JP2761690B2 - Porcelain capacitor and method of manufacturing the same - Google Patents

Porcelain capacitor and method of manufacturing the same

Info

Publication number
JP2761690B2
JP2761690B2 JP4054387A JP5438792A JP2761690B2 JP 2761690 B2 JP2761690 B2 JP 2761690B2 JP 4054387 A JP4054387 A JP 4054387A JP 5438792 A JP5438792 A JP 5438792A JP 2761690 B2 JP2761690 B2 JP 2761690B2
Authority
JP
Japan
Prior art keywords
mol
composition
sio
point
porcelain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4054387A
Other languages
Japanese (ja)
Other versions
JPH05217795A (en
Inventor
寿光 静野
斎藤  博
真也 久住
弘志 岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP4054387A priority Critical patent/JP2761690B2/en
Publication of JPH05217795A publication Critical patent/JPH05217795A/en
Application granted granted Critical
Publication of JP2761690B2 publication Critical patent/JP2761690B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、1又は2以上の誘電体
磁器層を内部電極によって各々挟持させてなる単層また
は積層構造の磁器コンデンサ及びその製造方法に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ceramic capacitor having a single-layer or multilayer structure in which one or more dielectric ceramic layers are sandwiched by internal electrodes, and a method of manufacturing the same.

【0002】[0002]

【従来の技術】従来、積層磁器コンデンサは、誘電体磁
器原料粉末からなる未焼結磁器シート(グリーンシー
ト)に白金又はパラジウム等の貴金属を主成分とする導
電性ペーストを所望パターンで印刷し、この未焼結磁器
シートを複数枚積み重ねて圧着し、酸化性雰囲気中にお
いて1300℃〜1600℃で焼成させて製造されてい
る。
2. Description of the Related Art Conventionally, a laminated ceramic capacitor is formed by printing a conductive paste mainly composed of a noble metal such as platinum or palladium in a desired pattern on an unsintered ceramic sheet (green sheet) made of a dielectric ceramic raw material powder. A plurality of such unsintered porcelain sheets are stacked and pressed, and fired at 1300 ° C. to 1600 ° C. in an oxidizing atmosphere.

【0003】ここで、導電性ペーストとして白金又はパ
ラジウム等の貴金属を主成分とするものを使用している
のは、導電性ペーストとして白金又はパラジウム等の貴
金属を主成分とするものを使用すれば、積層磁器コンデ
ンサを酸化性雰囲気中において1300℃〜1600℃
という高温で焼成させても導電性ペーストが酸化せず、
所望の内部電極が得られるからである。しかし、白金又
はパラジウム等の貴金属は高価な材料であるので、従来
の積層磁器コンデンサはコスト高になるという問題があ
った。
Here, the reason why the conductive paste mainly containing a noble metal such as platinum or palladium is used is that the conductive paste mainly containing a noble metal such as platinum or palladium is used. The laminated ceramic capacitor is placed in an oxidizing atmosphere at 1300 ° C. to 1600 ° C.
The conductive paste does not oxidize even if it is fired at such a high temperature,
This is because a desired internal electrode can be obtained. However, since noble metals such as platinum and palladium are expensive materials, there has been a problem that the cost of the conventional laminated ceramic capacitor is high.

【0004】この問題を解決することができるものとし
て、本件出願人に係わる特公昭60−20851号公報
には、{(BaxCaySrz)O}k(TinZr1-n)O2 からなる基本成分
と、Li2 OとSiO2 とMO(但し、MOはBaO,
CaO及びSrOから選択された1種または2種以上の
酸化物)からなる添加成分とを含む誘電体磁器組成物が
開示されている。
As a device capable of solving this problem, Japanese Patent Publication No. 60-20851 to the present applicant discloses {(Ba x Ca y Sr z ) O} k (Ti n Zr 1-n ) O. 2 and Li 2 O, SiO 2 and MO (where MO is BaO,
A dielectric porcelain composition comprising an additional component comprising one or more oxides selected from CaO and SrO) is disclosed.

【0005】また、特開昭61−147404号公報に
は、{(Ba1-x-yCaxSry)O}k(Ti1-zZrz)O2 からなる基本成
分と、B23 とSiO2 とLi2 Oからなる添加成分
とを含む誘電体磁器組成物が開示されている。
Japanese Patent Application Laid-Open No. 61-147404 discloses a basic component consisting of {(Ba 1-xy Ca x S r y ) O} k (Ti 1-z Zr z ) O 2 and B 2 O 3 There is disclosed a dielectric porcelain composition comprising: and an additive component composed of SiO 2 and Li 2 O.

【0006】また、特開昭61−147405号公報に
は、{(Ba1-x-yCaxSry)O}k(Ti1-zZrz)O2 からなる基本成
分と、B23 とSiO2 からなる添加成分とを含む誘
電体磁器組成物が開示されている。
Japanese Patent Application Laid-Open No. 61-147405 discloses a basic component consisting of {(Ba 1 -xy Ca x S r y ) O} k (Ti 1 -z Zr z ) O 2 and B 2 O 3 A dielectric porcelain composition comprising: and an additive component comprising SiO 2 is disclosed.

【0007】また、特開昭61−147406号公報に
は、{(Ba1-x-yCaxSry)O}K(Ti1-zZrz)O2 からなる基本成
分と、B23 とSiO2 とMO(但し、MOはBa
O,CaO及びSrOから選択された1種または2種以
上の酸化物)からなる添加成分とを含む誘電体磁器組成
物が開示されている。
Japanese Patent Application Laid-Open No. 61-147406 discloses a basic component comprising {(Ba 1-xy Ca x S r y ) O} K (Ti 1-z Zr z ) O 2 and B 2 O 3 And SiO 2 and MO (where MO is Ba
A dielectric porcelain composition comprising an additional component comprising one or more oxides selected from O, CaO and SrO) is disclosed.

【0008】これらの各公報に開示されている誘電体磁
器組成物は、還元性雰囲気中における1200℃以下の
比較的低い温度の焼成で得ることができるものである
が、その比誘電率εは5000以上、抵抗率ρは1×1
6 MΩ・cm以上である。
The dielectric porcelain compositions disclosed in these publications can be obtained by firing at a relatively low temperature of 1200 ° C. or less in a reducing atmosphere. 5000 or more, resistivity ρ is 1 × 1
0 6 MΩ · cm or more.

【0009】[0009]

【発明が解決しようとする課題】ところで、近年におけ
る電子回路の高密度化への進展は著しく、積層磁器コン
デンサの小型化に対する要求は非常に強いとともに、積
層磁器コンデンサが自動車等の電装用として使用される
ことから、積層磁器コンデンサの高温での信頼性に対す
る要求も非常に強い。
In recent years, there has been a remarkable progress in increasing the density of electronic circuits, and there has been an extremely strong demand for miniaturization of multilayer ceramic capacitors, and multilayer ceramic capacitors have been used for electrical equipment in automobiles and the like. Therefore, there is also a very strong demand for high-temperature reliability of the laminated ceramic capacitor.

【0010】このため、積層磁器コンデンサの誘電体層
を構成する誘電体磁器組成物の比誘電率εと、高温CR
積を、他の電気的特性を悪化させることなく、上記各公
報に開示されている誘電体磁器組成物よりも更に良好な
らしめた磁器コンデンサの開発が望まれていた。
Therefore, the relative permittivity ε of the dielectric ceramic composition constituting the dielectric layer of the multilayer ceramic capacitor and the high temperature CR
It has been desired to develop a porcelain capacitor having a better product than the dielectric porcelain compositions disclosed in the above publications without deteriorating other electrical characteristics.

【0011】そこで、本発明の目的は、非酸化性雰囲気
中における1200℃以下の温度の焼成で得られるもの
であるにもかかわらず、誘電体層を構成している誘電体
磁器組成物の比誘電率εが7000以上、誘電体損失t
anδが2.5%以下、抵抗率ρが1×106 MΩ・c
m以上、150℃下におけるCR積が1000F・Ω以
上と、その電気的特性が従来のものより更に優れた磁器
コンデンサ及びその製造方法を提供することにある。
Therefore, an object of the present invention is to obtain a dielectric ceramic composition comprising a dielectric layer, which is obtained by firing at a temperature of 1200 ° C. or lower in a non-oxidizing atmosphere. Dielectric constant ε of 7000 or more, dielectric loss t
an δ is 2.5% or less and resistivity ρ is 1 × 10 6 MΩ · c
An object of the present invention is to provide a porcelain capacitor having a CR product at a temperature of not less than m and at 150 ° C. of not less than 1000 F · Ω and an electrical property more excellent than that of a conventional capacitor, and a method of manufacturing the same.

【0012】[0012]

【課題を解決するための手段】本発明に係る磁器コンデ
ンサは、誘電体磁器組成物からなる1又は2以上の誘電
体磁器層と、この誘電体磁器層を挟持している2以上の
内部電極とを備えた磁器コンデンサにおいて、前記誘電
体磁器組成物が、100.0重量部の基本成分と、0.
2〜5.0重量部の添加成分との混合物を焼成したもの
からなり、前記基本成分が、 (1-α) {(Ba1-w-xCawSrx)O}k(Ti1-yZry)O2 +α(R1-zR′Z)O3/2 (但し、Rは、La,Ce,Pr,Nd,Pm,Sm及
びEuから選択された1種または2種以上の元素、R′
は、Sc,Y,Gd,Dy,Ho,Er,Yb,Tb,
Tm及びLuから選択された1種または2種以上の元
素、α,w,x,y,z,kは、 0.002≦α≦0.04 0≦w≦0.27 0<x≦0.37 0<y<0.26 0.05≦0.6x+y≦0.26 0.5≦z≦0.9 1.00≦k≦1.04 を満足する数値)であり、前記添加成分がB23 とS
iO2 とMO(但し、MOはBaO,SrO,CaO,
MgO及びZnOから選択された1種または2種以上の
酸化物)からなり、前記B23 と前記SiO2 と前記
MOとの組成範囲が、これらの組成をモル%で示す三角
図において、前記B23 が1モル%、前記SiO2
80モル%、前記MOが19モル%の組成を示す第1の
点Aと、前記B23 が1モル%、前記SiO2 が39
モル%、前記MOが60モル%の組成を示す第2の点B
と、前記B23 が30モル%、前記SiO2 が0モル
%、前記MOが70モル%の組成を示す第3の点Cと、
前記B23 が90モル%、前記SiO2 が0モル%、
前記MOが10モル%の組成を示す第4の点Dと、前記
23 が90モル%、前記SiO2 が10モル%、前
記MOが0モル%の組成を示す第5の点Eと、前記B2
3 が20モル%、前記SiO2 が80モル%、前記M
Oが0モル%の組成を示す第6の点Fとをこの順に結ぶ
6本の直線で囲まれた領域内にあるものである。
According to the present invention, there is provided a ceramic capacitor comprising one or more dielectric ceramic layers made of a dielectric ceramic composition, and two or more internal electrodes sandwiching the dielectric ceramic layers. And a dielectric ceramic composition comprising: 100.0 parts by weight of a basic component;
2 to 5.0 parts by weight of a mixture with an additive component, wherein the basic component is (1-α) {(Ba 1-wx C aw Sr x ) O} k (Ti 1-y Zr y ) O 2 + α (R 1 -z R ′ Z ) O 3/2 (where R is one or more elements selected from La, Ce, Pr, Nd, Pm, Sm and Eu; R '
Are Sc, Y, Gd, Dy, Ho, Er, Yb, Tb,
One or two or more elements selected from Tm and Lu, α, w, x, y, z, and k are: 0.002 ≦ α ≦ 0.040 0 ≦ w ≦ 0.27 0 <x ≦ 0 .37 0 <y <0.26 0.05 ≦ 0.6x + y ≦ 0.26 0.5 ≦ z ≦ 0.9 1.00 ≦ k ≦ 1.04), and the additive component is B 2 O 3 and S
iO 2 and MO (where MO is BaO, SrO, CaO,
In a triangular diagram showing the composition range of the B 2 O 3 , the SiO 2, and the MO in terms of mol%, A first point A having a composition of 1 mol% of B 2 O 3, 80 mol% of SiO 2 and 19 mol% of MO, 1 mol% of B 2 O 3 and 39 mol of SiO 2
Mol%, said second point B having a composition of said MO of 60 mol%.
And a third point C having a composition of 30 mol% of B 2 O 3, 0 mol% of SiO 2, and 70 mol% of MO,
90 mol% of the B 2 O 3, 0 mol% of the SiO 2 ,
A fourth point D indicating the composition of the MO of 10 mol%, and a fifth point E indicating the composition of the B 2 O 3 of 90 mol%, the SiO 2 of 10 mol%, and the MO of 0 mol%. And the B 2
O 3 is 20 mol%, SiO 2 is 80 mol%, and M is
This is in a region surrounded by six straight lines connecting the sixth point F indicating the composition of 0 mol% with O in this order.

【0013】ここで、基本成分の組成中における(R
1-zR′Z)O3/2の割合、すなわちαの値を0.002≦α
≦0.04の範囲としたのは、αの値が0.002≦α
≦0.04の場合には、所望の電気特性のものを得るこ
とができるが、0.002未満になった場合には、ta
nδが大幅に悪化し、抵抗率ρが1×103 MΩ・cm
未満となり、0.04を越えた場合には、焼成温度が1
250℃であっても緻密な焼結体を得ることができない
からである。
Here, (R) in the composition of the basic component
1-z R ′ Z ) O 3/2 ratio, that is, the value of α is 0.002 ≦ α
≦ 0.04 because the value of α is 0.002 ≦ α
In the case of ≦ 0.04, desired electrical characteristics can be obtained, but in the case of less than 0.002, ta
nδ is greatly deteriorated and resistivity ρ is 1 × 10 3 MΩ · cm
If it exceeds 0.04, the firing temperature is 1
This is because a dense sintered body cannot be obtained even at 250 ° C.

【0014】基本成分の組成式中におけるCaの原子数
の割合、すなわちwの値を0≦w≦0.27としたの
は、wの値が、0≦w≦0.27の場合には、所望の電
気的特性を有するとともに、温度特性が平坦で、抵抗率
ρの高い焼結体を得ることができるが、0.27を越え
た場合には、緻密な焼結体を得るための焼成温度が12
50℃と高くなり、比誘電率εs も7000未満となる
からである。
The ratio of the number of atoms of Ca in the composition formula of the basic component, that is, the value of w is set to 0 ≦ w ≦ 0.27, when the value of w is 0 ≦ w ≦ 0.27. It is possible to obtain a sintered body having desired electrical characteristics, a flat temperature characteristic, and a high resistivity ρ, but if it exceeds 0.27, it is necessary to obtain a dense sintered body. Firing temperature is 12
As high as 50 ° C., relative dielectric constant epsilon s is because less than 7000.

【0015】なお、このCaは、上述したように磁器コ
ンデンサの温度特性を平坦にし、また抵抗率ρの向上を
図るために使用する元素であるため、あえて含有させな
くても、すなわちwの値を零としても所望の電気的特性
を有する焼結体を得ることはできる。
Since Ca is an element used for flattening the temperature characteristics of the ceramic capacitor and improving the resistivity ρ as described above, even if it is not intentionally contained, ie, the value of w, Even if the value is set to zero, a sintered body having desired electrical characteristics can be obtained.

【0016】また、関係式0.6x+yの値を0.05
≦0.6x+y≦0.26としたのは、関係式0.6x
+yの値がこの範囲にある場合は、所望の電気的特性を
有する焼結体を得ることができるが、関係式0.6x+
yの値が0.05未満となったり、0.26を越えたり
した場合は、いずれも比誘電率εs が7000未満とな
るからである。
The value of the relational expression 0.6x + y is set to 0.05
≦ 0.6x + y ≦ 0.26 is based on the relational expression 0.6x
When the value of + y is in this range, a sintered body having desired electrical characteristics can be obtained, but the relational expression 0.6x +
or value is less than 0.05 of y, if you or exceeds 0.26, because both the dielectric constant epsilon s is less than 7000.

【0017】ここで、関係式0.6x+yの値について
範囲を定めたのは、x,yで割合が示されるSr,Zr
はいずれもキュリー点を低温側にシフトさせる元素であ
り、全体として考慮する必要があるからである。但し、
Srのシフターとしての特性はZrを1とした場合に3
/5(=0.6)であるので、xには係数0.6を掛け
て補正した。
Here, the range of the value of the relational expression 0.6x + y is determined because Sr and Zr whose ratios are indicated by x and y.
Is an element that shifts the Curie point to a lower temperature side and must be considered as a whole. However,
The characteristic of Sr as a shifter is 3 when Zr is 1.
Since / 5 (= 0.6), x was corrected by multiplying by a coefficient 0.6.

【0018】なお、関係式0.6x+yの値が0.26
以下であっても、xの値が0.37を越えると、比誘電
率εs が7000未満となる。従って、関係式0.6x
+yの上限値は0.26であるが、同時に、xの上限値
は0.37としなければならない。このため、Sr,Z
rの割合は、0<x≦0.37及び0<y<0.26を
満足する範囲で、且つ、0.05≦0.6x+y≦0.
26を満足させる範囲としなければならない。
The value of the relational expression 0.6x + y is 0.26.
If the value of x exceeds 0.37, the relative permittivity ε s becomes less than 7000, even if the value is less than or equal to below. Therefore, the relational expression 0.6x
The upper limit of + y is 0.26, but at the same time the upper limit of x must be 0.37. Therefore, Sr, Z
The ratio of r is within a range satisfying 0 <x ≦ 0.37 and 0 <y <0.26, and 0.05 ≦ 0.6x + y ≦ 0.
26 must be satisfied.

【0019】また、基本成分の組成式中におけるR′の
原子数の割合、すなわちzの値を0.5≦z≦0.9と
したのは、zの値が、0.5≦z≦0.9の場合には所
望の電気的特性を有する焼結体を得ることができるが、
0.5未満になった場合、もしくは、0.9を越えた場
合には、高温CR積が1000F・Ωを割ってしまい、
所望の電気特性を得ることができないからである。
Further, the ratio of the number of atoms of R 'in the composition formula of the basic component, that is, the value of z is set to be 0.5 ≦ z ≦ 0.9, is that the value of z is 0.5 ≦ z ≦ In the case of 0.9, a sintered body having desired electric characteristics can be obtained,
If the value is less than 0.5 or exceeds 0.9, the high temperature CR product will be less than 1000 F · Ω,
This is because desired electrical characteristics cannot be obtained.

【0020】なお、R成分のLa,Ce,Pr,Nd,
Pm,Sm及びEuはほゞ同様に働き、これ等から選択
された1つを使用しても、または複数を使用しても同様
な結果が得られる。またR′成分のSc,Y,Gd,D
y,Ho,Er,Yb,Tb,Tm及びLuもほゞ同様
に働くので、これ等から選択された1つを使用しても、
または複数を使用しても同様な結果が得られる。
The R components La, Ce, Pr, Nd,
Pm, Sm, and Eu work in much the same way, and similar results are obtained using one or a plurality of them. Also, Sc, Y, Gd, D of the R 'component
Since y, Ho, Er, Yb, Tb, Tm and Lu work almost in the same way, even if one selected from these is used,
Alternatively, similar results can be obtained by using a plurality.

【0021】基本成分の組成式中における{(Ba1-w-xCaw
Srx)O}の割合、すなわちkの値を1.00≦k≦1.0
4としたのは、kの値が、1.00≦k≦1.04の場
合には、所望の電気的特性を有する焼結体を得ることが
できるが、1.00未満になった場合には、誘電体損失
tanδが大幅に悪化し、抵抗率ρが1×106 MΩ・
cm未満になり、高温CR積が大幅に悪化し、1.04
を越えた場合には、1250℃の焼成でも緻密な焼結体
を得ることができないからである。
In the composition formula of the basic component, {(Ba 1-wx Ca w
Sr x ) O}, that is, the value of k is 1.00 ≦ k ≦ 1.0
The reason for setting the value to 4 is that when the value of k is 1.00 ≦ k ≦ 1.04, a sintered body having desired electric characteristics can be obtained, but when the value of k is less than 1.00. Shows that the dielectric loss tan δ greatly deteriorates and the resistivity ρ is 1 × 10 6 MΩ ·
cm, and the high-temperature CR product deteriorates significantly,
This is because, when the temperature exceeds 1,250 ° C., a dense sintered body cannot be obtained.

【0022】なお、基本成分の中には、本発明の目的を
阻害しない範囲で微量のMnO2 (好ましくは0.05
〜0.1重量%)等の鉱化剤を添加し、焼結性を向上さ
せてもよい。また、その他の物質を必要に応じて添加し
てもよい。また、基本成分を得るための出発原料として
は、実施例で示した以外の酸化物を使用してもよいし、
水酸化物またはその他の化合物を使用してもよい。
In the basic components, a small amount of MnO 2 (preferably 0.05) is used as long as the object of the present invention is not impaired.
(0.1% by weight) may be added to improve the sinterability. Further, other substances may be added as needed. In addition, as a starting material for obtaining a basic component, an oxide other than those shown in Examples may be used,
A hydroxide or other compound may be used.

【0023】次に、添加成分の添加量を、100重量部
の基本成分に対して0.2〜5.0重量部としたのは、
添加成分の添加量がこの範囲内にある場合は1190〜
1200℃の焼成で所望の電気的特性を有する焼結体を
得ることができるが、0.2重量部未満になると、焼成
温度が1250℃であっても緻密な焼結体を得ることが
できないし、また、5.0重量部を越えると、比誘電率
εs が7000未満となるからである。
Next, the addition amount of the additive component is set to 0.2 to 5.0 parts by weight based on 100 parts by weight of the basic component.
When the amount of the additional component is within this range, 1190-
A sintered body having desired electrical characteristics can be obtained by firing at 1200 ° C., but if it is less than 0.2 parts by weight, a dense sintered body cannot be obtained even at a firing temperature of 1250 ° C. and, also, if it exceeds 5.0 parts by weight, the dielectric constant epsilon s is from less than 7000.

【0024】添加成分の組成を、B23 とSiO2
MOとの組成をモル%で示す三角図において、前記した
点A〜Fをこの順に結ぶ6本の直線で囲まれた範囲内と
したのは、添加成分の組成をこの範囲内のものとすれ
ば、所望の電気的特性を有する焼結体を得ることができ
るが、添加成分の組成をこの範囲外とすれば、1250
℃の焼成で緻密な焼結体を得ることができないからであ
る。なお、MO成分は、BaO,SrO,CaO,Mg
O,ZnOのいずれか1つであってもよいし、または適
当な比率としてもよい。
In a triangular diagram showing the composition of the additive component in terms of mol% of the composition of B 2 O 3 , SiO 2 and MO, the composition is within a range surrounded by six straight lines connecting points A to F in this order. The reason is that if the composition of the additive component is within this range, a sintered body having desired electrical characteristics can be obtained, but if the composition of the additive component is outside this range, 1250
This is because a dense sintered body cannot be obtained by sintering at ℃. The MO component is BaO, SrO, CaO, Mg
Any one of O and ZnO may be used, or an appropriate ratio may be used.

【0025】次に、本発明に係る磁器コンデンサの製造
方法は、前記の基本成分と添加成分とからなる未焼結の
磁器粉末からなる混合物を調製する工程と、前記混合物
からなる未焼結磁器シートを形成する工程と、前記未焼
結磁器シートを少なくとも2以上の導電性ペースト膜で
挟持させた積層物を形成する工程と、前記積層物を非酸
化性雰囲気中において熱処理する工程と、前記熱処理を
受けた積層物を酸化性雰囲気中において熱処理する工程
とを備えたものである。
Next, a method for manufacturing a ceramic capacitor according to the present invention comprises the steps of: preparing a mixture of unsintered porcelain powder comprising the aforementioned basic components and additive components; A step of forming a sheet, a step of forming a laminate in which the unsintered porcelain sheet is sandwiched by at least two or more conductive paste films, and a step of heat-treating the laminate in a non-oxidizing atmosphere; Heat-treating the heat-treated laminate in an oxidizing atmosphere.

【0026】ここで、非酸化性雰囲気としては、H2
COなどの還元性雰囲気のみならず、N2 やArなどの
中性雰囲気であってもよい。また、非酸化性雰囲気中に
おける熱処理の温度は、非酸化性雰囲気中における焼成
温度より低い温度であればよく、500〜1000℃の
範囲が好ましい。
Here, the non-oxidizing atmosphere may be not only a reducing atmosphere such as H 2 or CO, but also a neutral atmosphere such as N 2 or Ar. The temperature of the heat treatment in the non-oxidizing atmosphere may be lower than the firing temperature in the non-oxidizing atmosphere, and is preferably in the range of 500 to 1000 ° C.

【0027】また、酸化性雰囲気としては、大気雰囲気
に限定することなく、例えば、N2に数ppmのO2
混合したような低酸素濃度の雰囲気から任意の酸素濃度
の雰囲気を使用することができる。どのような温度ある
いはどのような酸素濃度の雰囲気にするかは、電極材料
(ニッケル等)の酸化と誘電体磁器層の酸化とを考慮し
て種々変更する必要がある。後述する実施例ではこの熱
処理の温度を600℃としたが、この温度に限定される
ものではない。
The oxidizing atmosphere is not limited to the air atmosphere, but may be an atmosphere having a low oxygen concentration, such as a mixture of N 2 and several ppm of O 2, and an atmosphere having an arbitrary oxygen concentration. Can be. What kind of temperature or what kind of oxygen concentration the atmosphere should be changed in various ways in consideration of oxidation of the electrode material (nickel or the like) and oxidation of the dielectric ceramic layer. In the embodiment described later, the temperature of this heat treatment was set to 600 ° C., but the temperature is not limited to this temperature.

【0028】また、後述する実施例では非酸化性雰囲気
中における熱処理と、酸化性雰囲気中における熱処理を
1つの連続した焼成プロファイルのなかで行なっている
が、もちろん非酸化性雰囲気中における焼成工程と、酸
化性雰囲気における熱処理工程とを独立した工程に分け
て行なうことも可能である。
In the embodiments described later, the heat treatment in the non-oxidizing atmosphere and the heat treatment in the oxidizing atmosphere are performed in one continuous firing profile. Alternatively, the heat treatment step in an oxidizing atmosphere can be performed separately from the heat treatment step.

【0029】また、実施例では外部電極としてZn電極
を使用しているが、電極の焼付け条件を選択することに
よりNi,Ag,Cu等の電極を用いることができるの
はもちろんであるし、Ni外部電極を未焼成積層体の端
面に塗布して積層体の焼成と外部電極の焼付けを同時に
行なうこともできる。
In the embodiment, a Zn electrode is used as an external electrode. However, it is a matter of course that an electrode of Ni, Ag, Cu or the like can be used by selecting the baking conditions of the electrode. An external electrode may be applied to the end face of the unfired laminate to fire the laminate and bake the external electrodes at the same time.

【0030】なお、本発明は積層磁器コンデンサ以外の
一般的な単層の磁器コンデンサにも勿論適用可能であ
る。
The present invention can of course be applied to general single-layer ceramic capacitors other than the multilayer ceramic capacitor.

【0031】[0031]

【実施例】まず、表3の試料No.1の場合について
説明する。基本成分の調製 表1に示す化合物を各々秤量し、これらの化合物をポッ
トミルに、複数個のアルミナボール及び2.5リットル
の水とともに入れ、15時間攪拌混合して、混合物を得
た。
EXAMPLE First, the sample Nos. The case of 1 will be described. Preparation of Basic Components The compounds shown in Table 1 were weighed, and these compounds were put into a pot mill together with a plurality of alumina balls and 2.5 liters of water, followed by stirring and mixing for 15 hours to obtain a mixture.

【0032】[0032]

【表1】 [Table 1]

【0033】ここで、表1の各化合物の重量(g)は、
基本成分の組成式 (1-α) {(Ba1-w-xCawSrx)O}k(Ti1-yZry)O2 +α(R1-zR′Z)O3/2 (但し、RはLa,Ce,Pr,Nd,Pm,Sm及び
Euから選択された1種または2種以上の元素、R′
は、Sc,Y,Gd,Dy,Ho,Er,Yb,Tb,
Tm及びLuから選択された1種または2種以上の元
素)………(1) における第1項の{(Ba1-w-xCawSrx)O}k(Ti1-yZry)O2
{(Ba0.85Ca0.07Sr0.08)O}1.01(Ti0.90Zr0.10)O2 となる
ように、計算して求めた値である。
Here, the weight (g) of each compound in Table 1 is
Composition formula of the basic component (1-α) {(Ba 1-wx Ca w Sr x) O} k (Ti 1-y Zr y) O 2 + α (R 1-z R 'Z) O 3/2 ( provided that , R is one or more elements selected from La, Ce, Pr, Nd, Pm, Sm and Eu;
Are Sc, Y, Gd, Dy, Ho, Er, Yb, Tb,
Tm and one or more elements selected from Lu) ......... (1) in the first term {(Ba 1-wx Ca w Sr x) O} k (Ti 1-y Zr y) O 2 is
{(Ba 0.85 Ca 0.07 Sr 0.08 ) O} 1.01 (Ti 0.90 Zr 0.10 ) O 2 It is a value calculated and calculated to be 2 .

【0034】次に、この原料混合物をステンレスポット
に入れ、熱風式乾燥器を用い、150℃で4時間乾燥
し、この乾燥した混合物を粗粉砕し、この粗粉砕した混
合物をトンネル炉を用い、大気中において約1200℃
で2時間仮焼し、上記基本成分の組成式(1) における第
1項の成分粉末(第1基本成分)を得た。
Next, the raw material mixture was placed in a stainless steel pot, dried at 150 ° C. for 4 hours using a hot-air drier, and the dried mixture was roughly pulverized. About 1200 ° C in air
For 2 hours to obtain the component powder of the first item in the composition formula (1) of the above basic component (first basic component).

【0035】そして、表3の試料No.1に示すよう
に、1−αが0.98モル%、αが0.02モル%とな
るように、98モル部(984.16g)の第1基本成
分の粉末と、2モル部(15.84g、うち、Dy2
3 が11.49g、Pr23 が4.35g)の第2基
本成分(基本成分の組成式(1) における第2項の成分)
の粉末とを湿式ポットミルで混合し、150℃で乾燥さ
せ、1000gの基本成分を得た。
The sample Nos. As shown in FIG. 1, 98 mol parts (984.16 g) of the powder of the first basic component and 2 mol parts (15 mol%) were used so that 1-α was 0.98 mol% and α was 0.02 mol%. .84 g, of which Dy 2 O
3 is 11.49 g and Pr 2 O 3 is 4.35 g) (the second term component in the formula (1)).
Was mixed in a wet pot mill and dried at 150 ° C. to obtain 1000 g of a basic component.

【0036】添加成分の調製 また、表2の化合物を各々秤量し、これらの化合物をポ
リエチレンポットに、複数個のアルミナボール及び30
0ミリリットルのアルコールとともに加え、10時間攪
拌混合して、混合物を得た。
Preparation of Additives Further , the compounds shown in Table 2 were weighed, and these compounds were placed in a polyethylene pot and a plurality of alumina balls and 30 wt.
The mixture was added together with 0 ml of alcohol and mixed by stirring for 10 hours to obtain a mixture.

【0037】[0037]

【表2】 [Table 2]

【0038】ここで、表2の各化合物の重量(g)は、
23 が1モル%、SiO2 が80モル%、MOが1
9モル%{BaO(3.8モル%)+CaO(9.5モル%)+
MgO(5.7モル%)}の組成となるように計算して求め
た値である。また、MOのうちでBaO,CaO及びM
gOの占める割合は、BaOが20モル%、CaOが5
0モル%、MgOが30モル%である。
Here, the weight (g) of each compound in Table 2 is
B 2 O 3 is 1 mol%, SiO 2 is 80 mol%, MO is 1
9 mol% @ BaO (3.8 mol%) + CaO (9.5 mol%) +
It is a value calculated and calculated so as to have a composition of MgO (5.7 mol%)}. Moreover, among MO, BaO, CaO and M
The proportion of gO is as follows: BaO is 20 mol%, CaO is 5 mol%.
0 mol% and MgO are 30 mol%.

【0039】次に、前記混合物を大気中において約10
00℃の温度で2時間仮焼し、これをアルミナポットに
複数個のアルミナボール及び300ミリリットルの水と
ともに入れ、15時間粉砕し、その後、150℃で4時
間乾燥させ、前記組成の添加成分の粉末を得た。
Next, the mixture is exposed to the atmosphere for about 10 hours.
The mixture was calcined at a temperature of 00 ° C. for 2 hours, put in an alumina pot together with a plurality of alumina balls and 300 ml of water, pulverized for 15 hours, and then dried at 150 ° C. for 4 hours to obtain an additive component having the above composition. A powder was obtained.

【0040】スラリーの調製 次に、100重量部(1000g)の前記基本成分と、
2重量部(20g)の前記添加成分とをボールミルに入
れ、更に、これらの基本成分と添加成分との合計重量に
対して15重量%の有機バインダーと50重量%の水を
入れ、これらを混合及び粉砕して誘電体磁器組成物の原
料となるスラリーを得た。ここで、有機バインダーとし
ては、アクリル酸エステルポリマー、グリセリン及び縮
合リン酸塩の水溶液からなるものを使用した。
Preparation of Slurry Next, 100 parts by weight (1000 g) of the above basic component were added to the slurry .
2 parts by weight (20 g) of the above-mentioned additional components are put into a ball mill, and further, 15% by weight of an organic binder and 50% by weight of water are added to the total weight of these basic components and the additional components, and these are mixed. Then, the slurry was pulverized to obtain a slurry as a raw material of the dielectric ceramic composition. Here, as the organic binder, one composed of an aqueous solution of an acrylate polymer, glycerin and a condensed phosphate was used.

【0041】未焼結磁器シートの形成 次に、上記スラリーを真空脱泡機に入れて脱泡処理し、
この脱泡処理したスラリーをポリエステルフィルム上に
リバースコータを用いて所定の厚さで塗布し、この塗布
されたスラリーをこのポリエステルフィルムとともに1
00℃で加熱して乾燥させ、厚さ約25μmの長尺な未
焼結磁器シートを得た。そして、この長尺な未焼結磁器
シートを裁断して10cm角の未焼結磁器シートを得
た。
Formation of Unsintered Porcelain Sheet Next, the above-mentioned slurry was put into a vacuum defoaming machine and defoamed.
The defoamed slurry is applied on a polyester film to a predetermined thickness using a reverse coater.
It was dried by heating at 00 ° C. to obtain a long non-sintered porcelain sheet having a thickness of about 25 μm. Then, this long unsintered porcelain sheet was cut to obtain a 10 cm square unsintered porcelain sheet.

【0042】導電性ペーストの調製と印刷 また、粒径平均1.5μmのニッケル粉末10gと、エ
チルセルロース0.9gをブチルカルビトール9.1g
に溶解させたものとを攪拌機に入れて10時間攪拌し、
内部電極用の導電性ペーストを得た。
Preparation and Printing of Conductive Paste Also, 10 g of nickel powder having an average particle size of 1.5 μm and 0.9 g of ethyl cellulose were added to 9.1 g of butyl carbitol.
Into a stirrer and stirred for 10 hours,
A conductive paste for an internal electrode was obtained.

【0043】そして、前記未焼結磁器シートの片面にこ
の導電性ペーストからなるパターン(長さ14mm、幅
7mm)を50個、スクリーン印刷法によって形成さ
せ、乾燥させた。
Then, 50 patterns (length: 14 mm, width: 7 mm) of this conductive paste were formed on one surface of the unsintered porcelain sheet by a screen printing method and dried.

【0044】未焼結磁器シートの積層 次に、この未焼結磁器シートを、導電性ペーストからな
るパターンが形成されている側を上にして2枚積層し
た。この積層の際、隣接する上下の未焼結磁器シート間
において、導電性ペーストからなるパターンが長手方向
に半分程ずれるようにした。そして、更に上記のように
して積層したものの上下両面に厚さ60μmの未焼結磁
器シートを各々4枚ずつ積層して積層物を得た。
Lamination of Unsintered Porcelain Sheets Next, two unsintered porcelain sheets were laminated with the side on which the pattern made of the conductive paste was formed facing upward. During this lamination, the pattern made of the conductive paste was shifted by about half in the longitudinal direction between the adjacent upper and lower unsintered porcelain sheets. Then, the unsintered porcelain sheet having a thickness of 60 μm was further laminated on each of the upper and lower surfaces of the laminate as described above, thereby obtaining a laminate.

【0045】積層物の圧着と裁断 次に、約50℃の温度下において、この積層物に厚さ方
向から約40トンの荷重を加えて、この積層物を構成し
ている未焼結磁器シート相互を圧着させた。そして、こ
の積層物を格子状に裁断して、50個の積層体チップを
得た。
Crimping and cutting of the laminate Next, at a temperature of about 50 ° C., a load of about 40 tons is applied to the laminate from the thickness direction, so that the unsintered porcelain sheet constituting the laminate is formed. The two were pressed together. Then, this laminate was cut into a lattice to obtain 50 laminate chips.

【0046】積層体チップの焼成 次に、この積層体チップを雰囲気焼成が可能な炉に入
れ、この炉内を大気雰囲気にし、100℃/hの速度で
600℃まで昇温させ、未焼結磁器シート中の有機バイ
ンダーを燃焼除去させた。
The firing of the laminate chip then placed the laminate chip furnace capable atmosphere firing, the furnace to the atmosphere, warmed to 600 ° C. at a rate of 100 ° C. / h, green The organic binder in the porcelain sheet was burned off.

【0047】その後、炉内の雰囲気を大気雰囲気から還
元雰囲気{H2(2体積%)+N2(98体積%)}に変
え、炉内の温度を600℃から1140℃まで、100
℃/hの速度で昇温させ、1140℃の温度を3時間保
持し、その後、100℃/hの速度で降温させ、炉内の
雰囲気を大気雰囲気(酸化性雰囲気)に変え、600℃
の温度を30分間保持して酸化処理を行い、その後、室
温まで冷却して積層焼結体チップを得た。
Thereafter, the atmosphere in the furnace was changed from an air atmosphere to a reducing atmosphere {H 2 (2% by volume) + N 2 (98% by volume)}, and the temperature in the furnace was changed from 600 ° C. to 1140 ° C. by 100 ° C.
The temperature was raised at a rate of 1 ° C./h, the temperature of 1140 ° C. was maintained for 3 hours, then the temperature was lowered at a rate of 100 ° C./h, and the atmosphere in the furnace was changed to an atmospheric atmosphere (oxidizing atmosphere).
Temperature was maintained for 30 minutes to perform an oxidation treatment, and then cooled to room temperature to obtain a laminated sintered body chip.

【0048】外部電極の形成 次に、この積層焼結体チップの対向する側面のうちで、
内部電極の端部が露出している側面に一対の外部電極を
形成し、図1に示すような、三層の誘電体磁器層12,
12,12と二層の内部電極14,14とからなる積層
焼結体チップ15の端部に一対の外部電極16,16が
形成された積層磁器コンデンサ10が得られた。
Formation of External Electrodes Next, of the opposing side surfaces of the laminated sintered body chip,
A pair of external electrodes are formed on the side surfaces where the ends of the internal electrodes are exposed, and as shown in FIG.
A laminated ceramic capacitor 10 was obtained in which a pair of external electrodes 16, 16 were formed at the end of a laminated sintered chip 15 composed of 12, 12 and two layers of internal electrodes 14, 14.

【0049】ここで、外部電極16は、前記側面に亜鉛
とガラスフリット(glass frit)とビヒクル(vehicle) と
からなる導電性ペーストを塗布し、この導電性ペースト
を、乾燥後、大気中において550℃の温度で15分間
焼き付けて亜鉛電極層18とし、更にこの亜鉛電極層1
8の上に無電解メッキ法で銅層20を形成し、更にこの
銅層20の上に電気メッキ法でPb−Sn半田層22を
設けることによって形成した。
Here, the external electrode 16 is coated with a conductive paste composed of zinc, glass frit and vehicle on the side surface, and after drying the conductive paste, it is dried in air at 550. Baked at a temperature of 15 ° C. for 15 minutes to form a zinc electrode layer 18.
8, a copper layer 20 was formed by an electroless plating method, and a Pb-Sn solder layer 22 was formed on the copper layer 20 by an electroplating method.

【0050】なお、この積層磁器コンデンサ10の誘電
体磁器層12の厚さは0.02mm、一対の内部電極1
4,14の対向面積は5mm×5mm=25mm2 であ
る。また、焼結後の誘電体磁器層12の組成は、焼結前
の基本成分及び添加成分の混合物の組成と実質的に同じ
である。
The thickness of the dielectric ceramic layer 12 of the laminated ceramic capacitor 10 is 0.02 mm, and the thickness of the pair of internal electrodes 1
The facing area of 4, 14 is 5 mm × 5 mm = 25 mm 2 . The composition of the dielectric ceramic layer 12 after sintering is substantially the same as the composition of the mixture of the basic component and the additive component before sintering.

【0051】電気的特性の測定 次に、積層磁器コンデンサ10の電気的特性を測定し、
その平均値を求めたところ、表3の右欄に示すよう
に、比誘電率εs が16050、tanδが1.1%、
抵抗率ρが3.71×106 MΩ・cm、高温CR積が
1750F・Ωであった。
Measurement of Electric Characteristics Next, the electric characteristics of the laminated ceramic capacitor 10 were measured.
When the average value was obtained, as shown in the right column of Table 3, the relative dielectric constant ε s was 16050, tan δ was 1.1%,
The resistivity ρ was 3.71 × 10 6 MΩ · cm, and the high-temperature CR product was 1750 F · Ω.

【0052】なお、電気的特性は次の要領で測定した。 (A) 比誘電率εs は、温度20℃、周波数1kHz、電
圧(実効値)1.0Vの条件で静電容量を測定し、この
測定値と、一対の内部電極14,14の対向面積(25
mm2 )と一対の内部電極14,14間の誘電体磁器層
12の厚さ(0.02mm)から計算で求めた。(B) 誘
電体損失tanδ(%)は、上記した比誘電率εs の測
定の場合と同一の条件で測定した。 (C) 抵抗率ρ(MΩ・cm)は、温度20℃においてD
C100Vを1分間印加した後に、一対の外部電極1
6,16間の抵抗値を測定し、この測定値と寸法とに基
づいて計算で求めた。 (D) 高温CR積(F・Ω)は、温度150℃、周波数1
kHz、電圧(実効値)1.0Vの条件で、静電容量を
測定し、また、DC100Vを1分間印加した後に、一
対の外部電極16,16間の抵抗値[MΩ]を測定し、
計算で求めた。
The electrical characteristics were measured in the following manner. (A) The relative permittivity ε s is obtained by measuring the capacitance under the conditions of a temperature of 20 ° C., a frequency of 1 kHz, and a voltage (effective value) of 1.0 V. (25
mm 2 ) and the thickness (0.02 mm) of the dielectric ceramic layer 12 between the pair of internal electrodes 14, 14. (B) The dielectric loss tan δ (%) was measured under the same conditions as in the measurement of the relative dielectric constant ε s described above. (C) The resistivity ρ (MΩ · cm) is D at a temperature of 20 ° C.
After applying C100V for 1 minute, a pair of external electrodes 1
The resistance value between 6 and 16 was measured and calculated based on the measured value and the dimensions. (D) High temperature CR product (F · Ω) is temperature 150 ℃, frequency 1
The capacitance was measured under the conditions of kHz and a voltage (effective value) of 1.0 V. After applying DC 100 V for one minute, the resistance value [MΩ] between the pair of external electrodes 16 and 16 was measured.
It was calculated.

【0053】以上、試料No.1について述べたが、試
料No.2〜94についても、基本成分及び添加成分の
組成を表3〜表3の左欄に示すように変え、還元性
雰囲気中における焼成温度を表3〜表3の右欄に示
すように変えた他は、試料No.1と全く同一の方法で
積層磁器コンデンサを作成し、同一の方法で電気的特性
を測定した。試料No.2〜90の電気的特性は表3
〜表3の右欄に示す通りとなった。
As described above, the sample No. 1 was described, but the sample No. For 2 to 94, the compositions of the basic components and the additional components were changed as shown in the left column of Tables 3 to 3, and the firing temperature in the reducing atmosphere was changed as shown in the right column of Tables 3 to 3. Others are sample Nos. A laminated ceramic capacitor was prepared in exactly the same manner as in Example 1, and the electrical characteristics were measured in the same manner. Sample No. Table 3 shows the electrical characteristics of 2-90.
~ As shown in the right column of Table 3.

【0054】なお、表3〜表3において、1−αの
欄には基本成分の組成式の第1項における{(Ba1-w-xCaw
Srx)O}k(Ti1-yZry)O2 の割合が、1−w−xの欄には基
本成分の組成式の第1項におけるBaの原子数の割合
が、wの欄には基本成分の組成式の第1項におけるCa
の原子数の割合が、xの欄には基本成分の組成式の第1
項におけるSrの原子数の割合が、1−yの欄には基本
成分の組成式の第1項におけるTiの原子数の割合が、
yの欄には基本成分の組成式の第1項におけるZrの原
子数の割合が、kの欄には基本成分の組成式の第1項に
おける{(Ba1-w-xCawSrx)O}の割合が、αの欄には基本成
分の組成式の第2項における(R1-zR′Z)O3 /2の割合が、
1−zの欄には基本成分の組成式の第2項におけるRの
原子数の割合が、zの欄には基本成分の組成式の第2項
におけるR′の原子数の割合が示されている。
In Tables 3 to 3, in the column of 1-α, {(Ba 1-wx Ca w
Sr x) O} ratio of k (Ti 1-y Zr y ) O 2 is the ratio of the number of atoms of Ba in the 1-w-x column first term of formula basic components in the are column w Is the Ca in the first term of the composition formula of the basic component
In the column of x, the ratio of the number of atoms of
In the column of 1-y, the ratio of the number of atoms of Sr in the term is the ratio of the number of atoms of Ti in the first term of the composition formula of the basic component.
In the column of y, the ratio of the number of atoms of Zr in the first term of the composition formula of the basic component is shown, and in the column of k, {(Ba 1-wx C aw Sr x ) O in the first term of the composition formula of the basic component is shown. proportion of} is, column fraction in the second term of the formula of the basic component of the (R 1-z R 'Z ) O 3/2 for the α is,
The 1-z column shows the proportion of the number of R atoms in the second term of the basic component composition formula, and the z column shows the proportion of the R 'atom in the second term of the basic component composition formula. ing.

【0055】また、表3〜表3の添加成分の内容の
欄において、添加量重量部の欄には基本成分100重量
部に対する添加成分の重量部が示され、組成の欄にはB
23 ,SiO2 及びMOの割合がモル%で示され、M
Oの内容の欄にはBaO,SrO,CaO,MgO及び
ZnOの割合がモル%で示されている。
In addition, in the columns of the contents of the added components in Tables 3 to 3, the column of the added amount by weight indicates the weight of the added component with respect to 100 parts by weight of the basic component, and the column of the composition indicates B by weight.
The proportions of 2 O 3 , SiO 2 and MO are shown in mol%,
In the column of O content, the proportions of BaO, SrO, CaO, MgO and ZnO are shown in mol%.

【0056】また、試料No.1〜19は添加成分であ
るガラスの適正範囲を明らかにし、試料No.20〜3
1は添加成分の添加量の適正範囲を明らかにし、試料N
o.32〜43はCaの原子数の割合であるwの適正範
囲を明らかにし、試料No.44〜59はSrの原子数
の割合であるx値の適正範囲と、Zrの原子数の割合で
あるy値の適正範囲、すなわち0.6x+yの適正範囲
を明らかにし、試料No.60〜69はR′の原子数の
割合であるzの適正範囲を明らかにし、試料No.70
〜80は(R1-zR′Z)O3/2の割合であるαの適正範囲を明
らかにし、試料No.81〜90は{(Ba1-w-xCawSrx)O}
の割合であるkの適正範囲を明らかにするものである。
The sample No. Sample Nos. 1 to 19 clarify the appropriate range of glass as an additive component. 20-3
1 clarifies the appropriate range of the addition amount of the additive component, and
o. Sample Nos. 32 to 43 clarify the appropriate range of w which is the ratio of the number of Ca atoms. Sample Nos. 44 to 59 clarify the appropriate range of the x value which is the ratio of the number of atoms of Sr and the appropriate range of the y value which is the ratio of the number of atoms of Zr, that is, the appropriate range of 0.6x + y. Sample Nos. 60 to 69 clarify the appropriate range of z which is the ratio of the number of atoms of R ′. 70
80 clarify the appropriate range of α, which is the ratio of (R 1 -z R ′ Z ) O 3/2 , 81 to 90 are {(Ba 1-wx C aw Sr x ) O}
This clarifies the appropriate range of k, which is the ratio of

【0057】[0057]

【表3】[Table 3]

【0058】[0058]

【表3】[Table 3]

【0059】[0059]

【表3】[Table 3]

【0060】[0060]

【表3】[Table 3]

【0061】[0061]

【表3】[Table 3]

【0062】[0062]

【表3】[Table 3]

【0063】表3〜表3から明らかなように、本発
明に従う試料によれば、非酸化性雰囲気中における12
00℃以下の焼成で、比誘電率εs が7000以上、誘
電体損失tanδが2.5%以下、抵抗率ρが1×10
6 MΩ・cm以上、150℃におけるCR積が1000
F・Ω以上の電気的特性を有する誘電体磁器組成物を備
えた磁器コンデンサを得ることができるものである。
As is clear from Tables 3 to 3, according to the sample according to the present invention, 12
By firing at 00 ° C. or less, the relative dielectric constant ε s is 7000 or more, the dielectric loss tan δ is 2.5% or less, and the resistivity ρ is 1 × 10
6 MΩ · cm or more, CR product at 150 ° C is 1000
It is possible to obtain a porcelain capacitor provided with a dielectric porcelain composition having electric characteristics of F · Ω or more.

【0064】これに対し、No.11〜13,20,2
5,26,31,37,43,44,49,57,5
9,60,69,70,75,76,80,81,8
5,86及び90の試料によれば、所望の電気的特性を
有する磁器コンデンサを得ることができない。従って、
これらのNo.の試料は本発明の範囲外のものである。
On the other hand, no. 11-13, 20, 2
5,26,31,37,43,44,49,57,5
9,60,69,70,75,76,80,81,8
According to the samples of 5, 86 and 90, it is not possible to obtain a porcelain capacitor having desired electrical characteristics. Therefore,
These Nos. Are out of the scope of the present invention.

【0065】次に、本発明に係る磁器コンデンサに用い
られている誘電体磁器組成物の組成範囲の限定理由につ
いて表3〜表3の試料No.1〜90を参照しなが
ら説明する。
Next, the reasons for limiting the composition range of the dielectric ceramic composition used in the ceramic capacitor according to the present invention will be described with reference to Sample Nos. This will be described with reference to FIGS.

【0066】まず、基本成分の組成式中におけるCaの
原子数の割合、すなわちwの値について説明する。wの
値が、試料No.36及び42に示すように、0.27
の場合には、所望の電気的特性を有する焼結体を得るこ
とができるが、試料No.37及び43に示すように、
0.30の場合には、緻密な焼結体を得るための焼成温
度が1250℃と高くなり、比誘電率εs も7000未
満となる。従って、wの値の上限は0.27である。
First, the ratio of the number of Ca atoms in the composition formula of the basic component, that is, the value of w will be described. w is the value of Sample No. 0.27, as shown in 36 and 42
In the case of No. 5, a sintered body having desired electrical characteristics can be obtained. As shown in 37 and 43,
In the case of 0.30, the firing temperature for obtaining a dense sintered body is as high as 1250 ° C., and the relative dielectric constant ε s is also less than 7000. Therefore, the upper limit of the value of w is 0.27.

【0067】また、試料No.33〜36,39〜42
に示すように、Caは温度特性を平坦にする作用及び抵
抗率ρを向上させる作用を有するが、wの値が、試料N
o.32及び38に示すように、零であっても所望の電
気的特性の焼結体を得ることができる。従って、wの値
の下限は零である。
The sample No. 33-36, 39-42
As shown in FIG. 5, Ca has an effect of flattening the temperature characteristics and an effect of improving the resistivity ρ.
o. As shown in 32 and 38, a sintered body having desired electrical characteristics can be obtained even if it is zero. Therefore, the lower limit of the value of w is zero.

【0068】次に、基本成分の組成式中におけるSrの
原子数の割合であるxの値と、Zrの原子数の割合であ
るyの値を、関係式0.6x+yの値で表わした場合に
ついて説明する。関係式0.6x+yの値が、試料N
o.50に示すように、0.05の場合には、所望の電
気的特性を有する焼結体を得ることができるが、試料N
o.44に示すように、0.035の場合には、比誘電
率εs が7000未満となる。従って、関係式0.6x
+yの下限値は0.05である。
Next, the value of x, which is the ratio of the number of atoms of Sr, and the value of y, which is the ratio of the number of atoms of Zr, in the composition formula of the basic component are represented by the value of the relational expression 0.6x + y. Will be described. The value of the relational expression 0.6x + y indicates that the sample N
o. As shown in FIG. 50, in the case of 0.05, a sintered body having desired electrical characteristics can be obtained.
o. As shown in 44, in the case of 0.035, the relative dielectric constant epsilon s is less than 7000. Therefore, the relational expression 0.6x
The lower limit of + y is 0.05.

【0069】一方、関係式0.6x+yの値が、試料N
o.56,58に示すように、0.260,0.258
の場合は、所望の電気的特性を有する焼結体を得ること
ができるが、試料No.57,59に示すように、0.
26を越えて0.290,0.285になった場合に
は、比誘電率εs が7000未満となる。従って、関係
式0.6x+yの上限値は0.26である。
On the other hand, the value of the relational expression 0.6x + y
o. As shown in FIGS.
In the case of No. 5, a sintered body having desired electrical characteristics can be obtained. As shown in FIGS.
If it becomes 0.290,0.285 beyond 26, the dielectric constant epsilon s is less than 7000. Therefore, the upper limit of the relational expression 0.6x + y is 0.26.

【0070】但し、関係式0.6x+yの値が0.26
以下であっても、試料No.49に示すように、xの値
が0.37を越えて0.40になった場合は、比誘電率
εsが7000未満となる。従って、関係式0.6x+
yの上限値は0.26であるが、同時に、xの上限値は
0.37としなければならない。
However, the value of the relational expression 0.6x + y is 0.26
Sample No. As shown in 49, when the value of x exceeds 0.37 and becomes 0.40, the relative dielectric constant 率s becomes less than 7000. Therefore, the relational expression 0.6x +
The upper limit of y is 0.26, but at the same time the upper limit of x must be 0.37.

【0071】なお、x,yで示されるSr,Zrはキュ
リー点を低温側にシフトさせ、室温における比誘電率を
増大させる同様の作用を有し、0<x≦0.37及び0
<y<0.26を満足する範囲で、且つ、0.05≦
0.6x+y≦0.26を満足させる範囲で使用するこ
とができる。
Note that Sr and Zr represented by x and y have the same effect of shifting the Curie point to a lower temperature and increasing the relative dielectric constant at room temperature, where 0 <x ≦ 0.37 and 0
<Y <0.26 and 0.05 ≦
It can be used in a range that satisfies 0.6x + y ≦ 0.26.

【0072】次に、基本成分の組成式の第2項における
(R1-z R′z )の割合、すなわちαの値について説明
する。αの値が、試料No.71及び77に示すよう
に、0.002の場合には所望の電気的特性を有する焼
結体を得ることができるが、試料No.70及び76に
示すように、0.001の場合には、誘電体損失tan
δが大幅に悪化し、抵抗率ρが1×103 MΩ・cm未
満となる。従って、αの値の下限は0.002である。
Next, the ratio of (R 1 -z R ' z ) in the second term of the composition formula of the basic component, that is, the value of α will be described. The value of sample No. As shown in Nos. 71 and 77, a sintered body having the desired electrical characteristics can be obtained in the case of 0.002. As shown in 70 and 76, in the case of 0.001, the dielectric loss tan
δ greatly deteriorates, and the resistivity ρ becomes less than 1 × 10 3 MΩ · cm. Therefore, the lower limit of the value of α is 0.002.

【0073】一方、αの値が、試料No.74及び79
に示すように、0.04の場合には所望の電気的特性を
有する焼結体を得ることができるが、試料No.75及
び80に示すように、0.06の場合には、焼成温度が
1250℃であっても緻密な焼結体を得ることができな
い。従って、αの値の上限は0.04である。
On the other hand, when the value of α 74 and 79
As shown in the figure, when the ratio is 0.04, a sintered body having desired electric characteristics can be obtained. As shown in 75 and 80, in the case of 0.06, a dense sintered body cannot be obtained even if the firing temperature is 1250 ° C. Therefore, the upper limit of the value of α is 0.04.

【0074】なお、R成分のLa,Ce,Pr,Nd,
Pm及びEuはほゞ同様に働き、これ等から選択された
1つを使用しても、または複数を使用しても同様な結果
が得られる。
The R components La, Ce, Pr, Nd,
Pm and Eu work in much the same way, and similar results are obtained using one or a plurality of them.

【0075】次に、基本成分の組成式の第2項における
R′の原子数の割合、すなわちzの値について説明す
る。zの値が試料No.61に示すように0.5の場合
には、所望の電気特性を有する焼結体を得ることができ
るが、試料No.60に示すように0.4の場合には高
温CR積が1000F・Ω未満となる。従って、zの下
限は0.5である。
Next, the ratio of the number of atoms of R 'in the second term of the composition formula of the basic component, that is, the value of z will be described. The value of sample no. In the case of 0.5 as shown in FIG. 61, a sintered body having desired electrical characteristics can be obtained. As shown by 60, in the case of 0.4, the high-temperature CR product is less than 1000 F · Ω. Therefore, the lower limit of z is 0.5.

【0076】一方、zの値が、試料No.68に示すよ
うに、0.9の場合には、所望の電気特性を有する焼結
体を得ることができるが、試料No.69に示すよう
に、0.95の場合には高温CR積が1000F・Ω未
満となる。従って、zの値の上限は0.9である。
On the other hand, when the value of z is As shown in FIG. 68, in the case of 0.9, a sintered body having desired electric characteristics can be obtained. As shown at 69, in the case of 0.95, the high temperature CR product becomes less than 1000 F · Ω. Therefore, the upper limit of the value of z is 0.9.

【0077】なお、R′成分のSc,Y,Dy,Ho,
Er及びYbはほゞ同様に働き、これ等から選択された
1つを使用しても、または複数を使用しても同様な結果
が得られる。
Note that the R 'components Sc, Y, Dy, Ho,
Er and Yb work in much the same way, and similar results can be obtained using one or a plurality of them.

【0078】次に、基本成分の組成式中における{(Ba
1-w-xCawSrx)O}の割合、すなわちkの値について説明す
る。kの値が、試料No.82及び87に示すように、
1.00の場合には、所望の電気的特性を有する焼結体
を得ることができるが、試料No.81及び86に示す
ように、0.99の場合には、tanδが2.5%以上
になり、抵抗率ρが1×104 MΩ・cm未満になり、
高温CR積が著しく悪化する。従って、kの値の下限は
1.00である。
Next, in the composition formula of the basic component, {(Ba
1-wx Ca w Sr x ) O}, that is, the value of k will be described. The value of sample no. As shown at 82 and 87,
In the case of 1.00, a sintered body having desired electrical characteristics can be obtained. As shown in 81 and 86, in the case of 0.99, tan δ becomes 2.5% or more, the resistivity ρ becomes less than 1 × 10 4 MΩ · cm,
The high temperature CR product deteriorates significantly. Therefore, the lower limit of the value of k is 1.00.

【0079】一方、kの値が、試料No.84及び89
に示すように、1.04の場合には所望の電気的特性の
焼結体を得ることができるが、試料No.85及び90
に示すように、1.05の場合には、1250℃の焼成
でも緻密な焼結体を得ることができない。従って、kの
値の上限は1.04である。
On the other hand, when the value of k is the sample No. 84 and 89
As shown in the figure, a sintered body having desired electrical characteristics can be obtained when the ratio is 1.04. 85 and 90
As shown in the figure, in the case of 1.05, a dense sintered body cannot be obtained even by firing at 1250 ° C. Therefore, the upper limit of the value of k is 1.04.

【0080】次に、添加成分の添加量について説明す
る。添加成分の添加量が、試料No.21及び27に示
すように、100重量部の基本成分に対して0.2重量
部の場合には、1190〜1200℃の焼成で所望の電
気的特性を有する焼結体を得ることができるが、添加成
分の添加量が零の場合には、試料No.20及び26に
示すように、1250℃の焼成でも緻密な焼結体を得る
ことができない。従って、添加成分の下限値は、100
重量部の基本成分に対して0.2重量部である。
Next, the amount of the additional component will be described. When the amount of the added component is the As shown in 21 and 27, in the case of 0.2 parts by weight with respect to 100 parts by weight of the basic component, a sintered body having desired electric characteristics can be obtained by firing at 1190 to 1200 ° C. When the addition amount of the additive component is zero, the sample No. As shown in 20 and 26, a dense sintered body cannot be obtained even by firing at 1250 ° C. Therefore, the lower limit of the added component is 100
0.2 parts by weight based on parts by weight of the basic component.

【0081】一方、添加成分の添加量が、試料No.2
4及び30に示すように、100重量部の基本成分に対
して5重量部の場合には、所望の電気的特性を有する焼
結体を得ることができるが、添加成分の添加量が、試料
No.25及び31に示すように、100重量部の基本
成分に対して7重量部の場合には、比誘電率εs が70
00未満となる。従って、添加成分の添加量の上限値
は、100重量部の基本成分に対して5重量部である。
On the other hand, the amount of the additive component 2
As shown in 4 and 30, when 5 parts by weight with respect to 100 parts by weight of the basic component, a sintered body having desired electric characteristics can be obtained, but the amount of the additional component is less than that of the sample. No. As shown in FIGS. 25 and 31, in the case of 7 parts by weight with respect to 100 parts by weight of the basic component, the relative dielectric constant ε s is 70%.
It becomes less than 00. Therefore, the upper limit of the amount of the added component is 5 parts by weight based on 100 parts by weight of the basic component.

【0082】次に添加成分の好ましい組成範囲について
説明する。添加成分の好ましい組成範囲は、図2のB2
3 −SiO2 −MOの組成比を示す三角図に基づいて
決定することができる。
Next, a preferable composition range of the additional component will be described. A preferred composition range of additive component, in FIG. 2 B 2
It can be determined based on a triangular diagram showing the composition ratio of O 3 —SiO 2 —MO.

【0083】三角図の第1の点Aは、試料No.1のB
23 が1モル%、SiO2 が80モル%、MOが19
モル%の組成を示し、第2の点Bは、試料No.2のB
23 が1モル%、SiO2 が39モル%、MOが60
モル%の組成を示し、第3の点Cは、試料No.3のB
23 が30モル%、SiO2 が0モル%、MOが70
モル%の組成を示し、第4の点Dは、試料No.4のB
23 が90モル%、SiO2 が0モル%、MOが10
モル%の組成を示し、第5の点Eは、試料No.5のB
23 が90モル%、SiO2 が10モル%、MOが0
モル%の組成を示し、第6の点Fは、試料No.6のB
23 が20モル%、SiO2 が80モル%、MOが0
モル%の組成を示す。
The first point A in the triangular diagram corresponds to the sample No. 1 B
1 mol% of 2 O 3, 80 mol% of SiO 2 ,
Mol%, and the second point B is the sample No. 2 B
1 mol% of 2 O 3, 39 mol% of SiO 2 , MO of 60
%, And the third point C is the sample No. 3 B
2 O 3 is 30 mol%, SiO 2 is 0 mol%, MO is 70 mol%.
%, And the fourth point D is the sample No. 4 B
90 mol% of 2 O 3, 0 mol% of SiO 2 , MO of 10
Mol%, the fifth point E indicates the sample No. 5 B
90 mol% of 2 O 3, 10 mol% of SiO 2 and 0 mol of MO
The sixth point F indicates the composition of Sample No. 6 of B
20 mol% of 2 O 3, 80 mol% of SiO 2 , MO of 0%
It shows the composition in mole%.

【0084】本発明の組成範囲に属する試料の添加成分
は、図2に示す三角図の第1〜6の点A〜Fをこの順に
結ぶ6本の直線で囲まれた範囲内となっている。添加成
分の組成をこの範囲内のものとすれば、所望の電気的特
性を有する焼結体を得ることができる。一方、試料N
o.11〜13のように、添加成分の組成を本発明で特
定した範囲外とすれば、1250℃の焼成で緻密な焼結
体を得ることができない。
The additional components of the sample belonging to the composition range of the present invention are within the range surrounded by six straight lines connecting the first to sixth points A to F in the triangular diagram shown in FIG. . When the composition of the additive component is within this range, a sintered body having desired electric characteristics can be obtained. On the other hand, sample N
o. If the composition of the additional component is outside the range specified in the present invention as in 11 to 13, a dense sintered body cannot be obtained by firing at 1250 ° C.

【0085】なお、MO成分は、例えば試料No.14
〜18に示すように、BaO,SrO,CaO,Mg
O,ZnOのいずれか1つであってもよいし、または他
の試料に示すように適当な比率としてもよい。
The MO component is, for example, the sample No. 14
-18, BaO, SrO, CaO, Mg
Any one of O and ZnO may be used, or an appropriate ratio may be used as shown in other samples.

【0086】[0086]

【発明の効果】本発明によれば、磁器コンデンサの誘電
体層を構成している誘電体磁器組成物の組成を前述した
ように構成したので、比誘電率εs を7000〜218
00と飛躍的に向上させることができ、従って、磁器コ
ンデンサの小型大容量化を図ることができるという効果
がある。
According to the present invention, since the composition of the dielectric ceramic composition constituting the dielectric layer of the ceramic capacitor is configured as described above, the relative dielectric constant ε s is 7000 to 218.
00, which is advantageous in that the porcelain capacitor can be reduced in size and capacity.

【0087】また、本発明によれば、磁器コンデンサの
誘電体層を構成している誘電体磁器組成物の組成を前述
したように構成したので、高温におけるCR積を高める
ことができ、従って、磁器コンデンサの高温での信頼性
を高めることができるという効果がある。
Further, according to the present invention, since the composition of the dielectric ceramic composition constituting the dielectric layer of the ceramic capacitor is configured as described above, the CR product at a high temperature can be increased. This has the effect of increasing the reliability of the porcelain capacitor at high temperatures.

【0088】更に、本発明によれば、磁器コンデンサの
誘電体層を構成している誘電体磁器組成物を非酸化性雰
囲気中で焼結させるので、内部電極をニッケル等の安価
な卑金属の導電性ペーストで形成することができ、従っ
て、磁器コンデンサの小型大容量化とあいまって、磁器
コンデンサの低コスト化を図ることができるという効果
がある。
Further, according to the present invention, the dielectric ceramic composition constituting the dielectric layer of the ceramic capacitor is sintered in a non-oxidizing atmosphere, so that the internal electrodes are made of an inexpensive base metal such as nickel. The ceramic capacitor can be formed of a conductive paste. Therefore, there is an effect that the cost of the ceramic capacitor can be reduced in combination with the increase in the size and the capacity of the ceramic capacitor.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例に係る積層磁器コンデンサの断
面図である。
FIG. 1 is a sectional view of a multilayer ceramic capacitor according to an embodiment of the present invention.

【図2】本発明に係る磁器コンデンサの誘電体層を構成
する誘電体磁器組成物の添加成分の組成範囲を示す三角
図である。
FIG. 2 is a triangular diagram showing a composition range of an additive component of a dielectric ceramic composition constituting a dielectric layer of the ceramic capacitor according to the present invention.

【符号の説明】[Explanation of symbols]

12 誘電体磁器層 14 内部電極 15 積層焼結体チップ 16 外部電極 18 亜鉛電極層 20 銅層 22 Pb−Sn半田層 Reference Signs List 12 dielectric ceramic layer 14 internal electrode 15 laminated sintered chip 16 external electrode 18 zinc electrode layer 20 copper layer 22 Pb-Sn solder layer

【表3○1】 [Table 3 ○ 1]

【表3○2】 [Table 3 ○ 2]

【表3○3】 [Table 3 ○ 3]

【表3○4】 [Table 3 ○ 4]

【表3○5】 [Table 3 ○ 5]

【表3○6】 [Table 3 ○ 6]

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C04B 35/46 H01B 3/12 326 35/49 335 H01B 3/12 326 C04B 35/46 C 335 35/49 Z (72)発明者 岸 弘志 東京都台東区上野6丁目16番20号 太陽 誘電株式会社内 (58)調査した分野(Int.Cl.6,DB名) H01G 4/12──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification symbol FI C04B 35/46 H01B 3/12 326 35/49 335 H01B 3/12 326 C04B 35/46 C 335 35/49 Z (72) Invention Hiroshi Kishi Taiyou Yuden 6-16-20 Ueno Taito-ku, Tokyo Taiyo Yuden Co., Ltd. (58) Field surveyed (Int. Cl. 6 , DB name) H01G 4/12

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 誘電体磁器組成物からなる1又は2以上
の誘電体磁器層と、この誘電体磁器層を挟持している2
以上の内部電極とを備えた磁器コンデンサにおいて、 前記誘電体磁器組成物が、100.0重量部の基本成分
と、0.2〜5.0重量部の添加成分との混合物を焼成
したものからなり、 前記基本成分が、 (1-α) {(Ba1-w-xCawSrx)O}k(Ti1-yZry)O2 +α(R1-zR′Z)O3/2 (但し、Rは、La,Ce,Pr,Nd,Pm,Sm及
びEuから選択された1種または2種以上の元素、R′
は、Sc,Y,Gd,Dy,Ho,Er,Yb,Tb,
Tm及びLuから選択された1種または2種以上の元
素、 α,w,x,y,z,kは、 0.002≦α≦0.04 0≦w≦0.27 0<x≦0.37 0<y<0.26 0.05≦0.6x+y≦0.26 0.5≦z≦0.9 1.00≦k≦1.04 を満足する数値)であり、 前記添加成分がB23 とSiO2 とMO(但し、MO
はBaO,SrO,CaO,MgO及びZnOから選択
された1種または2種以上の酸化物)からなり、 前記B23 と前記SiO2 と前記MOとの組成範囲
が、これらの組成をモル%で示す三角図において、 前記B23 が1モル%、前記SiO2 が80モル%、
前記MOが19モル%の組成を示す第1の点Aと、 前記B23 が1モル%、前記SiO2 が39モル%、
前記MOが60モル%の組成を示す第2の点Bと、 前記B23 が30モル%、前記SiO2 が0モル%、
前記MOが70モル%の組成を示す第3の点Cと、 前記B23 が90モル%、前記SiO2 が0モル%、
前記MOが10モル%の組成を示す第4の点Dと、 前記B23 が90モル%、前記SiO2 が10モル
%、前記MOが0モル%の組成を示す第5の点Eと、 前記B23 が20モル%、前記SiO2 が80モル
%、前記MOが0モル%の組成を示す第6の点Fとをこ
の順に結ぶ6本の直線で囲まれた領域内にあることを特
徴とする磁器コンデンサ。
At least one dielectric porcelain layer made of a dielectric porcelain composition, and a dielectric porcelain sandwiching the dielectric porcelain layer.
In the above porcelain capacitor provided with the internal electrodes, the dielectric porcelain composition is obtained by firing a mixture of 100.0 parts by weight of a basic component and 0.2 to 5.0 parts by weight of an additional component. Wherein the basic component is (1-α) {(Ba 1-wx C aw Sr x ) O} k (Ti 1-y Zr y ) O 2 + α (R 1-z R ′ Z ) O 3/2 (Where R is one or more elements selected from La, Ce, Pr, Nd, Pm, Sm and Eu, R ′
Are Sc, Y, Gd, Dy, Ho, Er, Yb, Tb,
One or more elements selected from Tm and Lu, α, w, x, y, z, and k are: 0.002 ≦ α ≦ 0.040 0 ≦ w ≦ 0.27 0 <x ≦ 0 0.30 <y <0.26 0.05 ≦ 0.6x + y ≦ 0.26 0.5 ≦ z ≦ 0.9 1.00 ≦ k ≦ 1.04). B 2 O 3 , SiO 2 and MO (however, MO
Is one or more oxides selected from BaO, SrO, CaO, MgO, and ZnO), and the composition range of B 2 O 3 , SiO 2, and MO is such that % In the triangular diagram, the B 2 O 3 is 1 mol%, the SiO 2 is 80 mol%,
A first point A where the MO has a composition of 19 mol%, the B 2 O 3 is 1 mol%, the SiO 2 is 39 mol%,
A second point B indicating a composition in which the MO is 60 mol%, the B 2 O 3 is 30 mol%, the SiO 2 is 0 mol%,
A third point C indicating a composition in which the MO is 70 mol%, the B 2 O 3 is 90 mol%, the SiO 2 is 0 mol%,
A fourth point D indicating the composition of the MO of 10 mol%, and a fifth point E indicating the composition of the B 2 O 3 of 90 mol%, the SiO 2 of 10 mol%, and the MO of 0 mol%. A region surrounded by six straight lines connecting in this order a sixth point F indicating a composition of 20 mol% of B 2 O 3, 80 mol% of SiO 2 and 0 mol% of MO. A porcelain capacitor, characterized in that:
【請求項2】 未焼結の磁器粉末からなる混合物を調製
する工程と、前記混合物からなる未焼結磁器シートを形
成する工程と、前記未焼結磁器シートを少なくとも2以
上の導電性ペースト膜で挟持させた積層物を形成する工
程と、前記積層物を非酸化性雰囲気中において熱処理す
る工程と、前記熱処理を受けた積層物を酸化性雰囲気中
において熱処理する工程とを備え、 前記未焼結の磁器粉末からなる混合物が、100.0重
量部の基本成分と、0.2〜5重量部の添加成分とから
なり、 前記基本成分が、 (1-α) {(Ba1-w-xCawSrx)O}k(Ti1-yZry)O2 +α(R1-zR′Z)O3/2 (但し、Rは、La,Ce,Pr,Nd,Pm,Sm及
びEuから選択された1種または2種以上の元素、R′
は、Sc,Y,Gd,Dy,Ho,Er,Yb,Tb,
Tm及びLuから選択された1種または2種以上の元
素、 α,w,x,y,z,kは、 0.002≦α≦0.04 0≦w≦0.27 0<x≦0.37 0<y<0.26 0.05≦0.6x+y≦0.26 0.5≦z≦0.9 1.00≦k≦1.04 を満足する数値)であり、 前記添加成分がB23 とSiO2 とMO(但し、MO
はBaO,SrO,CaO,MgO及びZnOから選択
された1種または2種以上の酸化物)からなり、 前記B23 と前記SiO2 と前記MOとの組成範囲
が、これらの組成をモル%で示す三角図において、 前記B23 が1モル%、前記SiO2 が80モル%、
前記MOが19モル%の組成を示す第1の点Aと、 前記B23 が1モル%、前記SiO2 が39モル%、
前記MOが60モル%の組成を示す第2の点Bと、 前記B23 が30モル%、前記SiO2 が0モル%、
前記MOが70モル%の組成を示す第3の点Cと、 前記B23 が90モル%、前記SiO2 が0モル%、
前記MOが10モル%の組成を示す第4の点Dと、 前記B23 が90モル%、前記SiO2 が10モル
%、前記MOが0モル%の組成を示す第5の点Eと、 前記B23 が20モル%、前記SiO2 が80モル
%、前記MOが0モル%の組成を示す第6の点Fとをこ
の順に結ぶ6本の直線で囲まれた領域内にあることを特
徴とする磁器コンデンサの製造方法。
2. A step of preparing a mixture comprising unsintered porcelain powder; a step of forming a non-sintered porcelain sheet comprising the mixture; and forming the unsintered porcelain sheet into at least two or more conductive paste films. Forming a laminate sandwiched by the steps of: heat-treating the laminate in a non-oxidizing atmosphere; and heat-treating the heat-treated laminate in an oxidizing atmosphere. The mixture comprising the sintered porcelain powder comprises 100.0 parts by weight of a basic component and 0.2 to 5 parts by weight of an additional component, wherein the basic component is represented by (1-α) {(Ba 1-wx Ca w Sr x) O} k ( Ti 1-y Zr y) O 2 + α (R 1-z R 'Z) O 3/2 ( Here, R is, La, Ce, Pr, Nd , Pm, Sm and Eu One or more elements selected from
Are Sc, Y, Gd, Dy, Ho, Er, Yb, Tb,
One or more elements selected from Tm and Lu, α, w, x, y, z, and k are: 0.002 ≦ α ≦ 0.040 0 ≦ w ≦ 0.27 0 <x ≦ 0 .37 0 <y <0.26 0.05 ≦ 0.6x + y ≦ 0.26 0.5 ≦ z ≦ 0.9 1.00 ≦ k ≦ 1.04). B 2 O 3 , SiO 2 and MO (however, MO
Is one or more oxides selected from BaO, SrO, CaO, MgO, and ZnO), and the composition range of B 2 O 3 , SiO 2, and MO is such that % In the triangular diagram, the B 2 O 3 is 1 mol%, the SiO 2 is 80 mol%,
A first point A where the MO has a composition of 19 mol%, the B 2 O 3 is 1 mol%, the SiO 2 is 39 mol%,
A second point B indicating a composition in which the MO is 60 mol%, the B 2 O 3 is 30 mol%, the SiO 2 is 0 mol%,
A third point C indicating a composition in which the MO is 70 mol%, the B 2 O 3 is 90 mol%, the SiO 2 is 0 mol%,
A fourth point D indicating the composition of the MO of 10 mol%, and a fifth point E indicating the composition of the B 2 O 3 of 90 mol%, the SiO 2 of 10 mol%, and the MO of 0 mol%. A region surrounded by six straight lines connecting in this order a sixth point F indicating a composition of 20 mol% of B 2 O 3, 80 mol% of SiO 2 and 0 mol% of MO. A method for manufacturing a porcelain capacitor, the method comprising:
JP4054387A 1992-02-04 1992-02-04 Porcelain capacitor and method of manufacturing the same Expired - Lifetime JP2761690B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4054387A JP2761690B2 (en) 1992-02-04 1992-02-04 Porcelain capacitor and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4054387A JP2761690B2 (en) 1992-02-04 1992-02-04 Porcelain capacitor and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH05217795A JPH05217795A (en) 1993-08-27
JP2761690B2 true JP2761690B2 (en) 1998-06-04

Family

ID=12969280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4054387A Expired - Lifetime JP2761690B2 (en) 1992-02-04 1992-02-04 Porcelain capacitor and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2761690B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08511502A (en) * 1993-06-09 1996-12-03 アメリカ合衆国 New Ceramic Ferroelectric Composite Material-BSTO-MgO
CN100385583C (en) * 1998-12-31 2008-04-30 Mra实验室股份有限公司 Method for mfg. multilayer ceramic capacitor and multilayer ceramic capacitor thereof
US6251816B1 (en) * 1998-12-31 2001-06-26 Mra Laboratories, Inc. Capacitor and dielectric ceramic powder based upon a barium borate and zinc silicate dual-component sintering flux
JP4201242B2 (en) * 2002-03-26 2008-12-24 Tdk株式会社 High dielectric constant dielectric ceramic composition
JP5272754B2 (en) * 2008-02-05 2013-08-28 Tdk株式会社 Dielectric porcelain composition and electronic component

Also Published As

Publication number Publication date
JPH05217795A (en) 1993-08-27

Similar Documents

Publication Publication Date Title
JP3269910B2 (en) Porcelain capacitor and method of manufacturing the same
JP2736397B2 (en) Porcelain capacitor and method of manufacturing the same
JP2761690B2 (en) Porcelain capacitor and method of manufacturing the same
JP2736396B2 (en) Porcelain capacitor and method of manufacturing the same
JP2761689B2 (en) Porcelain capacitor and method of manufacturing the same
JP2843736B2 (en) Porcelain capacitor and method of manufacturing the same
JP3269903B2 (en) Porcelain capacitor and method of manufacturing the same
JP3269902B2 (en) Porcelain capacitor and method of manufacturing the same
JP2779293B2 (en) Porcelain capacitor and method of manufacturing the same
JP2831894B2 (en) Porcelain capacitor and method of manufacturing the same
JP3269908B2 (en) Porcelain capacitor and method of manufacturing the same
JP2521856B2 (en) Porcelain capacitor and method of manufacturing the same
JP2843733B2 (en) Porcelain capacitor and method of manufacturing the same
JP2779294B2 (en) Porcelain capacitor and method of manufacturing the same
JP3269907B2 (en) Porcelain capacitor and method of manufacturing the same
JP3269909B2 (en) Porcelain capacitor and method of manufacturing the same
JP2521857B2 (en) Porcelain capacitor and method of manufacturing the same
JP2521855B2 (en) Porcelain capacitor and method of manufacturing the same
JPH0614498B2 (en) Porcelain capacitor and method of manufacturing the same
JP2879867B2 (en) Porcelain capacitor and method of manufacturing the same
JP3269989B2 (en) Porcelain capacitor and method of manufacturing the same
JP2831893B2 (en) Porcelain capacitor and method of manufacturing the same
JP2879868B2 (en) Porcelain capacitor and method of manufacturing the same
JP2843734B2 (en) Porcelain capacitor and method of manufacturing the same
JP2938671B2 (en) Porcelain capacitor and method of manufacturing the same

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980203

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080327

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090327

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100327

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100327

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110327

Year of fee payment: 13

EXPY Cancellation because of completion of term