JPH04358519A - Gasification device for denitration reducer - Google Patents

Gasification device for denitration reducer

Info

Publication number
JPH04358519A
JPH04358519A JP3043173A JP4317391A JPH04358519A JP H04358519 A JPH04358519 A JP H04358519A JP 3043173 A JP3043173 A JP 3043173A JP 4317391 A JP4317391 A JP 4317391A JP H04358519 A JPH04358519 A JP H04358519A
Authority
JP
Japan
Prior art keywords
reducing agent
temperature
vaporization
denitrification
vaporizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3043173A
Other languages
Japanese (ja)
Inventor
Tsutomu Uchiyama
勉 内山
Hiroshi Takeda
博 武田
Meiji Ito
明治 伊東
Yoshinori Nagai
良憲 永井
Naomi Imada
尚美 今田
Yoshimichi Mori
喜通 森
Masahiro Nitta
昌弘 新田
Isato Morita
勇人 森田
Tomihisa Ishikawa
石川 富久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEKIYU SANGYO KASSEIKA CENTER
Idemitsu Kosan Co Ltd
Japan Petroleum Energy Center JPEC
Mitsubishi Power Ltd
Original Assignee
SEKIYU SANGYO KASSEIKA CENTER
Babcock Hitachi KK
Petroleum Energy Center PEC
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEKIYU SANGYO KASSEIKA CENTER, Babcock Hitachi KK, Petroleum Energy Center PEC, Idemitsu Kosan Co Ltd filed Critical SEKIYU SANGYO KASSEIKA CENTER
Priority to JP3043173A priority Critical patent/JPH04358519A/en
Publication of JPH04358519A publication Critical patent/JPH04358519A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a gasification device gasifying a solid reducer in a short time and prevent the formation of scale because of decomposition, polimerization or the like. CONSTITUTION:Reduer powder composed of solid nitrogen containing component is dropped from a piping 15 onto a gasified face 16 of a reduced heating means 3 at the normal temperature and under the normal pressure, gasification is performed at explosively fast speed only at the point of bringing the reducer into contact with the gasified face 16 which shortens the required time for gasification and controls the progress of secondary reaction such as decomposition, polymerization or the like. The reduer, therefore, is not changed in its quality to reduce the danger of formation of scale.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は排ガス脱硝装置に係り、
特に、窒素酸化物の選択還元剤を固体で供給して気化さ
せ、排ガスに混合するのに好適な脱硝用還元剤の気化装
置に関する。
[Industrial Application Field] The present invention relates to an exhaust gas denitrification device.
In particular, the present invention relates to a denitrification reducing agent vaporization device suitable for supplying a nitrogen oxide selective reducing agent in solid form, vaporizing it, and mixing it with exhaust gas.

【0002】0002

【従来の技術】石炭、石油の燃焼排ガス中には動植物に
有害な窒素酸化物が含まれるので大気への排出が規制さ
れている。この排ガスの排出規制は大気の汚染され易い
工業地帯における大型ボイラなどの排ガス多量発生源に
厳しく適用されている。大型ボイラでは、まず燃焼器の
改善によって窒素酸化物発生量を抑制し、次いで排ガス
脱硝装置を用いて排ガス中の窒素酸化物を排ガスに添加
したアンモニアガスで還元し、無害な窒素に転化させた
後、大気に放出する技術が確立され、実用に供されてい
る。
BACKGROUND OF THE INVENTION Since combustion exhaust gas from coal and oil contains nitrogen oxides that are harmful to animals and plants, their emission into the atmosphere is regulated. This exhaust gas emission regulation is strictly applied to sources that generate a large amount of exhaust gas, such as large boilers in industrial areas where the air is easily polluted. In large boilers, we first suppressed the amount of nitrogen oxides generated by improving the combustor, and then used exhaust gas denitrification equipment to reduce nitrogen oxides in the exhaust gas with ammonia gas added to the exhaust gas, converting it into harmless nitrogen. Later, technology for releasing it into the atmosphere was established and is now in practical use.

