JPH04358034A - Lead-base alloy for storage battery - Google Patents

Lead-base alloy for storage battery

Info

Publication number
JPH04358034A
JPH04358034A JP3007631A JP763191A JPH04358034A JP H04358034 A JPH04358034 A JP H04358034A JP 3007631 A JP3007631 A JP 3007631A JP 763191 A JP763191 A JP 763191A JP H04358034 A JPH04358034 A JP H04358034A
Authority
JP
Japan
Prior art keywords
lead
alloy
mass
storage battery
voids
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3007631A
Other languages
Japanese (ja)
Other versions
JP2639751B2 (en
Inventor
Yukihiro Nagata
永田 幸広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP3007631A priority Critical patent/JP2639751B2/en
Publication of JPH04358034A publication Critical patent/JPH04358034A/en
Application granted granted Critical
Publication of JP2639751B2 publication Critical patent/JP2639751B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)

Abstract

PURPOSE:To obtain a storage battery having long service life by constituting a lead-base alloy of specific mass percentages of Ca, Sn, Al, Bi, and the balance Pb. CONSTITUTION:The lead-base alloy for storage battery has a composition consisting of, by mass, 0.01-0.50% Ca, 0.05-5.0% Sn, 0.001-0.20% Al, 0.001-1.0% Bi, and the balance Pb. By this method, the occurrence of voids and cavities can be remarkably inhibited even if this alloy is applied to a plate substrate for maintenance free storage battery.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、蓄電池用鉛基合金の改
良に関するものであり、特に合金溶湯に圧力を加えて該
溶湯を鋳型内に強制的に圧入せしめて蓄電池の極板用基
板を形成するための加圧式製造法(ダイキャスト式鋳造
、回転ドラム式連続鋳造)に好適な性能を有する鉛基合
金を提供せんとするものである。
[Industrial Field of Application] The present invention relates to the improvement of lead-based alloys for storage batteries, and in particular to the improvement of lead-based alloys for storage batteries, and in particular for forming substrates for electrode plates of storage batteries by applying pressure to the molten alloy and forcing the molten metal into a mold. It is an object of the present invention to provide a lead-based alloy having performance suitable for pressurized manufacturing methods (die-casting, rotating drum continuous casting).

【0002】0002

【従来の技術】従来この種の鉛基合金としては主として
機械的強度を重点としているためSbを4.5〜8.0
質量%の如く多量に配合した鉛基合金が知られている。
[Prior Art] Conventionally, this type of lead-based alloy has mainly focused on mechanical strength, so Sb is 4.5 to 8.0.
Lead-based alloys containing a large amount, such as % by mass, are known.

【0003】然しながら、この合金を蓄電池の極板用基
板に適用した場合、上記Sbが原因となって電池の自己
放電を促進し、容量を低下せしめるのみならず充電完了
状態や過充電状態において激しいカッシング現象を起こ
して水の補給を必要とするものであった。この水を補給
するということは現在蓄電池の主流をなす補水を不要と
するメンテナンスフリー電池の極板用基板に対し全く逆
作用をもたらすものであった。
However, when this alloy is applied to the electrode plate substrate of a storage battery, the above-mentioned Sb causes self-discharge of the battery, which not only reduces the capacity but also causes severe discharge in the fully charged state and overcharged state. This caused a cushing phenomenon and required water replenishment. Replenishing this water had a completely opposite effect on the electrode plate substrates of maintenance-free batteries, which do not require water replenishment and are currently the mainstream of storage batteries.

【0004】従ってSbを全く含有しない鉛基合金とし
て、例えば特開平1−159340号公報においてCa
0.01〜0.5質量%、Sn2.05〜5.0質量%
、Al0.005〜0.15質量%、残部Pbからなる
蓄電池用鉛基合金が提案されている。
Therefore, as a lead-based alloy containing no Sb, for example, Ca
0.01-0.5% by mass, Sn2.05-5.0% by mass
, 0.005 to 0.15% by mass of Al, and the balance Pb. A lead-based alloy for storage batteries has been proposed.

