain sheet.

【0044】その後、炉内の雰囲気を大気雰囲気から還
元雰囲気{H2(2体積%)+N2(98体積%)}に
変え、炉内の温度を600℃から1130℃まで、10
0℃/hの速度で昇温させ、1130℃の温度を3時間
保持し、その後、100℃/hの速度で降温させ、炉内
の雰囲気を大気雰囲気(酸化性雰囲気)に変え、600
℃の温度を30分間保持して酸化処理を行い、その後、
室温まで冷却して積層焼結体チップを得た。
After that, the atmosphere inside the furnace was changed from the atmospheric atmosphere to a reducing atmosphere {H2 (2 volume %) + N2 (98 volume %)}, and the temperature inside the furnace was increased from 600°C to 1130°C for 10 minutes.
The temperature was raised at a rate of 0°C/h, maintained at a temperature of 1130°C for 3 hours, and then lowered at a rate of 100°C/h to change the atmosphere inside the furnace to an atmospheric atmosphere (oxidizing atmosphere).
The oxidation treatment was carried out by maintaining the temperature of ℃ for 30 minutes, and then
The laminated sintered body chips were obtained by cooling to room temperature.

【0045】外部電極の形成 次に、この積層焼結体チップの対向する側面のうちで、
内部電極の端部が露出している側面に一対の外部電極を
形成し、図1に示すような、3層の誘電体磁器層12,
12,12と2層の内部電極14,14とからなる積層
焼結体チップ15の端部に一対の外部電極16,16が
形成された積層磁器コンデンサ10が得られた。
Formation of external electrodes Next, among the opposing sides of this laminated sintered chip,
A pair of external electrodes are formed on the side surfaces where the ends of the internal electrodes are exposed, and a three-layer dielectric ceramic layer 12, as shown in FIG.
A multilayer ceramic capacitor 10 was obtained, in which a pair of external electrodes 16, 16 were formed at the ends of a multilayer sintered chip 15 consisting of internal electrodes 12, 12 and two layers of internal electrodes 14, 14.

【0046】ここで、外部電極16は、前記側面に亜鉛
とガラスフリット(glass frit)とビヒクル
(vehicle) とからなる導電性ペーストを塗布
し、この導電性ペーストを、乾燥後、大気中において5
50℃の温度で15分間焼き付けて亜鉛電極層18とし
、更にこの亜鉛電極層18の上に無電解メッキ法で銅層
20を形成し、更にこの銅層20の上に電気メッキ法で
Pb−Sn半田層22を設けることによって形成した。
Here, the external electrode 16 is formed by applying a conductive paste consisting of zinc, glass frit, and vehicle to the side surface, and drying the conductive paste for 5 minutes in the atmosphere.
A zinc electrode layer 18 is formed by baking at a temperature of 50° C. for 15 minutes, a copper layer 20 is formed on this zinc electrode layer 18 by electroless plating, and Pb- is further formed on this copper layer 20 by electroplating. It was formed by providing a Sn solder layer 22.

【0047】なお、この積層磁器コンデンサ10の誘電
体磁器層12の厚さは0.02mm、一対の内部電極1
4,14の対向面積は5mm×5mm=25mm2 で
ある。また、焼結後の誘電体磁器層12の組成は、焼結
前の基本成分及び添加成分の混合物の組成と実質的に同
じである。
Note that the thickness of the dielectric ceramic layer 12 of this multilayer ceramic capacitor 10 is 0.02 mm, and the
The opposing area of 4 and 14 is 5 mm x 5 mm = 25 mm2. Further, the composition of the dielectric ceramic layer 12 after sintering is substantially the same as the composition of the mixture of basic components and additive components before sintering.

【0048】電気的特性の測定 次に、積層磁器コンデンサ10の電気的特性を測定し、
その平均値を求めたところ、表4■に示すように、比誘
電率εs が15200、tanδが1.4%、抵抗率
ρが3.28×106 MΩ・cmであった。
Measurement of Electrical Characteristics Next, the electrical characteristics of the multilayer ceramic capacitor 10 were measured.
When the average values were determined, as shown in Table 4, the dielectric constant εs was 15,200, the tan δ was 1.4%, and the resistivity ρ was 3.28×10 6 MΩ·cm.

【0049】なお、電気的特性は次の要領で測定した。 (A) 比誘電率εs は、温度20℃、周波数1kH
z、電圧(実効値)1.0Vの条件で静電容量を測定し
、この測定値と、一対の内部電極14,14の対向面積
(25mm2 )と一対の内部電極14,14間の誘電
体磁器層12の厚さ(0.02mm)から計算で求めた
。 (B) 誘電体損失tanδ(%)は、上記した比誘電
率εs の測定の場合と同一の条件で測定した。 (C) 抵抗率ρ(MΩ・cm)は、温度20℃におい
てDC100Vを1分間印加した後に、一対の外部電極
16,16間の抵抗値を測定し、この測定値と寸法とに
基づいて計算で求めた。
[0049] The electrical characteristics were measured in the following manner. (A) The relative permittivity εs is at a temperature of 20°C and a frequency of 1kHz.
z, the capacitance was measured under the conditions of voltage (effective value) 1.0V, and this measured value, the opposing area (25 mm2) of the pair of internal electrodes 14, 14, and the dielectric between the pair of internal electrodes 14, 14. It was calculated from the thickness of the ceramic layer 12 (0.02 mm). (B) The dielectric loss tan δ (%) was measured under the same conditions as in the measurement of the dielectric constant εs described above. (C) Resistivity ρ (MΩ cm) is calculated based on the measured value and dimensions by measuring the resistance value between the pair of external electrodes 16, 16 after applying DC 100 V for 1 minute at a temperature of 20 ° C. I asked for it.