【0003】しかし、都市部における小型ボイラ、ディ
ーゼル機関からの燃焼排ガスの規制は従来、緩やかで排
ガス脱硝装置まで設ける例は稀であった。ところが最近
、都市部における大気汚染が改善されず、むしろ悪化す
る傾向にあることから規制が強化され、排ガス脱硝装置
が必要になる例が増している。このような小型装置では
従来、排ガス脱硝に使用していたアンモニアガスは危険
で使用できない。アンモニアガスは高圧ガス取締法、毒
劇物取締法、大気汚染防止法、悪臭防止法、消防法など
で使用が規制される有害物質で人家密集地および管理が
十分でない小型装置では使用できない。アンモニア水溶
液で用いれば高圧ガス取締法の対象外となり、若干危険
性が少なくなるが有害であることには変わりない。
[0003] However, regulations on combustion exhaust gas from small boilers and diesel engines in urban areas have traditionally been lenient, and it has been rare to install exhaust gas denitrification equipment. Recently, however, air pollution in urban areas has not been improved, and in fact tends to worsen, so regulations have been tightened and exhaust gas denitrification equipment is becoming increasingly necessary. Ammonia gas, which has been conventionally used for exhaust gas denitration, is dangerous and cannot be used in such small devices. Ammonia gas is a hazardous substance whose use is regulated by the High Pressure Gas Control Law, Poisonous and Deleterious Substances Control Law, Air Pollution Control Law, Offensive Odor Control Law, Fire Service Law, etc., and cannot be used in crowded areas or in small equipment that is not adequately managed. If it is used in an ammonia aqueous solution, it will not be subject to the High Pressure Gas Control Law and will be slightly less dangerous, but it will still be harmful.

【0004】従来の脱硝装置においてアンモニアの代替
還元剤として含窒素化合物が有効であることが公知であ
り、含窒素化合物の内、尿素などの固体還元剤は人畜無
害で入手と取り扱いが容易であるため、尿素などを用い
る方法が数多く報告されている。
It is known that nitrogen-containing compounds are effective as reducing agents in place of ammonia in conventional denitrification equipment, and among nitrogen-containing compounds, solid reducing agents such as urea are harmless to humans and animals and are easy to obtain and handle. Therefore, many methods using urea etc. have been reported.

【0005】[0005]

【発明が解決しようとする課題】固体還元剤の代表であ
る尿素を用いる脱硝装置を本発明者等が試験したところ
尿素の完全な気化が容易でなく、尿素加熱の副生成物に
起因する付着スケールが気化部、排ガス煙道、脱硝反応
器に蓄積され易いという問題があった。
[Problems to be Solved by the Invention] When the present inventors tested a denitrification device that uses urea, which is a typical solid reducing agent, it was found that complete vaporization of urea was not easy, and adhesion caused by byproducts of urea heating. There is a problem in that scale tends to accumulate in the vaporizer, exhaust gas flue, and denitrification reactor.

【0006】脱硝装置での取り扱いと保管の容易さから
水溶液でなく粒状の尿素を用いるが、粒子が大きくなる
と脱硝装置の前記した部所における付着スケールが増加
する傾向にある。ちなみに尿素1gをるつぼに分取し、
電気炉で温度範囲350℃〜600℃、加熱時間範囲0
.5時間〜4時間で加熱し、残ったるつぼ上のスケール
重量を測定した結果を図7に示す。脱硝反応器の温度で
ある350℃では0.5時間の加熱で9重量%のスケー
ルが残る。このスケールは加熱時間を増しても減少量が
少なく、4時間の加熱で3重量%に減少するだけである
。この物質のX線回折図を図8に示すが重合物と推定さ
れる尿素とは異なったピークを有している。
Granular urea is used instead of an aqueous solution because it is easier to handle and store in the denitrification equipment, but as the particles become larger, the scale adhering to the above-mentioned parts of the denitrification equipment tends to increase. By the way, 1 g of urea is separated into a crucible,
Electric furnace temperature range 350℃~600℃, heating time range 0
.. The scale weight on the remaining crucible after heating for 5 to 4 hours was measured, and the results are shown in FIG. At 350° C., which is the temperature of the denitrification reactor, 9% by weight of scale remains after heating for 0.5 hours. This scale does not decrease much even if the heating time is increased, and it only decreases to 3% by weight after 4 hours of heating. The X-ray diffraction diagram of this substance is shown in FIG. 8, and it has a peak different from that of urea, which is presumed to be a polymer.

【0007】そこで本発明の目的は、尿素等の還元剤の
気化時におけるスケール生成を防止した脱硝用還元剤の
気化装置を提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a reducing agent vaporizer for denitrification that prevents scale formation during vaporizing a reducing agent such as urea.

【0008】[0008]

【課題を解決するための手段】上記本発明の目的は次の
構成により達成される。すなわち、常温常圧で固体の含
窒素化合物からなる還元剤を用いて排ガス中の窒素酸化
物を還元して窒素に転化する脱硝装置に用いる還元剤の
気化装置において、排ガス煙道と連続した空間内に還元
剤が接触して気化する気化面を持つ還元剤加熱手段と、
前記還元剤加熱手段の気化面に任意の所定供給速度で還
元剤を投入する還元剤粉粒体供給手段と、前記還元剤加
熱手段の気化面の温度を還元剤の発火温度以下で還元剤
の蒸気圧が加熱面雰囲気の圧力以上となる温度以上の温
度範囲から選択した任意の所定温度に維持する加熱手段
の温度制御手段とを設けた脱硝用還元剤の気化装置であ
る。
Means for Solving the Problems The above objects of the present invention are achieved by the following configuration. In other words, in a reducing agent vaporization device used in a denitrification device that reduces nitrogen oxides in exhaust gas and converts them into nitrogen using a reducing agent made of a solid nitrogen-containing compound at room temperature and normal pressure, a space continuous with the exhaust gas flue is used. a reducing agent heating means having a vaporizing surface in which the reducing agent contacts and vaporizes;
reducing agent powder supply means for supplying the reducing agent to the vaporization surface of the reducing agent heating means at an arbitrary predetermined supply rate; This is a reducing agent vaporization device for denitrification, which is provided with temperature control means for the heating means to maintain the heating means at an arbitrary predetermined temperature selected from the temperature range above the temperature at which the vapor pressure becomes the pressure of the heating surface atmosphere or above.

【0009】ここで、還元剤加熱手段の気化面は高熱伝
導性材料で一体的に作製し、該気化面の表面または内部
に温度制御手段の温度検出端を設けることができる。ま
た、還元剤加熱手段の気化面は還元剤粉粒体および溶融
して液滴となった還元剤を保持する凹凸面を設けること
ができる。
[0009] Here, the vaporization surface of the reducing agent heating means can be integrally made of a highly thermally conductive material, and the temperature detection end of the temperature control means can be provided on or inside the vaporization surface. Further, the vaporizing surface of the reducing agent heating means can be provided with an uneven surface that holds the reducing agent powder and the reducing agent melted into droplets.

【0010】還元剤として尿素粉粒体を用いる場合に、
温度制御手段は還元剤加熱手段の気化面温度を360℃
以上450℃以下の温度範囲に制御する。
[0010] When using urea powder as a reducing agent,
The temperature control means controls the vaporizing surface temperature of the reducing agent heating means to 360°C.
The temperature is controlled within a range of 450° C. or higher.

【0011】前記脱硝用還元剤の気化装置の気化面下流
部における排ガス煙道に還元剤の分解触媒層を設けた燃
焼装置の脱硝用還元剤供給装置とすることもできる。
[0011] The denitrification reducing agent supply device for the combustion device may be provided with a reducing agent decomposition catalyst layer in the exhaust gas flue downstream of the vaporization surface of the denitrification reducing agent vaporization device.

【0012】0012

【作用】本発明によれば、還元剤粉粒体を還元剤加熱手
段の気化面上に落下させ、還元剤が気化面上で発生する
蒸気によって未蒸発の還元剤が押し上げられ浮遊し、気
化面と接触する点でのみ爆発的な速さで気化が行われる
。還元剤粉粒体と気化面との直接接触により、還元剤が
加熱され、気化所要時間が短くなり、分解、重合等の副
反応進行が抑制される。従って還元剤が変質し、スケー
ルを生成する危険性が少なくなる。
[Operation] According to the present invention, the reducing agent powder is dropped onto the vaporizing surface of the reducing agent heating means, and the unevaporated reducing agent is pushed up and suspended by the vapor generated on the vaporizing surface, and vaporized. Vaporization occurs at an explosive rate only at the point of contact with a surface. Direct contact between the reducing agent powder and the vaporization surface heats the reducing agent, shortens the time required for vaporization, and suppresses the progress of side reactions such as decomposition and polymerization. Therefore, there is less risk of the reducing agent deteriorating and forming scale.

【0013】例えば、還元剤として尿素を例にすると、
尿素の融点は132℃と低いので気化面上で尿素粉粒体
は液滴に転じるが、液滴が気化面上を激しく運動するの
で液滴内が撹拌され、重合を促進する中間生成物が希釈
され液体尿素中の中間生成物濃度が低下して、重合し難
しくなることも考えられる。また、この状態であれば、
たとえ重合に起因する気化し難い物質が生成しても、あ
るいは尿素中の鉄等の微量不純物に起因する気化しない
物質が残っても、尿素の液滴自体が気化面から浮遊した
まま気化するのでスケールが気化面に付着することはな
く遊離した粉として残るだけである。本発明者等が尿素
粉粒体で試験したところ気化面温度360℃以上でスケ
ール生成がなく気化した。但し450℃以上になると尿
素粉粒体の飛躍が大きくなるので、気化面と尿素粉粒体
の接触回数が減少し、気化所要時間が増大する。さらに
温度650℃以上になると発火する危険性が増す。従っ
て尿素粉粒体の場合は気化面温度を360℃以上450
℃以下の領域から選択することが好ましい。
For example, if urea is used as a reducing agent,
Since the melting point of urea is as low as 132°C, urea powder turns into droplets on the vaporization surface, but as the droplets move violently on the vaporization surface, the inside of the droplet is agitated, and intermediate products that promote polymerization are produced. It is also possible that the concentration of intermediate products in the diluted liquid urea decreases, making it difficult to polymerize. Also, if this is the case,
Even if substances that are difficult to vaporize due to polymerization are generated, or even if substances that do not vaporize due to trace impurities such as iron in urea remain, the urea droplets themselves remain suspended from the vaporization surface and vaporize. Scale does not adhere to the vaporizing surface and remains only as loose powder. When the present inventors tested urea powder, it vaporized without scale formation at a vaporization surface temperature of 360° C. or higher. However, when the temperature exceeds 450°C, the jump of the urea powder becomes large, so the number of times the vaporizing surface and the urea powder come into contact decreases, and the time required for vaporization increases. Furthermore, if the temperature exceeds 650°C, the risk of ignition increases. Therefore, in the case of urea powder, the vaporization surface temperature should be set at 360°C or higher and 450°C.
It is preferable to select from the range below ℃.

【0014】尿素以外の含窒素化合物、例えばシアヌル
酸、メラミン、重炭酸アンモニウム、ビウレット等にお
いても気化面との接触による伝熱で迅速に気化させ、か
つ接触点で気化面雰囲気の圧力以上で蒸気を発生させ、
含窒素化合物の粉粒体を激しく運動させるとスケール生
成の危険性が無くなる。
[0014] Nitrogen-containing compounds other than urea, such as cyanuric acid, melamine, ammonium bicarbonate, biuret, etc., can be rapidly vaporized by heat transfer through contact with the vaporizing surface, and vaporized at the point of contact at a pressure higher than the pressure of the vaporizing surface atmosphere. generate,
Vigorous movement of the nitrogen-containing compound powder eliminates the risk of scale formation.

【0015】本発明では還元剤加熱手段の気化面の温度
を所定温度範囲に維持することが重要であり、具体的に
はアルミニウム、銅等の熱伝導性の優れた材質を用いて
気化面温度分布を狭い範囲に押え、かつ同一のブロック
内に温度検出端を設置し、温度検出値によってブロック
を加熱する熱量を制御するのが好ましい。ブロックの材
質として銅を採用した場合には気化面表面をアルミナ等
のセラミックスで被覆しておくことが好ましい。銅の地
金が露出していると酸化銅の触媒作用によって尿素の一
部を酸化し窒素酸化物を生成することがある。
In the present invention, it is important to maintain the temperature of the vaporization surface of the reducing agent heating means within a predetermined temperature range. It is preferable to suppress the distribution within a narrow range, install a temperature detection end in the same block, and control the amount of heat to heat the block based on the temperature detection value. When copper is used as the material of the block, it is preferable to cover the vaporized surface with ceramics such as alumina. If copper metal is exposed, the catalytic action of copper oxide may oxidize some of the urea and produce nitrogen oxides.

【0016】気化面は凹凸状の形状が好ましい。平面に
比して還元剤粉粒体が接触する回数と面積が増し気化所
要時間が短くなる。
[0016] The vaporization surface preferably has an uneven shape. Compared to a flat surface, the number and area of contact with the reducing agent powder increases, and the time required for vaporization becomes shorter.

【0017】本発明による気化面だけでも還元剤の気化
を早め、還元剤気化の信頼性を増すことができるが、前
記気化装置の気化面下流部に還元剤蒸気の分解触媒層を
設ければ、本気化装置の信頼性をさらに増すことができ
る。分解触媒層で還元剤蒸気を本気化装置を流通させる
キャリアガス中の水蒸気により加水分解してアンモニア
に転化すれば、もはや配管の表面温度が低下しても尿素
等の還元剤が析出してスケールを生成することはない。
Although the vaporization surface of the present invention alone can speed up the vaporization of the reducing agent and increase the reliability of reducing agent vaporization, if a catalyst layer for decomposing the reducing agent vapor is provided downstream of the vaporization surface of the vaporization device, , the reliability of the serious vaporization device can be further increased. If the reducing agent vapor is hydrolyzed in the decomposition catalyst layer by the water vapor in the carrier gas flowing through the serious vaporization device and converted into ammonia, the reducing agent such as urea will precipitate and scale even if the surface temperature of the piping drops. will not be generated.

【0018】[0018]

【実施例】本発明を実施例を用いて説明する。 実施例1 所定温度に維持したアルミニウム金属ブロック上の溝に
直径2mmの尿素粉粒体を落下させて気化状態を観察し
、未蒸発の残渣重量を測定した。尿素粉粒体を溝の底面
積当たり10g/h・cm2で落下させ、ブロック表面
温度を320℃から500℃の間で変化させて残渣重量
を測定した結果を図1に示す。残渣形成の境界が350
℃と370℃の間に存在することがわかる。温度400
℃の試験において発生した蒸気を凝縮させて回収した物
質をX線回折チャートを図3に示す。図中、記号○を付
したピークが尿素のピークと一致した。このことから尿
素を本実施例による方法で急激に気化させる場合には大
部分の尿素が分解、重合で変質することなく気化するこ
とが明らかである。
EXAMPLES The present invention will be explained using examples. Example 1 Urea powder with a diameter of 2 mm was dropped into a groove on an aluminum metal block maintained at a predetermined temperature, the vaporization state was observed, and the weight of the unevaporated residue was measured. Figure 1 shows the results of measuring the weight of the residue by dropping the urea powder at a rate of 10 g/h·cm2 per bottom area of the groove and varying the block surface temperature between 320°C and 500°C. The boundary of residue formation is 350
℃ and 370℃. temperature 400
FIG. 3 shows an X-ray diffraction chart of the material recovered by condensing the vapor generated in the temperature test. In the figure, the peak marked with the symbol ○ coincided with the peak of urea. From this, it is clear that when urea is rapidly vaporized by the method according to this example, most of the urea is vaporized without being altered by decomposition or polymerization.

【0019】実施例2 気化面の凹凸形状による気化所要時間の変化を試験した
。試験は径1.5mmの尿素粉粒体を所定温度に維持し
たアルミニウム金属の平板上あるいは径8mmの円形の
溝に落下させ、粉粒体1粒が完全に気化するのに必要な
時間を測定した。結果を図4に示す。図中のAで示した
曲線が平板上での尿素気化所要時間であり、Bで示した
曲線が径8mmの溝内での気化所要時間である。気化面
を凹凸に加工することで気化所要時間が短くなることが
明らかである。曲線A、Bともに温度400℃と450
℃の間で気化所要時間が大きく変化する領域があり、気
化所要時間を短くするには温度450℃以下に維持する
ことが必要であることも明らかである。
Example 2 Changes in the time required for vaporization depending on the uneven shape of the vaporization surface were tested. In the test, urea powder with a diameter of 1.5 mm is dropped onto an aluminum metal plate maintained at a specified temperature or into a circular groove with a diameter of 8 mm, and the time required for one particle of the powder to completely vaporize is measured. did. The results are shown in Figure 4. The curve indicated by A in the figure is the time required for urea vaporization on a flat plate, and the curve indicated by B is the time required for vaporization in a groove with a diameter of 8 mm. It is clear that the time required for vaporization is shortened by processing the vaporization surface into irregularities. Curves A and B both have temperatures of 400°C and 450°C.
It is also clear that there is a region in which the time required for vaporization varies greatly between degrees Celsius, and that it is necessary to maintain the temperature at 450.degree. C. or lower in order to shorten the time required for vaporization.

【0020】試験中の観察では凹凸で形成された溝の中
で尿素粉粒体が激しく壁面に衝突し、反射している。こ
の衝突回数が多い分だけ、平板を用いるものに比して気
化所要時間が短くなっている。また、温度400℃を越
えると尿素粉粒体が気化面から浮上する傾向が増し、4
50℃以上で著しくなる。このことが温度上昇に伴い気
化所要時間が長くなる現象の原因であると考えられる。
Observation during the test showed that the urea powder collided violently with the wall surface in the groove formed by the unevenness and was reflected. Since the number of collisions is large, the time required for vaporization is shorter than that using a flat plate. In addition, when the temperature exceeds 400℃, the tendency of urea powder to float from the vaporization surface increases,
It becomes noticeable at temperatures above 50°C. This is considered to be the cause of the phenomenon that the time required for vaporization increases as the temperature rises.

【0021】次に本発明の脱硝用還元剤の気化装置を用
いる脱硝装置の実施例を説明する。 実施例3 本実施例の脱硝装置を図5に示す。図5は排ガス発生源
8から煙道9を通って脱硝反応器10で排ガスが浄化さ
れ、煙突12より大気に放出される途中に還元性ガスを
供給する本発明による尿素の気化装置を設けたフロー図
である。
Next, an embodiment of a denitrification apparatus using the denitrification reducing agent vaporization apparatus of the present invention will be described. Example 3 The denitration apparatus of this example is shown in FIG. FIG. 5 shows a urea vaporization device according to the present invention that supplies reducing gas to exhaust gas from an exhaust gas generation source 8 through a flue 9, purified in a denitrification reactor 10, and released into the atmosphere from a chimney 12. It is a flow diagram.

【0022】貯蔵タンク1内の尿素は粉粒体定量供給器
2により所定速度で抜き出され、尿素輸送管15を経て
気化器3に至る。尿素輸送管15内での尿素移動および
気化器3内での尿素分散を補助するため、空気ブロワー
13より空気がキャリアガス導管14を経て供給される
。気化器3内で尿素粉粒体は360℃以上450℃以下
の温度に維持されたアルミニウム製の加熱ブロック4上
に落下し、気化する。気化器3において分解触媒5は必
ずしも必要でないが、触媒として多孔質のアルミナ触媒
を用い、キャリアガス中に水蒸気を混入しておけば気化
した尿素を全てアンモニアガスに転化することが可能で
ある。尿素よりアンモニアガスとした方が下流の配管で
スケールを生成する危険性がない。尿素から発生したガ
スは注入ノズル6よりガス状還元剤7として煙道9内に
噴射され、排ガスに混合された後、脱硝反応器10で排
ガス中の窒素酸化物と脱硝触媒上で反応して窒素酸化物
を無害化する。
Urea in the storage tank 1 is extracted at a predetermined rate by the granular material quantitative feeder 2, and is delivered to the vaporizer 3 via the urea transport pipe 15. Air is supplied from an air blower 13 via a carrier gas conduit 14 to assist in urea movement within the urea transport tube 15 and urea dispersion within the vaporizer 3 . In the vaporizer 3, the urea powder falls onto an aluminum heating block 4 maintained at a temperature of 360° C. or higher and 450° C. or lower, where it is vaporized. Although the decomposition catalyst 5 is not necessarily required in the vaporizer 3, if a porous alumina catalyst is used as the catalyst and water vapor is mixed into the carrier gas, all of the vaporized urea can be converted into ammonia gas. Using ammonia gas rather than urea reduces the risk of scale formation in downstream piping. The gas generated from urea is injected into the flue 9 as a gaseous reducing agent 7 from the injection nozzle 6, mixed with the exhaust gas, and then reacted with nitrogen oxides in the exhaust gas on the denitrification catalyst in the denitrification reactor 10. Detoxifies nitrogen oxides.

【0023】気化器3の詳細を図6に示す。加熱ブロッ
ク4の上面は落下した尿素を保持し、接触して加熱する
ように上向きの凹凸面が形成されている。内部には内蔵
ヒータ17と温度検出端18が埋め込まれており、温度
検出端で検出された加熱ブロック4の温度が温度信号線
19を経て温度調整器20に至り、予め設定した値にな
るようヒータ電力線21を経てヒータ電力が内蔵ヒータ
17に供給され発熱する。
Details of the vaporizer 3 are shown in FIG. The upper surface of the heating block 4 holds the fallen urea and has an upwardly uneven surface so as to contact and heat the urea. A built-in heater 17 and a temperature detection terminal 18 are embedded inside, and the temperature of the heating block 4 detected by the temperature detection terminal is sent to a temperature regulator 20 via a temperature signal line 19, so that it reaches a preset value. Heater power is supplied to the built-in heater 17 via the heater power line 21 to generate heat.

【0024】[0024]

【発明の効果】本発明によれば還元剤が還元剤加熱手段
の気化面で完全に気化するので、スケールが気化部分と
か煙道内、脱硝反応器内に蓄積されることがない。また
、気化面の加熱温度を制御することで、還元剤の気化が
スムーズに行える。
According to the present invention, since the reducing agent is completely vaporized on the vaporizing surface of the reducing agent heating means, scale is not accumulated in the vaporizing section, the flue, or the denitrification reactor. Furthermore, by controlling the heating temperature of the vaporization surface, the reducing agent can be vaporized smoothly.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明を尿素に適用する場合の気化面加熱温度
と未蒸発の残渣量との関係を示す図である。
FIG. 1 is a diagram showing the relationship between the vaporization surface heating temperature and the amount of unevaporated residue when the present invention is applied to urea.

【図2】図1に示した気化面温度による残渣の外観を示
す図である。
FIG. 2 is a diagram showing the appearance of a residue depending on the vaporization surface temperature shown in FIG. 1;

【図3】図1において加熱温度400℃で生成した蒸気
を冷却凝縮させて回収した物質のX線回折チャートであ
る。
FIG. 3 is an X-ray diffraction chart of a substance recovered by cooling and condensing the vapor generated at a heating temperature of 400° C. in FIG.

【図4】加熱面形状の尿素気化所要時間に及ぼす影響を
示す図である。
FIG. 4 is a diagram showing the influence of the shape of the heating surface on the time required for urea vaporization.

【図5】本発明になる気化装置を適用した脱硝装置のフ
ローを示す図である。
FIG. 5 is a diagram showing the flow of a denitrification device to which the vaporizer according to the present invention is applied.

【図6】図5に於ける気化器の詳細を示す図である。FIG. 6 is a diagram showing details of the carburetor in FIG. 5;

【図7】尿素の加熱時の未蒸発の残渣の加熱温度、加熱
時間の関係を示す図である。
FIG. 7 is a diagram showing the relationship between heating temperature and heating time of unevaporated residue during heating of urea.

【図8】図7において、350℃で4時間加熱時の残渣
のX線回折図である。
FIG. 8 is an X-ray diffraction diagram of the residue obtained by heating at 350° C. for 4 hours in FIG. 7.

【符号の説明】[Explanation of symbols]

1    貯蔵タンク 2    粉粒体定量供給器 3    気化器 5    分解触媒 7    ガス状還元剤 10  脱硝反応器 13  空気ブロワー 15  尿素輸送管 17  内蔵ヒータ 18  温度検出端 1 Storage tank 2   Powder quantitative feeder 3. Vaporizer 5 Decomposition catalyst 7. Gaseous reducing agent 10 Denitrification reactor 13 Air blower 15 Urea transport tube 17 Built-in heater 18 Temperature detection end

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】  常温常圧で固体の含窒素化合物からな
る還元剤を用いて排ガス中の窒素酸化物を還元して窒素
に転化する脱硝装置に用いる還元剤の気化装置において
、排ガス煙道と連続した空間内に還元剤が接触して気化
する気化面を持つ還元剤加熱手段と、前記還元剤加熱手
段の気化面に任意の所定供給速度で還元剤を投入する還
元剤粉粒体供給手段と、前記還元剤加熱手段の気化面の
温度を還元剤の発火温度以下で還元剤の蒸気圧が加熱面
雰囲気の圧力以上となる温度以上の温度範囲から選択し
た任意の所定温度に維持する加熱手段の温度制御手段と
、を設けたことを特徴とする脱硝用還元剤の気化装置。
Claim 1: In a reducing agent vaporization device used in a denitrification device that reduces nitrogen oxides in exhaust gas and converts them into nitrogen using a reducing agent made of a solid nitrogen-containing compound at room temperature and normal pressure, A reducing agent heating means having a vaporizing surface in which the reducing agent contacts and vaporizes in a continuous space, and a reducing agent powder supplying means for supplying the reducing agent to the vaporizing surface of the reducing agent heating means at an arbitrary predetermined supply rate. and heating to maintain the temperature of the vaporizing surface of the reducing agent heating means at an arbitrary predetermined temperature selected from a temperature range that is below the ignition temperature of the reducing agent and at least the temperature at which the vapor pressure of the reducing agent is equal to or higher than the pressure of the atmosphere of the heating surface. A vaporizing device for a reducing agent for denitrification, characterized in that it is provided with a temperature control means.
【請求項2】  還元剤加熱手段の気化面は高熱伝導性
材料で一体的に作製し、該気化面の表面または内部に温
度制御手段の温度検出端を設けたことを特徴とする請求
項1記載の脱硝用還元剤の気化装置。
2. The vaporization surface of the reducing agent heating means is integrally made of a highly thermally conductive material, and the temperature detection end of the temperature control means is provided on or inside the vaporization surface. The vaporization device for the reducing agent for denitrification described above.
【請求項3】  還元剤加熱手段の気化面に還元剤粉粒
体および溶融して液滴となった還元剤を保持する凹凸面
を設けたことを特徴とする請求項1記載の脱硝用還元剤
の気化装置。
3. The reduction for denitrification according to claim 1, wherein the vaporizing surface of the reducing agent heating means is provided with an uneven surface for holding the reducing agent powder and the reducing agent melted into droplets. Agent vaporization device.
【請求項4】  還元剤として尿素粉粒体を用いる場合
に、温度制御手段は還元剤加熱手段の気化面温度を36
0℃以上450℃以下の温度範囲に制御することを特徴
とする請求項1記載の脱硝用還元剤の気化装置。
4. When using urea powder as a reducing agent, the temperature control means controls the vaporizing surface temperature of the reducing agent heating means to 36°C.
The vaporizing device for a reducing agent for denitrification according to claim 1, wherein the temperature is controlled within a temperature range of 0° C. or more and 450° C. or less.
【請求項5】  請求項1記載の脱硝用還元剤の気化装
置の気化面下流部におけるガス流路に還元剤の分解触媒
層を設けたことを特徴とする脱硝用還元剤供給装置。
5. A reducing agent supply device for denitration, characterized in that a reducing agent decomposition catalyst layer is provided in the gas flow path downstream of the vaporization surface of the vaporization device for a reducing agent for denitration according to claim 1.
JP3043173A 1991-03-08 1991-03-08 Gasification device for denitration reducer Pending JPH04358519A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3043173A JPH04358519A (en) 1991-03-08 1991-03-08 Gasification device for denitration reducer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3043173A JPH04358519A (en) 1991-03-08 1991-03-08 Gasification device for denitration reducer

Publications (1)

Publication Number Publication Date
JPH04358519A true JPH04358519A (en) 1992-12-11

Family

ID=12656497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3043173A Pending JPH04358519A (en) 1991-03-08 1991-03-08 Gasification device for denitration reducer

Country Status (1)

Country Link
JP (1) JPH04358519A (en)

Similar Documents

Publication Publication Date Title
KR930003212B1 (en) Dry-type treating method for exhaust gas
KR101285041B1 (en) Method of treating an exhaust gas stream
CA2125768C (en) Aqueous ammonia injection scheme
KR100419314B1 (en) Fluid gas scrubbing and waste heat recovery system
JP2001503675A (en) Method for reducing NOx from emissions generated by industrial processes
CN1083740A (en) Be used for reducing flue gas NO with the vaporization of flue gas energy xAqueous reducing agent
JP2006223937A (en) Decomposing catalyst for urea, and exhaust gas denitrification method and apparatus using the catalyst
JP3638638B2 (en) Denitration equipment using solid reducing agent
EP2772301B1 (en) Process and apparatus for reducing the content of nitrogen oxides
JPH0857261A (en) Denitrification apparatus using aqueous solution of reducing agent
US10272383B2 (en) Method and apparatus for dynamic exhaust-gas treatment
JPH04358519A (en) Gasification device for denitration reducer
JPH06165913A (en) Denitrifying method using urea and device for the same
US5503089A (en) Arrangement for hot killing the acids contained in flue gases from waste disposal plants, power plants, and industrial production plants
US10197272B2 (en) Process and apparatus for reducing acid plume
US10458650B2 (en) Methods and systems for flue gas denitrification
JP4766915B2 (en) Denitration treatment method for boiler waste gas
Somasundaram et al. Suppression of soot in the combustion of residual furnace oil using organometallic additives
JP2010201428A (en) Method of treating gas
CN110115925B (en) Process method and device for reducing temperature of flue gas at inlet of active coke adsorption tower
US3488129A (en) Method of bursting liquid fuel with calcium carbonate
JP3276158B2 (en) Denitration equipment
JPH0515739A (en) Supply device and decomposing catalyst for reducing agent for denitration
JPH02258018A (en) Denitrification of combustion gas
JP3364634B2 (en) Aqueous ammonia injection scheme