【0005】然しながら、この合金により基板をうるに
おいて回転する金型内に該合金の溶湯を強制的に注入し
て基板を連続的に成形し、えられた基板の凝固結晶組織
を顕微鏡にて試験した結果、凝固組織内に直径ほぼ0.
5mm以下の球状に近い微細なボイドが多数含有するこ
とが観察された。しかもこのボイドは上記範囲の合金組
成ではその1部分のみではなく全体に亘り発生している
ことが確認された。
[0005] However, when a substrate is made using this alloy, the molten metal of the alloy is forcibly injected into a rotating mold to continuously form the substrate, and the solidified crystal structure of the obtained substrate is examined using a microscope. As a result, a diameter of approximately 0.0 mm was found within the coagulated tissue.
It was observed that many fine voids with a diameter of 5 mm or less were almost spherical. Furthermore, it was confirmed that in the alloy composition within the above range, these voids were generated not only in one part but throughout the alloy.

【0006】このようなボイドの量を定量的に把握する
方法の一つとして、ボイドを含む合金試料の全ガス介析
を行った結果、ボイドを含有する合金試料の全ガス量は
ボイドが全く認められない合金試料の全ガス量に比して
約2倍〜3倍であった。
As a method for quantitatively understanding the amount of voids, we conducted a total gas analysis of an alloy sample containing voids. As a result, we found that the total gas amount of an alloy sample containing voids was determined by the fact that there were no voids at all. The amount was about 2 to 3 times the total amount of gas in the alloy sample, which was not observed.

【0007】なお全ガス量の測定方法を示すと、試料を
溶融することにより該試料中に含まれているガスを放出
させ、そのガス量を測定する高温真空法により測定した
。この方法は試料の加熱前の排管系の真空度と加熱後の
排管系内の真空度との差から試料中に含まれているガス
量を算出するものである。
The total amount of gas was measured by a high-temperature vacuum method in which the gas contained in the sample was released by melting the sample and the amount of gas was measured. This method calculates the amount of gas contained in a sample from the difference between the degree of vacuum in the exhaust pipe system before heating the sample and the degree of vacuum in the exhaust pipe system after heating.

【0008】而して鉛基合金を前記の如く加圧方式にて
鋳造した場合、該合金内にボイドやキャビティが生成さ
れ易い状態をなる。その理由は該合金の溶湯を鋳型内に
注入時において該溶湯に著しい乱流がおこり、凝固組織
はデントライト主軸及び側枝が短く且つ形態の破壊した
結晶粒の微細なデントライト状組織となる。更に溶湯の
乱流によって空気の巻き込みやガスの乱入がおこりこれ
によってボイドやキャビティが形成される。
[0008] When a lead-based alloy is cast by the pressurized method as described above, voids and cavities are likely to be formed within the alloy. The reason for this is that when the molten metal of the alloy is injected into the mold, significant turbulence occurs in the molten metal, and the solidified structure becomes a fine dentrite-like structure of crystal grains with short main axes and side branches of dendrites and broken morphology. Furthermore, the turbulent flow of the molten metal causes air to be entrained and gas to enter, resulting in the formation of voids and cavities.

【0009】これらのボイドやキャビティは全ガス量比
が1.90未満であればデントライト結晶間に空気が形
成するようにほぼ均一に分布するが全ガス量比が1.9
0以上になるとその形状において球状のボイドが点在し
てデントライト状結晶を分断するようになり、不均質な
凝固組織を呈する。
[0009] These voids and cavities are distributed almost uniformly as if air is formed between the dentrite crystals when the total gas amount ratio is less than 1.90, but when the total gas amount ratio is less than 1.9
When it is 0 or more, spherical voids are scattered in the shape and the dentrite-like crystals are divided, resulting in a non-uniform solidified structure.

【0010】又このような凝固組織は合金のクリープ特
性や耐食性の低下をもたらすものであった。
[0010] Furthermore, such a solidified structure causes deterioration of the creep characteristics and corrosion resistance of the alloy.

【0011】即ち全ガス量比とクリープ強度比との関係
を示すと図1の如く表わされる。又クリープ強度比とは
次式の如く定義されるものである。
That is, the relationship between the total gas amount ratio and the creep strength ratio is expressed as shown in FIG. Further, the creep strength ratio is defined as shown in the following equation.