【0050】以上、No.1の試料について述べたが、
No.2〜92の試料についても、基本成分の組成を表
3■〜表3■に示すように変え、添加成分の組成及び焼
成温度を表4■〜表4■に示すように変えた他は、No
.1の試料と全く同一の方法で積層磁器コンデンサを作
成し、同一の方法で電気的特性を測定した。No.1〜
92の試料の焼成温度及び電気的特性は表4■〜表4■
に示す通りとなった。
[0050] Above, No. As mentioned about sample 1,
No. Regarding samples 2 to 92, the compositions of the basic components were changed as shown in Tables 3■ to 3■, and the compositions of additional components and firing temperatures were changed as shown in Tables 4■ to 4■. No
.. A multilayer ceramic capacitor was prepared in exactly the same manner as Sample 1, and its electrical characteristics were measured in the same manner. No. 1~
The firing temperature and electrical characteristics of 92 samples are shown in Tables 4■ to 4■
The result was as shown in .

【0051】[0051]

【表3■】[Table 3■]

【0052】[0052]

【表3■】[Table 3 ■]

【0053】[0053]

【表3■】[Table 3 ■]

【0054】[0054]

【表3■】[Table 3■]

【0055】[0055]

【表3■】[Table 3■]

【0056】[0056]

【表3■】[Table 3 ■]

【0057】[0057]

【表4■】[Table 4 ■]

【0058】[0058]

【表4■】[Table 4 ■]

【0059】[0059]

【表4■】[Table 4 ■]

【0060】表3■〜表3■において、1−w−xの欄
には基本成分の組成式におけるBaの原子数の割合が、
wの欄には基本成分の組成式におけるCaの原子数の割
合が、xの欄には基本成分の組成式におけるMgの原子
数の割合が、1−y−zの欄には基本成分の組成式にお
けるTiの原子数の割合が、yの欄には基本成分の組成
式におけるZrの原子数の割合が示されている。
[0060] In Tables 3■ to 3■, the column 1-w-x indicates the ratio of the number of Ba atoms in the composition formula of the basic component.
The w column shows the ratio of the number of Ca atoms in the composition formula of the basic component, the x column shows the ratio of the number of Mg atoms in the basic component composition formula, and the 1-y-z column shows the ratio of the number of Mg atoms in the basic component composition formula. The ratio of the number of Ti atoms in the compositional formula is shown, and the y column shows the ratio of the number of Zr atoms in the compositional formula of the basic component.

【0061】また、zの欄には基本成分の組成式におけ
るRの原子数の割合が、kの欄には基本成分の組成式に
おける{(Ba1−w−x Caw Mgx )O}の
割合が示されている。zの欄のSc,Y,Gd,Dy,
Ho,Er,Ybは基本成分の組成式中におけるRの内
容を示し、これ等の元素の各欄にはこれ等の元素の原子
数の割合が示され、合計の欄にはこれ等の元素の原子数
の割合の合計値(z値)が示されている。
[0061] Also, the z column shows the ratio of the number of atoms of R in the basic component composition formula, and the k column shows the ratio of {(Ba1-w-x Caw Mgx)O} in the basic component composition formula. It is shown. Sc, Y, Gd, Dy in the z column,
Ho, Er, Yb indicate the content of R in the composition formula of the basic component, each column for these elements shows the ratio of the number of atoms of these elements, and the total column shows the percentage of the number of atoms of these elements. The total value (z value) of the ratio of the number of atoms is shown.

【0062】また、表4■〜表4■において、添加成分
の添加量は基本成分100重量部に対する重量部で示さ
れている。
[0062] In Tables 4 (1) to 4 (4), the amounts of additional components added are shown in parts by weight relative to 100 parts by weight of the basic components.

【0063】また、No.1〜15の試料による実験は
添加成分であるガラスの適正範囲を明らかにし、No.
16〜27の試料による実験は添加成分であるガラスの
添加量の適正範囲を明らかにし、No.28〜39の試
料による実験はCaの原子数の割合であるw値の適正範
囲を明らかにし、No.40〜51の試料による実験は
Mgの原子数の割合であるx値の適正範囲を明らかにし
、No.52〜61の試料による実験はZrの原子数の
割合であるy値の適正範囲を明らかにし、No.62〜
70の試料による実験はRの種類の違いによる影響を明
らかにし、No.71〜82の試料による実験はRの原
子数の割合であるz値の適正範囲を明らかにし、No.
83〜92の試料による実験は{(Ba1−w−x C
aw Mgx )O}の割合であるk値の適正範囲を明
らかにするものである。
[0063] Also, No. Experiments using samples No. 1 to No. 15 clarified the appropriate range of glass as an additive component.
Experiments using samples Nos. 16 to 27 clarified the appropriate range of the amount of glass added, and No. Experiments using samples No. 28 to 39 clarified the appropriate range of the w value, which is the ratio of the number of Ca atoms. Experiments using samples No. 40 to No. 51 clarified the appropriate range of the x value, which is the ratio of the number of Mg atoms. Experiments using samples No. 52 to 61 clarified the appropriate range of the y value, which is the ratio of the number of Zr atoms. 62~
Experiments using 70 samples revealed the effects of different types of R, and No. Experiments using samples No. 71 to 82 clarified the appropriate range of the z value, which is the ratio of the number of R atoms.
The experiments with samples 83 to 92 were conducted with {(Ba1-w-x C
The purpose is to clarify the appropriate range of the k value, which is the ratio of aw Mgx )O}.

【0064】表3■〜表3■及び表4■〜表4■から明
らかなように、本発明に従う試料によれば、非酸化性雰
囲気中における1200℃以下の焼成で、比誘電率εs
 が7000以上、誘電体損失tanδが2.5%以下
、抵抗率ρが1×106 MΩ・cm以上の電気的特性
を有する誘電体磁器組成物を備えた磁器コンデンサを得
ることができるものである。
As is clear from Tables 3■ to 3■ and Tables 4■ to 4■, according to the samples according to the present invention, when fired at 1200°C or less in a non-oxidizing atmosphere, the dielectric constant εs
7000 or more, dielectric loss tan δ is 2.5% or less, and resistivity ρ is 1×10 MΩ·cm or more. .

【0065】これに対し、No.12〜16,21,2
2,27,33,39,45,51,52,56,57
,61,71,76,77,82,83,87,88及
び92の試料によれば、所望の電気的特性を有する磁器
コンデンサを得ることができない。従って、これらのN
o.の試料は本発明の範囲外のものである。
On the other hand, No. 12-16, 21, 2
2, 27, 33, 39, 45, 51, 52, 56, 57
, 61, 71, 76, 77, 82, 83, 87, 88 and 92, it was not possible to obtain a ceramic capacitor having the desired electrical characteristics. Therefore, these N
o. These samples are outside the scope of the present invention.

【0066】次に、本発明に係る磁器コンデンサに用い
られている誘電体磁器組成物の組成の適正範囲について
、表3■〜表3■及び表4■〜表4■に示す実験結果を
参照しながら検討する。
Next, regarding the appropriate range of the composition of the dielectric ceramic composition used in the ceramic capacitor according to the present invention, refer to the experimental results shown in Tables 3■ to 3■ and Tables 4■ to 4■. I will consider it while doing so.

【0067】まず、基本成分の組成式中におけるCaの
原子数の割合、すなわちwの値の適正範囲について検討
する。wの値が、試料No.32及び38に示すように
、0.27の場合には、所望の電気的特性を有する誘電
体磁器組成物焼結体を得ることができるが、試料No.
33及び39に示すように、0.30の場合には、焼成
温度が1250℃と高くなり、比誘電率εs も700
0未満となる。従って、wの上限値は0.27である。
First, the ratio of the number of Ca atoms in the composition formula of the basic components, that is, the appropriate range of the value of w will be discussed. The value of w is sample no. As shown in Sample Nos. 32 and 38, in the case of 0.27, a dielectric ceramic composition sintered body having desired electrical characteristics can be obtained.
33 and 39, in the case of 0.30, the firing temperature is as high as 1250°C, and the dielectric constant εs is also 700°C.
It becomes less than 0. Therefore, the upper limit value of w is 0.27.

【0068】また、Caは温度特性を平坦にする作用及
び抵抗率ρを向上させる作用を有するが、wの値が零で
あっても所望の電気的特性の誘電体磁器組成物を得るこ
とができる。従って、wの下限値は零である。
Further, although Ca has the effect of flattening the temperature characteristics and improving the resistivity ρ, it is not possible to obtain a dielectric ceramic composition with desired electrical characteristics even if the value of w is zero. can. Therefore, the lower limit value of w is zero.

【0069】次に、基本成分の組成式中におけるMgの
原子数の割合、すなわちxの値の適正範囲について検討
する。xの値が、試料No.44及び50に示すように
0.03の場合には、所望の電気的特性を有する誘電体
磁器組成物を得ることができるが、試料No.45及び
51に示すように、0.04の場合には比誘電率εs 
が急激に低下して7000未満となる。従ってxの上限
値は0.03である。
Next, the ratio of the number of Mg atoms in the composition formula of the basic component, ie, the appropriate range of the value of x, will be discussed. The value of x is sample No. As shown in Sample Nos. 44 and 50, when the value is 0.03, a dielectric ceramic composition having desired electrical characteristics can be obtained. 45 and 51, in the case of 0.04, the dielectric constant εs
rapidly decreases to less than 7,000. Therefore, the upper limit of x is 0.03.

【0070】また、Mgはキュリー点を低温側にシフト
させるとともに、温度特性を平坦にする作用及び抵抗率
ρを向上させる作用を有するが、xの値が0.03以下
の範囲において極微量であってもそれなりの効果を有す
る。しかし、量産する時の電気的特性のバラツキを考慮
してxの値は0.001以上とすることが望ましい。
[0070] Furthermore, Mg has the effect of shifting the Curie point to the lower temperature side, flattening the temperature characteristics, and improving the resistivity ρ; Even if there is, it has some effect. However, in consideration of variations in electrical characteristics during mass production, it is desirable that the value of x be 0.001 or more.

【0071】次に、基本成分の組成式中におけるZrの
原子数の割合、すなわちyの値の適正範囲について検討
する。yの値が、試料No.53及び58に示すように
、0.05の場合には、所望の電気的特性を有する誘電
体磁器組成物を得ることができるが、試料No.52及
び57に示すように、0.03の場合には、比誘電率ε
s が7000未満となる。従って、yの値の下限は0
.05である。
Next, the ratio of the number of Zr atoms in the compositional formula of the basic components, that is, the appropriate range of the value of y, will be discussed. The value of y is the sample No. As shown in Sample Nos. 53 and 58, in the case of 0.05, a dielectric ceramic composition having desired electrical characteristics can be obtained; 52 and 57, in the case of 0.03, the dielectric constant ε
s becomes less than 7000. Therefore, the lower limit of the value of y is 0
.. It is 05.

【0072】一方、yの値が、試料No.55及び60
に示すように、0.26の場合には所望の電気的特性の
誘電体磁器組成物を得ることができるが、試料No.5
6及び61に示すように、0.29の場合には比誘電率
εs が7000未満となる。従って、yの値の上限は
0.26である。
On the other hand, the value of y is different from sample No. 55 and 60
As shown in Sample No. 0.26, a dielectric ceramic composition with desired electrical characteristics can be obtained. 5
6 and 61, in the case of 0.29, the dielectric constant εs becomes less than 7000. Therefore, the upper limit of the value of y is 0.26.

【0073】次に、基本成分の組成式中におけるRの原
子数の割合、すなわちzの値の適正範囲について検討す
る。zの値が、試料No.72及び78に示すように、
0.002の場合には所望の電気的特性を有する誘電体
磁器組成物を得ることができるが、試料No.71及び
77に示すように、0.001の場合には、誘電体損失
tanδが大幅に悪化し、抵抗率ρも1×104 MΩ
・cm未満となる。従って、zの下限値は0.002で
ある。
Next, the ratio of the number of R atoms in the composition formula of the basic component, ie, the appropriate range of the value of z, will be discussed. The value of z is the sample no. As shown in 72 and 78,
In the case of sample No. 0.002, a dielectric ceramic composition having desired electrical properties can be obtained. As shown in 71 and 77, in the case of 0.001, the dielectric loss tan δ deteriorates significantly, and the resistivity ρ also decreases to 1 × 104 MΩ.
・Less than cm. Therefore, the lower limit of z is 0.002.

【0074】一方、zの値が、試料No.75及び81
に示すように、0.04の場合には所望の電気的特性を
有する誘電体磁器組成物を得ることができるが、試料N
o.76及び82に示すように、0.06の場合には、
焼成温度が1250℃であっても緻密な焼結体を得るこ
とができない。従って、zの値の上限は0.04である
On the other hand, the value of z is different from sample No. 75 and 81
As shown in FIG.
o. As shown in 76 and 82, in the case of 0.06,
Even if the firing temperature is 1250°C, a dense sintered body cannot be obtained. Therefore, the upper limit of the value of z is 0.04.

【0075】なお、R成分のSc,Y,Dy,Ho,E
r,Ybはほゞ同様に働き、これ等から選択された1つ
を使用しても、または複数を使用しても同様な結果が得
られる。また、R成分のうちで、Tb,Tm及びLuは
表3■〜表3■中に記載しなかったが、これらも他のR
成分と同様の作用効果を有するものである。
[0075] Furthermore, the R component Sc, Y, Dy, Ho, E
r and Yb work in almost the same way, and the same result can be obtained even if one selected from them or a plurality of them are used. In addition, among the R components, Tb, Tm, and Lu are not listed in Tables 3■ to 3■, but these are also included in other R components.
It has the same effects as the ingredients.

【0076】次に、基本成分の組成式中における{(B
a1−w−x Caw Mgx )O}の割合、すなわ
ちkの値の適正範囲について検討する。kの値が、試料
No.84及び89に示すように、1.00の場合には
、所望の電気的特性を有する誘電体磁器組成物を得るこ
とができるが、試料No.83及び88に示すように、
0.99の場合には、抵抗率ρが1×106 MΩ・c
m未満と、大幅に低くなり、tanδが悪化する。従っ
て、kの下限値は1.00である。
Next, {(B
a1-w-x Caw Mgx )O}, that is, the appropriate range of the value of k will be considered. The value of k is the sample no. As shown in Sample Nos. 84 and 89, when the value is 1.00, a dielectric ceramic composition having desired electrical characteristics can be obtained; As shown in 83 and 88,
In the case of 0.99, the resistivity ρ is 1×106 MΩ・c
If it is less than m, tan δ becomes significantly lower and deteriorates. Therefore, the lower limit value of k is 1.00.

【0077】一方、kの値が、試料No.86及び91
に示すように、1.04の場合には所望の電気的特性の
誘電体磁器組成物を得ることができるが、試料No.8
7及び92に示すように、1.05の場合には、緻密な
焼結体を得ることができない。従って、kの上限値は1
.04である。
On the other hand, the value of k is different from sample No. 86 and 91
As shown in Sample No. 1.04, a dielectric ceramic composition with desired electrical characteristics can be obtained. 8
As shown in 7 and 92, when it is 1.05, a dense sintered body cannot be obtained. Therefore, the upper limit of k is 1
.. It is 04.

【0078】次に、添加成分の添加量の適正範囲につい
て検討する。添加成分の添加量が、試料No.17及び
23に示すように、100重量部の基本成分に対して0
.2重量部の場合には、1190〜1200℃の焼成で
所望の電気的特性を有する誘電体磁器組成物を得ること
ができるが、添加成分の添加量が零の場合には、試料N
o.16及び22に示すように、焼成温度が1250℃
であっても緻密な焼結体を得ることができない。従って
、添加成分の添加量の下限値は、100重量部の基本成
分に対して0.2重量部である。
Next, the appropriate range of the amount of additive components to be added will be discussed. The added amount of the additive component is the same as that of sample No. 17 and 23, 0 for 100 parts by weight of the basic component.
.. In the case of 2 parts by weight, a dielectric ceramic composition having the desired electrical properties can be obtained by firing at 1190 to 1200°C, but if the amount of the additive component is zero, Sample N
o. As shown in 16 and 22, the firing temperature is 1250℃
However, it is not possible to obtain a dense sintered body. Therefore, the lower limit of the amount of additive components added is 0.2 parts by weight per 100 parts by weight of the basic components.

【0079】一方、添加成分の添加量が、試料No.2
0及び26に示すように、100重量部の基本成分に対
して5重量部の場合には、所望の電気的特性を有する誘
電体磁器組成物を得ることができるが、添加成分の添加
量が、試料No.21及び27に示すように、100重
量部の基本成分に対して7重量部の場合には、比誘電率
εs が7000未満となる。従って、添加成分の添加
量の上限値は、100重量部の基本成分に対して5重量
部である。
On the other hand, the amount of the additive component added was different from sample No. 2
As shown in 0 and 26, when the amount is 5 parts by weight relative to 100 parts by weight of the basic component, a dielectric ceramic composition having desired electrical properties can be obtained, but the addition amount of the additive component is , Sample No. As shown in 21 and 27, when the amount is 7 parts by weight relative to 100 parts by weight of the basic component, the dielectric constant εs becomes less than 7000. Therefore, the upper limit of the amount of the additive component added is 5 parts by weight per 100 parts by weight of the basic component.

【0080】次に添加成分の好ましい組成範囲について
検討する。添加成分の好ましい組成範囲は、図2に示し
たB2 O3 −SiO2 −Li2 Oの組成比を示
す三角図に基づいて決定することができる。
Next, the preferred composition range of the additive components will be discussed. The preferred composition range of the additive components can be determined based on the triangular diagram showing the composition ratio of B2O3-SiO2-Li2O shown in FIG.

【0081】三角図の第1の点Aは、試料No.1のB
2 O3が1モル%、SiO2 が50モル%、Li2
 Oが49モル%の組成を示し、第2の点Bは、試料N
o.2のB2 O3 が50モル%、SiO2 が1モ
ル%、Li2 Oが49モル%の組成を示し、第3の点
Cは、試料No.3のB2 O3 が80モル%、Si
O2 が1モル%、Li2 Oが19モル%の組成を示
し、第4の点Dは、試料No.4のB2 O3 が89
モル%、SiO2 が10モル%、Li2 Oが1モル
%の組成を示し、第5の点Eは、試料No.5のB2 
O3 が19モル%、SiO2 が80モル%、Li2
Oが1モル%の組成を示し、第6の点Fは、試料No.
6のB2 O3 が1モル%、SiO2 が80モル%
、Li2 Oが19モル%の組成を示す。
The first point A in the triangular diagram is sample No. 1 B
2 O3 is 1 mol%, SiO2 is 50 mol%, Li2
The second point B has a composition of 49 mol% O.
o. Sample No. 2 has a composition of 50 mol % B2 O3, 1 mol % SiO2, and 49 mol % Li2 O, and the third point C is sample No. 2. B2O3 of 3 is 80 mol%, Si
The fourth point D shows a composition of 1 mol% O2 and 19 mol% Li2O. 4 B2 O3 is 89
mol%, SiO2 is 10 mol%, Li2O is 1 mol%, and the fifth point E is sample No. 5 B2
O3 is 19 mol%, SiO2 is 80 mol%, Li2
O shows a composition of 1 mol %, and the sixth point F is sample No.
6 B2 O3 is 1 mol%, SiO2 is 80 mol%
, Li2O shows a composition of 19 mol%.

【0082】本発明の組成範囲に属する試料の添加成分
は、図2に示す三角図の第1〜6の点A〜Fをこの順に
結ぶ6本の直線で囲まれた範囲内となっている。添加成
分の組成をこの範囲内のものとすれば、所望の電気的特
性を有する誘電体磁器組成物を得ることができる。一方
、試料No.12〜15のように、添加成分の組成を本
発明で特定した範囲外とすれば、緻密な焼結体を得るこ
とができない。
[0082] The added components of the sample belonging to the composition range of the present invention are within the range surrounded by six straight lines connecting points A to F of the triangular diagram shown in Fig. 2 in this order. . If the composition of the additive components is within this range, a dielectric ceramic composition having desired electrical properties can be obtained. On the other hand, sample No. If the composition of the additive components is outside the range specified in the present invention, as in Nos. 12 to 15, a dense sintered body cannot be obtained.

【0083】[0083]

【発明の効果】本発明によれば、磁器コンデンサの誘電
体層を構成している誘電体磁器組成物の組成を前述した
ように構成したので、非酸化性雰囲気中における120
0℃以下の焼成であるにもかかわらず、その比誘電率ε
s を7000〜18800と飛躍的に向上させること
ができ、従って、磁器コンデンサの小型大容量化を図る
ことが可能になった。
According to the present invention, the composition of the dielectric ceramic composition constituting the dielectric layer of the ceramic capacitor is configured as described above.
Despite being fired at 0°C or lower, its relative dielectric constant ε
s could be dramatically improved to 7,000 to 18,800, making it possible to make ceramic capacitors smaller and larger in capacity.

【0084】そして、磁器コンデンサの小型大容量化を
図ることができるようになったので、ニッケル等の卑金
属の導電性ペーストを内部電極の形成に用いることと相
まって、磁器コンデンサの低コスト化を図ることが可能
になった。
[0084] Now that it has become possible to make ceramic capacitors smaller and larger in capacity, it is possible to reduce the cost of ceramic capacitors by using a conductive paste of a base metal such as nickel to form the internal electrodes. It became possible.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の実施例に係る積層磁器コンデンサの断
面図である。
FIG. 1 is a sectional view of a multilayer ceramic capacitor according to an embodiment of the present invention.

【図2】添加成分の適正範囲を示す三角図である。FIG. 2 is a triangular diagram showing appropriate ranges of added components.

【符号の説明】[Explanation of symbols]

12  誘電体磁器層 14  内部電極 15  積層焼結体チップ 16  外部電極 18  亜鉛電極層 20  銅層 22  Pb−Sn半田層 12 Dielectric ceramic layer 14 Internal electrode 15 Laminated sintered chip 16 External electrode 18 Zinc electrode layer 20 Copper layer 22 Pb-Sn solder layer

【表3○1】[Table 3○1]

【表3○2】[Table 3○2]

【表3○3】[Table 3○3]

【表3○4】[Table 3○4]

【表3○5】[Table 3○5]

【表3○6】[Table 3○6]

【表4○1】[Table 4○1]

【表4○2】[Table 4○2]

【表4○3】[Table 4○3]

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  誘電体磁器組成物からなる1又は2以
上の誘電体磁器層と、この誘電体磁器層を挟持している
少なくとも2以上の内部電極とを備えた磁器コンデンサ
において、前記誘電体磁器組成物が、100.0重量部
の基本成分と、0.2〜5.0重量部の添加成分との混
合物を焼成したものからなり、前記基本成分が、{(B
a1−w−x Caw Mgx )O}k (Ti1−
y−z Zry Rz )O2−z/2 (但し、Rは
、Sc,Y,Gd,Dy,Ho,Er,Yb,Tb,T
m及びLuから選択された1種または2種以上の元素、
w,x,y,z,kは、 0.00≦w≦0.27 0.001≦x≦0.03 0.05≦y≦0.26 0.002≦z≦0.04 1.00≦k≦1.04 を満足する数値)で表わされる物質からなり、前記添加
成分がB2 O3 とSiO2 とLi2 Oとからな
り、前記B2 O3 と前記SiO2 と前記Li2 
Oとの組成範囲が、これらの組成をモル%で示す三角図
において、前記B2 O3 が1モル%、前記SiO2
 が50モル%、前記Li2 Oが49モル%の組成を
示す第1の点Aと、前記B2 O3 が50モル%、前
記SiO2 が1モル%、前記Li2 Oが49モル%
の組成を示す第2の点Bと、前記B2 O3 が80モ
ル%、前記SiO2 が1モル%、前記Li2 Oが1
9モル%の組成を示す第3の点Cと、前記B2 O3 
が89モル%、前記SiO2 が10モル%、前記Li
2Oが1モル%の組成を示す第4の点Dと、前記B2 
O3 が19モル%、前記SiO2 が80モル%、前
記Li2 Oが1モル%の組成を示す第5の点Eと、前
記B2 O3 が1モル%、前記SiO2 が80モル
%、前記Li2 Oが19モル%の組成を示す第6の点
Fとをこの順に結ぶ6本の直線で囲まれた領域内にある
ことを特徴とする磁器コンデンサ。
1. A ceramic capacitor comprising one or more dielectric ceramic layers made of a dielectric ceramic composition and at least two or more internal electrodes sandwiching the dielectric ceramic layers, wherein the dielectric The porcelain composition is made by firing a mixture of 100.0 parts by weight of a basic component and 0.2 to 5.0 parts by weight of an additive component, and the basic component is {(B
a1-w-x Caw Mgx )O}k (Ti1-
y-z Zry Rz )O2-z/2 (However, R is Sc, Y, Gd, Dy, Ho, Er, Yb, Tb, T
one or more elements selected from m and Lu;
w, x, y, z, k are: 0.00≦w≦0.27 0.001≦x≦0.03 0.05≦y≦0.26 0.002≦z≦0.04 1.00 ≦k≦1.04), the additive components are B2 O3, SiO2, and Li2 O, and the B2 O3, SiO2, and Li2
In the triangular diagram showing these compositions in mol %, the composition range with O is 1 mol % for the B2 O3 and 1 mol % for the SiO2
A first point A having a composition of 50 mol% of B2 O, 49 mol% of Li2O, 50 mol% of B2O3, 1 mol% of SiO2, and 49 mol% of Li2O.
A second point B showing the composition of
A third point C having a composition of 9 mol% and the B2O3
is 89 mol%, the SiO2 is 10 mol%, and the Li
A fourth point D showing a composition of 1 mol% 2O, and the above B2
A fifth point E has a composition of 19 mol% O3, 80 mol% SiO2, and 1 mol% Li2O, and 1 mol% B2O3, 80 mol% SiO2, and 1 mol% Li2O. A ceramic capacitor characterized in that the capacitor is located within a region surrounded by six straight lines connecting in this order a sixth point F having a composition of 19 mol%.
【請求項2】  未焼結の磁器粉末からなる混合物を調
製する工程と、前記混合物からなる未焼結磁器シートを
形成する工程と、前記未焼結磁器シートを少なくとも2
以上の導電性ペースト膜で挟持させた積層物を形成する
工程と、前記積層物を非酸化性雰囲気中において焼成す
る工程と、前記焼成を受けた積層物を酸化性雰囲気中に
おいて熱処理する工程とを備え、前記未焼結の磁器粉末
からなる混合物が、100.0重量部の基本成分と、0
.2〜5.0重量部の添加成分とからなり、前記基本成
分が、 {(Ba1−w−x Caw Mgx )O}k (T
i1−y−z Zry Rz )O2−z/2 (但し
、Rは、Sc,Y,Gd,Dy,Ho,Er,Yb,T
b,Tm及びLuから選択された1種または2種以上の
元素、w,x,y,z,kは、 0.00≦w≦0.27 0.001≦x≦0.03 0.05≦y≦0.26 0.002≦z≦0.04 1.00≦k≦1.04 を満足する数値)で表わされる物質からなり、前記添加
成分がB2 O3 とSiO2 とLi2 Oとからな
り、前記B2 O3 と前記SiO2 と前記Li2 
Oとの組成範囲が、これらの組成をモル%で示す三角図
において、前記B2 O3 が1モル%、前記SiO2
 が50モル%、前記Li2 Oが49モル%の組成を
示す第1の点Aと、前記B2 O3 が50モル%、前
記SiO2 が1モル%、前記Li2 Oが49モル%
の組成を示す第2の点Bと、前記B2 O3 が80モ
ル%、前記SiO2 が1モル%、前記Li2 Oが1
9モル%の組成を示す第3の点Cと、前記B2 O3 
が89モル%、前記SiO2 が10モル%、前記Li
2Oが1モル%の組成を示す第4の点Dと、前記B2 
O3 が19モル%、前記SiO2 が80モル%、前
記Li2 Oが1モル%の組成を示す第5の点Eと、前
記B2 O3 が1モル%、前記SiO2 が80モル
%、前記Li2 Oが19モル%の組成を示す第6の点
Fとをこの順に結ぶ6本の直線で囲まれた領域内にある
ことを特徴とする磁器コンデンサの製造方法。
2. A step of preparing a mixture consisting of unsintered porcelain powder, a step of forming an unsintered porcelain sheet consisting of the mixture, and a step of preparing the unsintered porcelain sheet at least twice.
a step of forming a laminate sandwiched between the conductive paste films, a step of firing the laminate in a non-oxidizing atmosphere, and a step of heat-treating the fired laminate in an oxidizing atmosphere. , the mixture consisting of the unsintered porcelain powder contains 100.0 parts by weight of the basic component and 0.0 parts by weight of the base component;
.. 2 to 5.0 parts by weight of additional components, and the basic component is {(Ba1-w-x Caw Mgx )O}k (T
i1-y-z Zry Rz )O2-z/2 (However, R is Sc, Y, Gd, Dy, Ho, Er, Yb, T
One or more elements selected from b, Tm and Lu, w, x, y, z, k are: 0.00≦w≦0.27 0.001≦x≦0.03 0.05 ≦y≦0.26 0.002≦z≦0.04 1.00≦k≦1.04), and the additive components are B2 O3, SiO2, and Li2 O. , the B2 O3, the SiO2, and the Li2
In the triangular diagram showing these compositions in mol %, the composition range with O is 1 mol % for the B2 O3 and 1 mol % for the SiO2
A first point A having a composition of 50 mol% of B2 O, 49 mol% of Li2O, 50 mol% of B2O3, 1 mol% of SiO2, and 49 mol% of Li2O.
A second point B showing the composition of
A third point C having a composition of 9 mol% and the B2O3
is 89 mol%, the SiO2 is 10 mol%, and the Li
A fourth point D showing a composition of 1 mol% 2O, and the above B2
A fifth point E has a composition of 19 mol% O3, 80 mol% SiO2, and 1 mol% Li2O, and 1 mol% B2O3, 80 mol% SiO2, and 1 mol% Li2O. A method for producing a ceramic capacitor, characterized in that the capacitor is located within an area surrounded by six straight lines connecting in this order a sixth point F having a composition of 19 mol%.
JP3161035A 1991-06-05 1991-06-05 Porcelain capacitor and method of manufacturing the same Expired - Fee Related JP2521857B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP3161035A JP2521857B2 (en) 1991-06-05 1991-06-05 Porcelain capacitor and method of manufacturing the same
TW081100645A TW242191B (en) 1991-06-05 1992-01-29
KR1019920007166A KR100245448B1 (en) 1991-06-05 1992-04-28 Ceramic capacitor and method for fabricating the same
DE69201108T DE69201108T2 (en) 1991-06-05 1992-06-04 Ceramic capacitor and its manufacturing process.
EP92109455A EP0517213B1 (en) 1991-06-05 1992-06-04 Ceramic capacitor and method for fabricating the same
US07/894,471 US5453409A (en) 1991-06-05 1992-06-05 Ceramic capacitor and method for fabricating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3161035A JP2521857B2 (en) 1991-06-05 1991-06-05 Porcelain capacitor and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH04359812A true JPH04359812A (en) 1992-12-14
JP2521857B2 JP2521857B2 (en) 1996-08-07

Family

ID=15727361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3161035A Expired - Fee Related JP2521857B2 (en) 1991-06-05 1991-06-05 Porcelain capacitor and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2521857B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6291380B1 (en) 1999-03-15 2001-09-18 Rohm Co., Ltd. Dielectric ceramic and capacitor using the same

Also Published As

Publication number Publication date
JP2521857B2 (en) 1996-08-07

Similar Documents

Publication Publication Date Title
KR100245448B1 (en) Ceramic capacitor and method for fabricating the same
JP3269910B2 (en) Porcelain capacitor and method of manufacturing the same
JP2736397B2 (en) Porcelain capacitor and method of manufacturing the same
JP2761690B2 (en) Porcelain capacitor and method of manufacturing the same
JP2843736B2 (en) Porcelain capacitor and method of manufacturing the same
JP2736396B2 (en) Porcelain capacitor and method of manufacturing the same
JP3269903B2 (en) Porcelain capacitor and method of manufacturing the same
JP2521856B2 (en) Porcelain capacitor and method of manufacturing the same
JP3269902B2 (en) Porcelain capacitor and method of manufacturing the same
JP2843733B2 (en) Porcelain capacitor and method of manufacturing the same
JP3269908B2 (en) Porcelain capacitor and method of manufacturing the same
JP2831894B2 (en) Porcelain capacitor and method of manufacturing the same
JP2761689B2 (en) Porcelain capacitor and method of manufacturing the same
JP2779293B2 (en) Porcelain capacitor and method of manufacturing the same
JP3269907B2 (en) Porcelain capacitor and method of manufacturing the same
JPH04359812A (en) Ceramic capacitor and its manufacture
JP3269909B2 (en) Porcelain capacitor and method of manufacturing the same
JPH04359813A (en) Ceramic capacitor and its manufacture
JP3029502B2 (en) Porcelain capacitor and method of manufacturing the same
JP2779294B2 (en) Porcelain capacitor and method of manufacturing the same
JPH0425007A (en) Porcelain capacitor and manufacturing method thereof
JP2938671B2 (en) Porcelain capacitor and method of manufacturing the same
JP2879867B2 (en) Porcelain capacitor and method of manufacturing the same
JP3269989B2 (en) Porcelain capacitor and method of manufacturing the same
JP2938673B2 (en) Porcelain capacitor and method of manufacturing the same

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960123

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090531

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100531

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100531

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110531

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees