JPH04359703A - Method for controlling desulfurization rate in fluidized-bed boiler - Google Patents

Method for controlling desulfurization rate in fluidized-bed boiler

Info

Publication number
JPH04359703A
JPH04359703A JP16213391A JP16213391A JPH04359703A JP H04359703 A JPH04359703 A JP H04359703A JP 16213391 A JP16213391 A JP 16213391A JP 16213391 A JP16213391 A JP 16213391A JP H04359703 A JPH04359703 A JP H04359703A
Authority
JP
Japan
Prior art keywords
fuel
fluidized bed
slurry
desulfurizing agent
bed boiler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16213391A
Other languages
Japanese (ja)
Inventor
Shinobu Nakamura
忍 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP16213391A priority Critical patent/JPH04359703A/en
Publication of JPH04359703A publication Critical patent/JPH04359703A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fluidized-Bed Combustion And Resonant Combustion (AREA)

Abstract

PURPOSE:To provide a high responsiveness to changes in load, etc., and obviate to provide a nozzle for exclusively injecting desulfurizing agent. CONSTITUTION:A fuel 6 and a desulfurizing agent 8 are fed to each of first and second tanks 30, 31 for slurry of fuel mixture, where a first slurry of fuel mixture 33 and a second slurry of fuel mixture 36 are prepared in different mixing ratios and supplied to a fluidized bed 17 through each of first and second nozzles 45, 46 for injecting fuel mixture respectively by pumps 42, 43 and in quantities as desired for the control of the desulfurization rate.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、流動層ボイラにおける
脱硫率制御方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling desulfurization rate in a fluidized bed boiler.

【0002】0002

【従来の技術】近年、火力発電の高効率化を目ざして、
流動層ボイラを用いた複合発電設備の研究開発が行われ
ている。
[Prior art] In recent years, with the aim of increasing the efficiency of thermal power generation,
Research and development is underway on combined power generation equipment using fluidized bed boilers.

【0003】図2に示される如く、流動層ボイラ18は
、蒸発器5、過熱器1及び再熱器2を内装するセル3と
、該セル3を内装する圧力容器7とを備え、前記セル3
内には、所定量のベッド材4が装入されている。
As shown in FIG. 2, the fluidized bed boiler 18 includes a cell 3 containing an evaporator 5, a superheater 1, and a reheater 2, and a pressure vessel 7 containing the cell 3. 3
A predetermined amount of bed material 4 is placed inside.

【0004】過熱器1の蒸気流通方向上流側端部は蒸発
器5を介して管路19により給水ポンプ9に、下流側端
部は管路20により蒸気タービン設備10の高圧タービ
ン11の蒸気入口に接続され、又、再熱器2の蒸気流通
方向上流側端部は管路21により蒸気タービン設備10
の高圧タービン11の蒸気出口に、下流側端部は管路2
2により蒸気タービン設備10の中低圧タービン12の
蒸気入口に接続されており、更に、前記中低圧タービン
12の蒸気出口は管路23により復水器13を介して前
記給水ポンプ9に接続されている。
The upstream end of the superheater 1 in the direction of steam flow is connected to the water supply pump 9 via the evaporator 5 via a pipe 19, and the downstream end is connected to the steam inlet of the high pressure turbine 11 of the steam turbine equipment 10 through the pipe 20. The upstream end of the reheater 2 in the steam flow direction is connected to the steam turbine equipment 10 by a pipe line 21.
At the steam outlet of the high pressure turbine 11, the downstream end is connected to the pipe 2.
2 is connected to the steam inlet of the medium and low pressure turbine 12 of the steam turbine equipment 10, and furthermore, the steam outlet of the medium and low pressure turbine 12 is connected to the feed water pump 9 via the condenser 13 by a pipe 23. There is.

【0005】上述した流動層ボイラ18では、コンプレ
ッサ14により大気15を圧縮した圧縮空気を圧縮空気
供給管路16から圧力容器7へ供給し、セル3内にベッ
ド材4の流動層17を形成させたうえ、流動層17へ燃
料(石炭)を供給して流動層17内で燃焼させる。
In the fluidized bed boiler 18 described above, compressed air obtained by compressing the atmosphere 15 by the compressor 14 is supplied from the compressed air supply pipe 16 to the pressure vessel 7 to form a fluidized bed 17 of the bed material 4 in the cells 3. Furthermore, fuel (coal) is supplied to the fluidized bed 17 and burned within the fluidized bed 17.

【0006】燃料が燃焼すると、その熱エネルギーは、
流動状態のベッド材4に伝達され、更に、ベッド材4が
蒸発器5、過熱器1、再熱器2に接触することによって
、前記熱エネルギーが蒸発器5、過熱器1、再熱器2に
伝達される。
When fuel burns, its thermal energy is
The thermal energy is transferred to the bed material 4 in a fluidized state, and the bed material 4 further contacts the evaporator 5, superheater 1, and reheater 2, so that the thermal energy is transferred to the evaporator 5, superheater 1, and reheater 2 is transmitted to.

【0007】給水ポンプ9から蒸発器5へ供給されるボ
イラ水は前記熱エネルギーによって蒸気化し、その蒸気
は過熱器1により過熱蒸気となり、該過熱蒸気は蒸気タ
ービン設備10の高圧タービン11に流入して該高圧タ
ービン11が駆動される。
[0007] Boiler water supplied from the feed water pump 9 to the evaporator 5 is vaporized by the thermal energy, and the steam is turned into superheated steam by the superheater 1, and the superheated steam flows into the high pressure turbine 11 of the steam turbine equipment 10. The high pressure turbine 11 is driven.

【0008】高圧タービン11を駆動した後の蒸気は、
再熱器2へ流入し、該再熱器2によって再熱された蒸気
は中低圧タービン12に流入して、該中低圧タービン1
2を駆動し、更に中低圧タービン12を駆動した後の蒸
気は、復水器13によってボイラ水に戻されたうえ、給
水ポンプ9により再び蒸発器5へ供給される。
The steam after driving the high pressure turbine 11 is
The steam that flows into the reheater 2 and is reheated by the reheater 2 flows into the medium and low pressure turbine 12.
2 and further drives the medium and low pressure turbine 12 , the steam is returned to boiler water by the condenser 13 and is again supplied to the evaporator 5 by the water supply pump 9 .

【0009】このようにして、蒸気タービン設備10は
蒸気により駆動され、蒸気タービン設備10に接続され
た蒸気タービン発電機24によって発電が行われる。
In this way, the steam turbine equipment 10 is driven by steam, and the steam turbine generator 24 connected to the steam turbine equipment 10 generates electricity.

【0010】一方、セル3内において燃焼した燃料の燃
焼ガスは、管路25によりガスタービン26に供給され
た後、煙突28から排出され、前記ガスタービン26に
接続されたガスタービン発電機27によって発電が行わ
れ、又、同時に、ガスタービン26によって前記コンプ
レッサ14が駆動される。
On the other hand, the combustion gas of the fuel burned in the cell 3 is supplied to a gas turbine 26 through a pipe 25, then exhausted from a chimney 28, and is then generated by a gas turbine generator 27 connected to the gas turbine 26. Electric power is generated, and at the same time, the compressor 14 is driven by the gas turbine 26.

【0011】前述の如き流動層ボイラ18において、燃
焼ガス中に含まれる硫黄分を低減させるために層内脱硫
を行う場合、図2に示される如く、燃料6と石灰石(C
aCO3)等の脱硫剤8とを混合燃料スラリータンク2
9へ所望の比率で投入して予め混合燃料スラリー32を
形成し、該混合燃料スラリー32をポンプ39により複
数の混合燃料注入ノズル44から流動層17内へ供給す
る方法がある。
In the fluidized bed boiler 18 as described above, when intrabed desulfurization is performed to reduce the sulfur content contained in the combustion gas, as shown in FIG. 2, the fuel 6 and limestone (C
A mixed fuel slurry tank 2 with a desulfurizing agent 8 such as aCO3)
9 at a desired ratio to form a mixed fuel slurry 32 in advance, and then supplying the mixed fuel slurry 32 into the fluidized bed 17 from a plurality of mixed fuel injection nozzles 44 using a pump 39.

【0012】又、図3に示される如く、燃料6を燃料ス
ラリータンク35へ投入して燃料スラリー37を形成す
ると共に、脱硫剤8を脱硫剤スラリータンク36へ投入
して脱硫剤スラリー38を形成し、前記燃料スラリー3
7と脱硫剤スラリー38を夫々、ポンプ40,41によ
り複数の燃料注入ノズル47と脱硫剤注入ノズル48か
ら流動層17内へ供給し、該流動層17内で混合する方
法がある。
Further, as shown in FIG. 3, the fuel 6 is charged into the fuel slurry tank 35 to form a fuel slurry 37, and the desulfurizing agent 8 is charged into the desulfurizing agent slurry tank 36 to form a desulfurizing agent slurry 38. and the fuel slurry 3
7 and the desulfurizing agent slurry 38 are supplied into the fluidized bed 17 through a plurality of fuel injection nozzles 47 and desulfurizing agent injection nozzles 48 by pumps 40 and 41, respectively, and mixed within the fluidized bed 17.

【0013】[0013]

【発明が解決しようとする課題】図2に示される如く予
め形成した混合燃料スラリー32を流動層17内へ供給
する方法では、負荷変化時等のように燃料6と脱硫剤8
の比率を一時的に変える必要が生じた場合、燃料6と脱
硫剤8を所要量ずつ一旦混合燃料スラリータンク29へ
投入して混合燃料スラリー32における燃料6と脱硫剤
8の比率を増減させた後、流動層17内へ注入しなけれ
ばならないため、応答性が悪いという欠点を有していた
[Problems to be Solved by the Invention] In the method of supplying a pre-formed mixed fuel slurry 32 into the fluidized bed 17 as shown in FIG.
When it becomes necessary to temporarily change the ratio of the fuel 6 and the desulfurizing agent 8, the required amount of the fuel 6 and the desulfurizing agent 8 are once added to the mixed fuel slurry tank 29 to increase or decrease the ratio of the fuel 6 and the desulfurizing agent 8 in the mixed fuel slurry 32. After that, it has to be injected into the fluidized bed 17, which has the disadvantage of poor response.

【0014】又、この場合、部分負荷時には流動層17
内での脱硫率が下がり気味になることが経験的に判明し
ており、前述の如く負荷変化等に対する応答性が悪いこ
とを考慮して常に脱硫剤8を多めに入れておく必要があ
り無駄が多かった。
[0014] In this case, the fluidized bed 17
It has been empirically found that the desulfurization rate tends to decrease within the tank, and as mentioned above, it is necessary to always keep a large amount of desulfurization agent 8 in consideration of the poor response to load changes, etc., which is wasteful. There were many.

【0015】一方、図3に示される如く燃料スラリー3
7と脱硫剤スラリー38を流動層17内へ別々に供給す
る方法では、負荷変化時に対する応答性は良い反面、燃
料注入ノズル47とは全く別に脱硫剤スラリー38を流
動層17内へ注入するための脱硫剤注入ノズル48を設
ける必要があり、ノズル数を増加させねばならなかった
On the other hand, as shown in FIG.
7 and the desulfurizing agent slurry 38 into the fluidized bed 17 separately, the response to load changes is good, but because the desulfurizing agent slurry 38 is injected into the fluidized bed 17 completely separately from the fuel injection nozzle 47 It was necessary to provide a desulfurizing agent injection nozzle 48, and the number of nozzles had to be increased.

【0016】本発明は、斯かる実情に鑑み、負荷変化時
に対する応答性が良好で、且つ脱硫剤専用の注入ノズル
を別個に設けなくて済む流動層ボイラにおける脱硫率制
御方法を提供しようとするものである。
In view of the above circumstances, the present invention aims to provide a method for controlling the desulfurization rate in a fluidized bed boiler, which has good responsiveness to changes in load and does not require a separate injection nozzle exclusively for the desulfurization agent. It is something.

【0017】[0017]

【課題を解決するための手段】本発明は、燃料と脱硫剤
の比率の異なる混合燃料スラリーを複数種類調整してお
き、各混合燃料スラリーを夫々流量を変えて流動層ボイ
ラに供給し、脱硫率を調整することを特徴とするもので
ある。
[Means for Solving the Problems] The present invention prepares a plurality of types of mixed fuel slurries with different ratios of fuel and desulfurizing agent, and supplies each mixed fuel slurry at a different flow rate to a fluidized bed boiler to desulfurize the slurry. It is characterized by adjusting the rate.

【0018】[0018]

【作用】従って、負荷変化時等のように燃料と脱硫剤の
比率を一時的に変える必要が生じた場合、複数種類の混
合燃料スラリーの各流量を変化させて流動層内へ供給す
ると、各混合燃料スラリーが流動層内で混ざり合い、燃
料と脱硫剤の比率が所望の値に調整され、流動層内での
脱硫率が調整される。
[Operation] Therefore, when it is necessary to temporarily change the ratio of fuel and desulfurization agent such as when the load changes, it is possible to change the flow rate of multiple types of mixed fuel slurry and supply them into the fluidized bed. The mixed fuel slurry is mixed in the fluidized bed, the ratio of fuel and desulfurization agent is adjusted to a desired value, and the desulfurization rate in the fluidized bed is adjusted.

【0019】[0019]

【実施例】以下、本発明の実施例を図面を参照しつつ説
明する。
Embodiments Hereinafter, embodiments of the present invention will be described with reference to the drawings.

【0020】図1は本発明の一実施例であって、図中図
2、3と同一の符号を付した部分は同一物を表わしてお
り、燃料6と脱硫剤8を、第一混合燃料スラリータンク
30へ投入して所望の比率の第一混合燃料スラリー33
を形成すると共に、第二混合燃料スラリータンク31へ
投入して前記第一混合燃料スラリー33における燃料6
と脱硫剤8の比率と異なる所望の比率の第二混合燃料ス
ラリー34を形成しておき、前記第一混合燃料スラリー
33と第二混合燃料スラリー34を夫々、ポンプ42,
43により第一混合燃料注入ノズル45と第二混合燃料
注入ノズル46から流動層17内へ供給するようにする
FIG. 1 shows one embodiment of the present invention, in which parts with the same reference numerals as in FIGS. 2 and 3 represent the same parts, and the fuel 6 and desulfurization agent 8 are The first mixed fuel slurry 33 is charged into the slurry tank 30 and has a desired ratio.
At the same time, the fuel 6 in the first mixed fuel slurry 33 is charged into the second mixed fuel slurry tank 31.
A second mixed fuel slurry 34 having a desired ratio different from that of the desulfurizing agent 8 is formed, and the first mixed fuel slurry 33 and the second mixed fuel slurry 34 are pumped through a pump 42,
43, the mixed fuel is supplied into the fluidized bed 17 from the first mixed fuel injection nozzle 45 and the second mixed fuel injection nozzle 46.

【0021】負荷変化時等のように燃料6と脱硫剤8の
比率を一時的に変える必要が生じた場合、ポンプ42,
43の各流量を変化させると、燃料6と脱硫剤8の比率
の異なる第一、第二混合燃料スラリー33,34が夫々
、第一、第二混合燃料注入ノズル45,46から流動層
17内へ供給されて混ざり合い、燃料6と脱硫剤8の比
率が所望の値に調整され、流動層内での脱硫率が調整さ
れる。
When it becomes necessary to temporarily change the ratio of the fuel 6 and the desulfurizing agent 8, such as when the load changes, the pump 42,
43, the first and second mixed fuel slurries 33 and 34 having different ratios of fuel 6 and desulfurizing agent 8 are respectively injected into the fluidized bed 17 from the first and second mixed fuel injection nozzles 45 and 46. The ratio of the fuel 6 and the desulfurizing agent 8 is adjusted to a desired value, and the desulfurization rate within the fluidized bed is adjusted.

【0022】こうして、負荷変化時等に対する応答性が
良好となり、図2に示される従来例の場合のように常に
脱硫剤8を多めに入れておく必要もなく、又、図3に示
される従来例の場合のように脱硫剤専用の注入ノズルを
燃料用と別に設ける必要がなくノズル数を増やさなくて
済む。
[0022] In this way, responsiveness to changes in load etc. is improved, and there is no need to always add a large amount of desulfurizing agent 8 as in the case of the conventional example shown in FIG. There is no need to provide a separate injection nozzle for the desulfurization agent and the injection nozzle for the fuel, as in the case of the example, and there is no need to increase the number of nozzles.

【0023】尚、本発明の流動層ボイラにおける脱硫率
制御方法は、上述の実施例にのみ限定されるものではな
く、本発明の要旨を逸脱しない範囲内において種々変更
を加え得ることは勿論である。
The method for controlling the desulfurization rate in a fluidized bed boiler according to the present invention is not limited to the above-mentioned embodiments, and it goes without saying that various changes can be made without departing from the gist of the present invention. be.

【0024】[0024]

【発明の効果】以上説明したように、本発明の流動層ボ
イラにおける脱硫率制御方法によれば、負荷変化等に対
する応答性が良好となると共に、脱硫剤専用の注入ノズ
ルを燃料用と別に設ける必要がなくノズル数を増やさな
くて済むという優れた効果を奏し得る。
As explained above, according to the desulfurization rate control method in a fluidized bed boiler of the present invention, responsiveness to changes in load, etc. is improved, and an injection nozzle dedicated to desulfurization agent is provided separately from that for fuel. An excellent effect can be achieved in that there is no need to increase the number of nozzles.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の一実施例の概念図である。FIG. 1 is a conceptual diagram of an embodiment of the present invention.

【図2】従来例の概念図である。FIG. 2 is a conceptual diagram of a conventional example.

【図3】他の従来例の概念図である。FIG. 3 is a conceptual diagram of another conventional example.

【符号の説明】[Explanation of symbols]

6    燃料 8    脱硫剤 18  流動層ボイラ 6. Fuel 8 Desulfurization agent 18 Fluidized bed boiler

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  燃料と脱硫剤の比率の異なる混合燃料
スラリーを複数種類調整しておき、各混合燃料スラリー
を夫々流量を変えて流動層ボイラに供給し、脱硫率を調
整することを特徴とする流動層ボイラにおける脱硫率制
御方法。
[Claim 1] A plurality of types of mixed fuel slurries having different ratios of fuel and desulfurizing agent are prepared, and each mixed fuel slurry is supplied to a fluidized bed boiler at a different flow rate to adjust the desulfurization rate. A method for controlling the desulfurization rate in a fluidized bed boiler.
JP16213391A 1991-06-06 1991-06-06 Method for controlling desulfurization rate in fluidized-bed boiler Pending JPH04359703A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16213391A JPH04359703A (en) 1991-06-06 1991-06-06 Method for controlling desulfurization rate in fluidized-bed boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16213391A JPH04359703A (en) 1991-06-06 1991-06-06 Method for controlling desulfurization rate in fluidized-bed boiler

Publications (1)

Publication Number Publication Date
JPH04359703A true JPH04359703A (en) 1992-12-14

Family

ID=15748670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16213391A Pending JPH04359703A (en) 1991-06-06 1991-06-06 Method for controlling desulfurization rate in fluidized-bed boiler

Country Status (1)

Country Link
JP (1) JPH04359703A (en)

Similar Documents

Publication Publication Date Title
US5417053A (en) Partial regenerative dual fluid cycle gas turbine assembly
JP2581825B2 (en) Power plant
US9523311B2 (en) Method of operating a gas turbine, and gas turbine with water injection
CN105339629A (en) Gas turbine with fuel composition control
EP1862529A2 (en) Hydrogen blended combustion system with flue gas recirculation
EP2522829A2 (en) A steam injected gas turbine engine
EP3314166A1 (en) Method and equipment for combustion of ammonia
CN110375330B (en) Staged oxygen supply combustion chamber and staged oxygen supply combustion method of gas turbine
CA3012085C (en) Method and equipment for combustion of ammonia
US6401445B1 (en) Electrolysis system and method for improving fuel atomization and combustion
EP2580448A2 (en) Gas turbine and method for operating said gas turbine
JP4720966B2 (en) Gas turbine power generator using biogas as fuel
JPH04359703A (en) Method for controlling desulfurization rate in fluidized-bed boiler
CN214664321U (en) Boiler low-load stable-combustion denitration system suitable for deep peak regulation
JPH08510815A (en) Gas and steam combined cycle pressurized fluidized bed power plant and its establishment and operation method
JP4297547B2 (en) Control method and apparatus for fluidized bed boiler
WO2008019555A1 (en) A coal powder-turbine generator and a method for producing coal powder tw0-phases fuel
JPS6179856A (en) Method of starting turbo-compressor
JPH04369301A (en) Pressurized fluidized bed boiler
CN1161074A (en) Generating equipment
JPH11508344A (en) Method and apparatus for generating additional energy in a power plant
CN1161076A (en) Generating equipment
EP3517759A1 (en) Gas turbine plant and method for operating a gas turbine plant
JPS6332127A (en) Gas turbine driving equipment
RU43919U1 (en) GAS TURBINE SYSTEM