【0012】クリープ強度比=C(G>1)/C(G=
0) ただし C(G=1)は全ガス量比、G=1の材料のクリープ強
度 C(G>1)は全ガス量比、G>1の材料のクリープ強
度 図1から明らかな如く全ガス量比が1.90未満の場合
には、クリープ強度比はほぼ1となる。即ち全ガス量比
Gが1<G<1.9の材料のクリープ強度とG=1の材
料のクリープ強度とはほぼ等しいか、Gが1.9を超え
るとクリープ強度比は1より大きくなる。即ちG(全ガ
ス量比)が1.9を超えた材料のクリープ強度はG=1
の材料のクリープ強度より小さくなることを示している
。このクリープ強度が小さいということは材料の伸び、
変形量が大きいことを意味することから蓄電池の鉛基合
金において材料の伸び変形はできうる限り小さいことが
必要であり、従って全ガス量比として1.90未満のも
のが要望されているものであった。
Creep strength ratio=C(G>1)/C(G=
0) However, C (G = 1) is the total gas amount ratio, C (G > 1) is the total gas amount ratio, and the creep strength of the material with G > 1 is the total When the gas amount ratio is less than 1.90, the creep strength ratio is approximately 1. In other words, the creep strength of a material with a total gas amount ratio G of 1<G<1.9 is approximately equal to the creep strength of a material with G=1, or if G exceeds 1.9, the creep strength ratio becomes greater than 1. . In other words, the creep strength of materials whose G (total gas amount ratio) exceeds 1.9 is G = 1.
This shows that the creep strength is smaller than the creep strength of the material. This low creep strength means that the material elongates,
Since the amount of deformation is large, it is necessary for the elongation deformation of the lead-based alloy material for storage batteries to be as small as possible, and therefore a total gas ratio of less than 1.90 is desired. there were.

【0013】[0013]

【発明が解決しようとする課題】本発明はかかる現状に
鑑み鋭意研究を行った結果、圧力方式にて基板を鋳造す
るも該基板内にボイドを生成することなく機械的強度に
優れた蓄電池用鉛基合金を開発したものである。
[Problems to be Solved by the Invention] As a result of intensive research in view of the current situation, the present invention has been developed to provide a storage battery with excellent mechanical strength without forming voids in the substrate even when the substrate is cast using a pressure method. This is a lead-based alloy developed.

【0014】[0014]

【課題を解決するための手段】本発明はCa0.01〜
0.50質量%、Sn0.05〜5.0質量%、Al0
.001〜0.20質量%、Bi0.001〜1.0質
量%、残部Pbよりなる蓄電池用鉛基合金である。
[Means for Solving the Problems] The present invention provides Ca0.01~
0.50% by mass, Sn0.05-5.0% by mass, Al0
.. This is a lead-based alloy for storage batteries consisting of 0.001 to 0.20% by mass, 0.001 to 1.0% by mass of Bi, and the balance Pb.

【0015】[0015]

【作用】本発明は前記の公知な鉛基合金に対しBiを添
加するものであり、Biを添加することによりBi無添
加の場合に比してデントライト結晶成長が早くなり、そ
の結果湯流れ性が低下しキャビティ量が増加するが、B
iの添加量が増大するに伴って全ガス量比の値が小さく
なりクリープ特性も向上する。
[Function] The present invention adds Bi to the above-mentioned known lead-based alloy, and by adding Bi, the growth of dentrite crystals becomes faster than when no Bi is added, and as a result, the flow of the molten metal is improved. However, B
As the amount of i added increases, the value of the total gas amount ratio decreases and the creep characteristics also improve.

【0016】而してBiの配合量を0.001〜1.0
質量%に限定した理由は0.001質量%の未満の場合
には上記の効果が極めて薄く、又1.0質量%を超えて
も全ガス量比の効果において顕著に向上しないためであ
る。
[0016]Then, the content of Bi is 0.001 to 1.0.
The reason why it is limited to % by mass is that if it is less than 0.001% by mass, the above effect will be extremely weak, and if it exceeds 1.0% by mass, the effect of the total gas ratio will not improve significantly.

【0017】本発明においてCaを添加することにより
機械的強度を向上せしめるものであるか、その配合量を
0.01〜0.50質量%に限定した理由は0.01質
量%未満の場合には、その効果が薄く又0.50質量%
を超えたとしても低い鋳造温度において良好な鋳造品を
うることが出来ず、他方鋳造温度を高くすると酸化して
Caの損失量が大きくなるためである。
In the present invention, is it possible to improve mechanical strength by adding Ca? The effect is weak and 0.50% by mass
This is because even if the casting temperature is exceeded, a good cast product cannot be obtained at a low casting temperature, and on the other hand, when the casting temperature is raised, oxidation occurs and the loss of Ca increases.

【0018】又Snを添加することにより合金の湯流れ
性並びに機械的強度を改善し更にボイドの発生を抑制す
るものであり、その配合量を0.05〜5.0質量%に
限定した理由は0.05質量未満の場合には、その効果
が薄く又5.0質量%を超えた場合にはボイド発生の抑
制効果の向上はほとんど認められず、しかもSn量の増
加により耐食性が劣り好ましくない。
[0018] Also, the addition of Sn improves the flowability and mechanical strength of the alloy and further suppresses the generation of voids, which is why the amount added is limited to 0.05 to 5.0% by mass. If it is less than 0.05% by mass, the effect is weak, and if it exceeds 5.0% by mass, there is almost no improvement in the effect of suppressing void generation, and the corrosion resistance is poor due to the increase in the amount of Sn, which is preferable. do not have.

【0019】又Alの添加することにより、溶湯の酸化
によるCaの損失を防止し、引張り強さの歪速度依存性
を小さくしクリープ特性を向上せしめるものでありその
配合量を0.01〜0.50質量%に限定した理由は、
0.01質量%未満の場合にはその効果が薄く又0.5
0質量%を超えた場合には上記の歪速度依存性を小さく
する効果が顕著に表われないためである。
Furthermore, the addition of Al prevents the loss of Ca due to oxidation of the molten metal, reduces the strain rate dependence of tensile strength, and improves creep properties. The reason for limiting it to .50% by mass is
If it is less than 0.01% by mass, the effect is weak and 0.5
This is because if it exceeds 0% by mass, the effect of reducing the strain rate dependence described above will not be noticeable.

【0020】[0020]

【実施例】鉛溶湯中にCa,Sn,Al及びBiを夫々
添加して表1に示す組成による本発明鉛基合金をえた、
これらの合金の溶湯を鋳型内に圧入して夫々蓄電池用極
板基板を作製し、その凝固組織中における全ガス量比を
測定して該基板としての良否を判定した。
[Example] A lead-based alloy of the present invention having the composition shown in Table 1 was obtained by adding Ca, Sn, Al and Bi to molten lead, respectively.
Molten metals of these alloys were press-fitted into molds to produce electrode plate substrates for storage batteries, and the quality of the substrates was determined by measuring the total gas amount ratio in the solidified structure.

【0021】なお表1中にボイドをまったく含有するこ
とのない鉛基合金(標準合金)による冷間圧延板を作製
し本発明鉛基合金と比較した。
[0021] In Table 1, a cold-rolled plate made of a lead-based alloy (standard alloy) containing no voids was prepared and compared with the lead-based alloy of the present invention.

【0022】[0022]

【表1】[Table 1]

【0023】表1から明らかな如く本発明蓄電池用鉛基
合金によればBiの含有量を規定して添加することによ
り比較例鉛基合金に比して著しく全ガス量比を少なくな
り、その値を1.90未満にすることが出来た。これに
よりクリープ特性及び耐食性を改善することを確認した
As is clear from Table 1, according to the lead-based alloy for storage batteries of the present invention, by adding a specified amount of Bi, the total gas amount ratio is significantly lower than that of the comparative example lead-based alloy. We were able to reduce the value to less than 1.90. It was confirmed that this improved creep properties and corrosion resistance.

【0024】[0024]

【発明の効果】以上詳述した如く本発明蓄電池用鉛基合
金によればメンテナンスフリー用蓄電池の極板基板に適
用するもボイド並びにキャビティの発生を著しく抑制し
長寿命性の蓄電池をうる等工業上有用なものである。
Effects of the Invention As detailed above, the lead-based alloy for storage batteries of the present invention can be applied to the electrode plate substrates of maintenance-free storage batteries, and the generation of voids and cavities can be significantly suppressed, resulting in long-life storage batteries. It is very useful.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】クリープ強度比と全ガス量比との関係図。FIG. 1 is a diagram showing the relationship between creep strength ratio and total gas amount ratio.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  Ca0.01〜0.50質量%、Sn
0.05〜5.0質量%、Al0.001〜0.20質
量%、Bi0.001〜1.0質量%、残部Pbよりな
る蓄電池用鉛基合金。
Claim 1: 0.01 to 0.50% by mass of Ca, Sn
A lead-based alloy for storage batteries consisting of 0.05 to 5.0% by mass, 0.001 to 0.20% by mass of Al, 0.001 to 1.0% by mass of Bi, and the balance Pb.
JP3007631A 1991-01-25 1991-01-25 Lead-based alloy for storage batteries Expired - Fee Related JP2639751B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3007631A JP2639751B2 (en) 1991-01-25 1991-01-25 Lead-based alloy for storage batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3007631A JP2639751B2 (en) 1991-01-25 1991-01-25 Lead-based alloy for storage batteries

Publications (2)

Publication Number Publication Date
JPH04358034A true JPH04358034A (en) 1992-12-11
JP2639751B2 JP2639751B2 (en) 1997-08-13

Family

ID=11671180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3007631A Expired - Fee Related JP2639751B2 (en) 1991-01-25 1991-01-25 Lead-based alloy for storage batteries

Country Status (1)

Country Link
JP (1) JP2639751B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6267923B1 (en) * 1996-02-16 2001-07-31 Metaleurop S.A. Lead-calcium alloys, particularly for battery grids

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6267923B1 (en) * 1996-02-16 2001-07-31 Metaleurop S.A. Lead-calcium alloys, particularly for battery grids

Also Published As

Publication number Publication date
JP2639751B2 (en) 1997-08-13

Similar Documents

Publication Publication Date Title
JPH01211858A (en) Rechargeable cell
US4159908A (en) Alkali metal containing battery grid lead alloy
Zhong et al. Evaluation of lead—calcium—tin—aluminium grid alloys for valve-regulated lead/acid batteries
KR840002048B1 (en) Low antimony-lead based alloy
EP0071001B1 (en) Low antimony lead-base alloy
CA1105812A (en) Lead alloy for lead-acid batteries and process for producing the alloy
JPH04358034A (en) Lead-base alloy for storage battery
JPH04358035A (en) Lead-base alloy for storage battery
CA1094359A (en) Low antimonial lead alloy for making grids for use in maintenance free batteries
JP4502346B2 (en) Lead-based alloys for lead-acid batteries
CA1044923A (en) Ternary calcium-tin-lead alloy
JPH051341A (en) Lead-based alloy for storage battery
JP2639751C (en)
JPH03158448A (en) Method of manufacturing thin plate based on lithium and application of said method to manufacture of negative plate for use in battery
JP4430227B2 (en) Lead-based alloys for lead-acid batteries
US2820079A (en) Battery grid alloy
Cole et al. The development and potential applications of a Pb-Al Alloy
JPS58212839A (en) Cu alloy for continuous casting mold
JPS63141263A (en) Lead-base alloy for storage battery
JPS6043633B2 (en) Grid for lead acid battery
Oisakede et al. Effect of Zinc Addition on the Microstructure of Waste Acid Battery Lead Electrode (Pb-Sb Alloy)
JPS59177864A (en) Electrode material for lead-acid battery
JP2595809B2 (en) Method of manufacturing base for lead-acid battery electrode plate
JPS6213102B2 (en)
CN115911407A (en) Lead-acid storage battery corrosion-resistant composite coating grid and preparation method thereof

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080502

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090502

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100502

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees