JPS6332127A - Gas turbine driving equipment - Google Patents

Gas turbine driving equipment

Info

Publication number
JPS6332127A
JPS6332127A JP17578686A JP17578686A JPS6332127A JP S6332127 A JPS6332127 A JP S6332127A JP 17578686 A JP17578686 A JP 17578686A JP 17578686 A JP17578686 A JP 17578686A JP S6332127 A JPS6332127 A JP S6332127A
Authority
JP
Japan
Prior art keywords
gas turbine
air
oxygen
gas
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17578686A
Other languages
Japanese (ja)
Inventor
Masatoshi Kudome
正敏 久留
Kazumi Takeda
武田 和三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP17578686A priority Critical patent/JPS6332127A/en
Publication of JPS6332127A publication Critical patent/JPS6332127A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To increase efficiency by using the air having a high concentration of the oxidizing agent for a gas turbine. CONSTITUTION:The air compressed in a compressor 1 is sent into an oxygen separator 1. The air having a high oxygen concentration produced in an oxygen separator 5 is pressurized in a compressor 10 and sent into an accumulator 13. The pressure and feeding quantity of the air having a high oxygen concentration which is pressurized in the accumulator 13 are adjusted by a damper 14, and then said air is supplied into the first gas turbine combustor 16. The first gas turbine 17 is driven by the combustion gas. Therefore, the exhaust loss can be reduced, and efficiency can be increased.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、発電設備等に適用されるガスタービン駆動設
備に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to gas turbine drive equipment applied to power generation equipment and the like.

従来の技術 従来例としてガスタービン発電設備の回路図を第2図に
示す。従来のガスタービン発電設備では、燃焼用空気と
して大気を使用している。空気吸込口03から吸入した
大気を空気圧縮機010で圧縮し、空気供給ダクト01
5を介してガスタービン燃焼器016に導入して燃料と
共に燃焼させ、ガスタービン017を駆動せしめる。こ
うして生じたガスタービン017の出力により、共通軸
028によってガスタービン017と接続する発電機0
29及び空気圧縮機010を駆動するのである。
2. Description of the Related Art As a conventional example, a circuit diagram of a gas turbine power generation facility is shown in FIG. Conventional gas turbine power generation equipment uses atmospheric air as combustion air. The air sucked from the air suction port 03 is compressed by the air compressor 010, and the air is transferred to the air supply duct 01.
The fuel is introduced into the gas turbine combustor 016 via the gas turbine combustor 016 and combusted together with the fuel, thereby driving the gas turbine 017. Due to the output of the gas turbine 017 generated in this way, the generator 0 connected to the gas turbine 017 through a common shaft 028
29 and the air compressor 010.

発明が解決しようとする問題点 面述の従来例によれば、燃焼に関与する約21%の酸素
と燃焼に関与しない約79%の窒素とにより構成される
大気を燃焼用として用いているため下記のような問題点
があった。
According to the conventional example that describes the problem to be solved by the invention, an atmosphere composed of about 21% oxygen, which participates in combustion, and about 79% nitrogen, which does not participate in combustion, is used for combustion. There were the following problems.

(1)  排気ガス保有熱による熱損失は、燃焼に関与
しないで排気される大気ガス温度が高いことと相俟って
65%以上にも及ぶ。
(1) Combined with the high temperature of the atmospheric gas that is exhausted without being involved in combustion, the heat loss due to the heat retained in the exhaust gas reaches over 65%.

(2)従来のガスタービンでは、出力の約273を空気
圧縮機駆動動力として消費していた。
(2) In conventional gas turbines, approximately 273 of the output was consumed as driving power for the air compressor.

(3)ガスタービンが大型化していた。(3) Gas turbines were becoming larger.

(4)窒素酸化物の発生量が多い。(4) A large amount of nitrogen oxides are generated.

問題点を解決するための手段 本発明は、前述の問題点を解決するもので、ガスタービ
ンの酸化剤を酸素又は高酸素濃度の空気としたことを特
徴とするガスタービン駆動設備である。
Means for Solving the Problems The present invention solves the above-mentioned problems, and is a gas turbine drive equipment characterized in that the oxidizing agent of the gas turbine is oxygen or air with a high oxygen concentration.

作用 前述の手段によれば、燃焼に関与しない窒素がほとんど
含まれなくなるので排気ガス保有熱による熱損失を約1
15(12%以下)に低減でき、抄÷鴫、−、l、がも
圧縮 機における消費動力も低減できるので、効率を向上する
ことができる。また、小型化も可能となり、排気ガス中
に含まれる窒素酸化物も著しく減少する。
Effect: According to the above-mentioned method, almost no nitrogen that does not participate in combustion is contained, so the heat loss due to the heat retained in the exhaust gas is reduced by approximately 1.
15 (12% or less), and the power consumption in the compressor can also be reduced, so efficiency can be improved. In addition, miniaturization is possible, and nitrogen oxides contained in exhaust gas are significantly reduced.

実施例 本発明の実施例を第1図に示して説明する。この実施例
は、4台のガスタービンを同軸に接続したガスタービン
発電設備に関するもので、酸素又は高酸素濃度空気の酸
化剤生成プロセスについても例示しである。図によれば
、空気圧縮機1の空気吸込口3から導入した空気は、圧
縮されて酸素分離器人口空気ダクト4を通って酸素分離
器5に送られる。この酸素分離器では、酸素又は高酸素
濃度空気を製造して酸素圧縮機10に送ると共に、空気
中に含まれていた窒素等の不要ガスを膨張タービン7に
送る。膨張タービン7に送られたガスは、空気圧縮機用
電動機2と共に空気圧縮機1の動力源として仕事をした
後排気される。一方、酸素圧縮機10に送られた酸素又
は高酸素濃度空気は加圧されてアキュミュレータ13に
送られるが、以下定量的説明を容易にするため純酸素を
用いた場合について述べる。アキュミュレータ13に蓄
圧された酸素は、制御・締切兼用ダンパI4によって圧
力や供給量を調整され、第1ガスタービン燃焼器16に
安定して供給されて燃料と共に燃焼する。こうして発生
した燃焼ガスは、第1ガスタービンで仕事をしてから接
続排気ダクト18を通って酸素濃度の高い燃焼ガスとし
て第2ガスタービン燃焼器19に導入され、ふたたび燃
料と共に燃焼して第2ガスタービンでも仕事をするので
ある。さらに、第3ガスタービン23及び第4ガスター
ビン26でも同様に仕事をして、ガスタービン排気ダク
ト27より排気され、共aM28で接続された発N機2
9を駆動せしめるのである。この場合、制御・締切兼用
タンパ14を通って供給される酸素供給量は、第1ガス
タービン16から第4ガスタービン26までの4台のガ
スタービンで投入された全ての燃料を完全燃焼させるの
に必要な量以上となる。特に、ガスタービン燃焼機の如
く限られた空間内で燃焼を完結するためには過剰酸素が
必要となるが、排気ガス保有熱による熱損失を最小限に
して効率低下を防ぐ目的から、残存酸素量が最小となる
ように酸素供給量を決定する。各ガスタービンの燃料量
は、° 各ガスタービン入口でのガス温度が所定の温度
で一定となるように制御されている。
Embodiment An embodiment of the present invention will be described with reference to FIG. This embodiment relates to a gas turbine power generation facility in which four gas turbines are coaxially connected, and also illustrates an oxidizing agent production process using oxygen or high oxygen concentration air. According to the figure, air introduced through the air inlet 3 of the air compressor 1 is compressed and sent through the oxygen separator artificial air duct 4 to the oxygen separator 5. This oxygen separator produces oxygen or high oxygen concentration air and sends it to the oxygen compressor 10, and also sends unnecessary gas such as nitrogen contained in the air to the expansion turbine 7. The gas sent to the expansion turbine 7 works together with the air compressor electric motor 2 as a power source for the air compressor 1, and then is exhausted. On the other hand, oxygen or high oxygen concentration air sent to the oxygen compressor 10 is pressurized and sent to the accumulator 13, but in order to facilitate quantitative explanation, a case will be described below in which pure oxygen is used. The pressure and supply amount of the oxygen accumulated in the accumulator 13 are adjusted by the control/shutoff damper I4, and the oxygen is stably supplied to the first gas turbine combustor 16 and combusted together with the fuel. The combustion gas generated in this way performs work in the first gas turbine, and then is introduced into the second gas turbine combustor 19 as combustion gas with a high oxygen concentration through the connecting exhaust duct 18, where it is combusted together with the fuel again and the second gas turbine is combusted. Gas turbines also do work. Furthermore, the third gas turbine 23 and the fourth gas turbine 26 also perform work in the same way, and the exhaust is exhausted from the gas turbine exhaust duct 27, and the N generator 2 connected with the aM28.
9 is driven. In this case, the amount of oxygen supplied through the control/shutoff tamper 14 is sufficient to completely burn all the fuel input into the four gas turbines from the first gas turbine 16 to the fourth gas turbine 26. This is more than the amount required for. In particular, in order to complete combustion in a limited space such as in a gas turbine combustor, excess oxygen is required. The amount of oxygen supplied is determined so that the amount of oxygen is minimized. The amount of fuel in each gas turbine is controlled so that the gas temperature at the inlet of each gas turbine is constant at a predetermined temperature.

従って、従来のように大気を圧縮して導入し、その中に
含まれる約21%の酸素を酸化剤として燃焼させていた
場合と比較すれば、本発明で純酸素を酸化剤として導入
した場合、ガスタービン酸素供給ダクト■5の通過型は
約175となる。
Therefore, compared to the conventional case in which air is compressed and introduced and about 21% of the oxygen contained therein is burned as an oxidizing agent, the case in which pure oxygen is introduced as an oxidizing agent in the present invention , the passage type of the gas turbine oxygen supply duct ■5 is approximately 175.

本発明におけるガスタービンの基本設計要領は、次の通
りである。
The basic design guidelines of the gas turbine in the present invention are as follows.

(1)酸素供給量と全燃料投入量の関係は、最終ガスタ
ービン燃焼器で燃料が安定して燃焼し、排気中に未燃分
の燃料がなく、かつ残存酸素量が最少となる関係に設定
する。す、なわち、排気損失か最少となるように設定す
ることになる。
(1) The relationship between the oxygen supply amount and the total fuel input amount is such that the fuel is stably combusted in the final gas turbine combustor, there is no unburned fuel in the exhaust gas, and the amount of residual oxygen is the minimum. Set. In other words, the settings should be made to minimize exhaust loss.

(2)各ガスタービンに供給する燃料配分は、各々のガ
スタービン燃焼器出口ガス温度が最高許容温度以上とな
らないような圧力比又はガス温度降下となる様に設定す
る。
(2) The fuel distribution to be supplied to each gas turbine is set so that the pressure ratio or gas temperature drop is such that the gas temperature at the outlet of each gas turbine combustor does not exceed the maximum allowable temperature.

このように、比較的小型で圧縮機をもたないガスタービ
ンを直属に接続することにより、空気を使用する場合に
比べて大巾に高効率で大出力の発電を行なうことができ
る。
In this way, by directly connecting a gas turbine that is relatively small and does not have a compressor, it is possible to generate power with significantly higher efficiency and greater output than when using air.

発明の効果 前述の本発明によれば、下記のような効果が得られる。Effect of the invention According to the present invention described above, the following effects can be obtained.

(1)  純酸素を使用した場合、ガスタービン排気損
失が従来の175以下となり、高効率を達成できる。
(1) When pure oxygen is used, the gas turbine exhaust loss is less than the conventional 175, and high efficiency can be achieved.

(2)圧縮機消費動力が低減できる。(2) Compressor power consumption can be reduced.

(3)窒素酸、化物の発生mが皆無又は僅少となり、窒
素酸化物低減用としてガスタービン燃焼器に注水するこ
とも不要となり補給水がいらなくなる。
(3) There is no or very little generation of nitrogen acids and compounds, and it becomes unnecessary to inject water into the gas turbine combustor to reduce nitrogen oxides, eliminating the need for makeup water.

(4)燃焼ガス流量が減少できることから、ガスタービ
ンの翼車径や翼長を短くすることができる。従って、小
型化が可能になると共に信頼性が向上する。
(4) Since the flow rate of combustion gas can be reduced, the impeller diameter and blade length of the gas turbine can be shortened. Therefore, it is possible to reduce the size and improve reliability.

(5)所要空間が少なくてよい。(5) Less space is required.

(6)ガスタービンのみで従来型のガスタービン十蒸気
タービンサイクルプラントのコンバインドサイクルより
も高効率を得ることができるので、上記タービンサイク
ル等のボトミングサイクルは不要である。
(6) Since it is possible to obtain higher efficiency than a conventional combined cycle of a gas turbine and steam turbine cycle plant using only a gas turbine, a bottoming cycle such as the above-mentioned turbine cycle is not necessary.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を発電設備に適用した実施例を示す回路
図、第2図は従来例を示す回路図である。 l・・空気圧縮機、2・・空気圧縮機用電動機、3・・
空気吸込口、5・・酸素分離機、7・・膨扇 張タービン、10・・酸素圧縮榛、13・・アキュミュ
レータ、14・・制御・締切兼用ダンパ、16・・第1
ガスタービン燃焼器、17・・第1ガスタービン、il
l、 21.24 ・・ 接続排気ダクト、19・・第
2ガスタービン燃焼器、20・・第2ガスタービン、2
2・・第3ガスタービン燃焼器、23・・第3ガスター
ビン、25・・第4ガスタービン燃焼器、26・・(ほ
か1名)
FIG. 1 is a circuit diagram showing an embodiment in which the present invention is applied to power generation equipment, and FIG. 2 is a circuit diagram showing a conventional example. l...Air compressor, 2...Air compressor electric motor, 3...
Air suction port, 5. Oxygen separator, 7. Expansion fan turbine, 10. Oxygen compressor, 13. Accumulator, 14. Control/shutoff damper, 16. 1st
Gas turbine combustor, 17...first gas turbine, il
l, 21.24... Connection exhaust duct, 19... Second gas turbine combustor, 20... Second gas turbine, 2
2...Third gas turbine combustor, 23...Third gas turbine, 25...Fourth gas turbine combustor, 26...(1 other person)

Claims (1)

【特許請求の範囲】[Claims] ガスタービンの酸化剤を酸素又は高酸素濃度の空気とし
たことを特徴とするガスタービン駆動設備。
Gas turbine drive equipment characterized in that the oxidizing agent for the gas turbine is oxygen or air with a high oxygen concentration.
JP17578686A 1986-07-28 1986-07-28 Gas turbine driving equipment Pending JPS6332127A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17578686A JPS6332127A (en) 1986-07-28 1986-07-28 Gas turbine driving equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17578686A JPS6332127A (en) 1986-07-28 1986-07-28 Gas turbine driving equipment

Publications (1)

Publication Number Publication Date
JPS6332127A true JPS6332127A (en) 1988-02-10

Family

ID=16002223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17578686A Pending JPS6332127A (en) 1986-07-28 1986-07-28 Gas turbine driving equipment

Country Status (1)

Country Link
JP (1) JPS6332127A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03251722A (en) * 1989-08-25 1991-11-11 Fuji Electric Co Ltd Karman's vortex flowmeter
US5197336A (en) * 1990-01-29 1993-03-30 Fuji Electric Co., Ltd. Karman vortex flow meter
JP2008232087A (en) * 2007-03-23 2008-10-02 Mitsubishi Heavy Ind Ltd Gas turbine power generation system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03251722A (en) * 1989-08-25 1991-11-11 Fuji Electric Co Ltd Karman's vortex flowmeter
US5197336A (en) * 1990-01-29 1993-03-30 Fuji Electric Co., Ltd. Karman vortex flow meter
JP2008232087A (en) * 2007-03-23 2008-10-02 Mitsubishi Heavy Ind Ltd Gas turbine power generation system

Similar Documents

Publication Publication Date Title
US5417053A (en) Partial regenerative dual fluid cycle gas turbine assembly
EP1044321B1 (en) Gas turbine engines connected in series
US7421835B2 (en) Air-staged reheat power generation system
JP3646834B2 (en) Gas turbine power generator
JP2009185809A (en) Method and system for reforming combined-cycle working fluid and promoting its combustion
JPH08510311A (en) High efficiency multi-axis reheat turbine using intercooling and recuperation
JP2013221506A (en) Method and system for controlling powerplant during low-load operation
EP1164254A3 (en) Optimized steam turbine peaking cycles utilizing steam bypass and related process
US20160273397A1 (en) Power generation system having compressor creating excess air flow and supplemental compressor therefor
JP2018524544A (en) Method and apparatus for combustion of ammonia
US6725643B1 (en) High efficiency gas turbine power generator systems
US10767556B2 (en) Method and equipment for combustion of ammonia
JP2003083081A (en) Gas turbine power generation facility
US6751940B1 (en) High efficiency gas turbine power generator
JPS6332127A (en) Gas turbine driving equipment
JP2001020755A (en) Exhaust re-circulation type gas turbine system and combined cycle generator facility with the gas turbine system
JPH07332109A (en) Compressed air storage type power generating plant
US20160273403A1 (en) Power generation system having compressor creating excess air flow and turbo-expander using same
JP2003269188A (en) Steam injection reheating gas turbine generating set
JPH08166109A (en) Pressurized fluidized bed plant
JPS62135619A (en) Heat supply power generating device using gas turbine
JPH0861014A (en) Two-fluid cycle gas turbine
JP2003129860A (en) Thermoelectric variable composite gas turbine
JPH0424084Y2 (en)
JPH01178727A (en) Coal gasification compound power plant