JPH04358024A - Production of high strength seamless steel tube reduced in yield ratio - Google Patents

Production of high strength seamless steel tube reduced in yield ratio

Info

Publication number
JPH04358024A
JPH04358024A JP1226491A JP1226491A JPH04358024A JP H04358024 A JPH04358024 A JP H04358024A JP 1226491 A JP1226491 A JP 1226491A JP 1226491 A JP1226491 A JP 1226491A JP H04358024 A JPH04358024 A JP H04358024A
Authority
JP
Japan
Prior art keywords
temperature
seamless steel
yield ratio
transformation point
heated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1226491A
Other languages
Japanese (ja)
Other versions
JP2957717B2 (en
Inventor
Hiromi Fujii
藤井 博己
Hitoshi Asahi
均 朝日
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP1226491A priority Critical patent/JP2957717B2/en
Publication of JPH04358024A publication Critical patent/JPH04358024A/en
Application granted granted Critical
Publication of JP2957717B2 publication Critical patent/JP2957717B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

PURPOSE:To produce a steel tube reduced in yield ratio from the consideration of safety to large earthquake and usable in the fields of building, bridge, etc. CONSTITUTION:After a strain of 3-10% is applied at 900-750 deg.C to a tube stock in the course of manufacture by the ordinary rolling system, the tube stock is subjected, without cooling down to <=650 deg.C, to reheating up to 900-1150 deg.C, to sizing, and to air cooling. Then, the resulting tube is heated and held to and at a temp. of Ac1 transformation point +(10-130 deg.C) to undergo preferential alpha-gamma transformation and cooled rapidly or further subjected to tempering treatment, by which the high strength seamless steel tube reduced in yield ratio can be produced.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、建築、橋梁分野で使用
される鋼管の製造法に関するものであり、特に大地震に
対する安全性を考慮した降伏比の低い鋼の製造法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing steel pipes used in the construction and bridge fields, and particularly to a method for manufacturing steel with a low yield ratio in consideration of safety against large earthquakes.

【0002】0002

【従来の技術】シームレス鋼管は、内外肌が良好で偏肉
率の小さい鋼管の大量生産に適したマンネスマン・プラ
グミル、マンネスマン・アッセルミルなどの圧延方式に
よって製管加工し、さらに強度や靭性などの機械的性質
を改善するために各種の熱処理を施して製品に供されて
いる。その熱処理には、例えば特開昭57−89436
号公報記載の「鋼管を、Ac1 変態点からAc1 変
態点+50℃までの温度範囲を1〜30℃/秒の速度で
加熱し、その温度からオーステナイト結晶粒粗大化開始
温度までの最高加熱温度から焼き入れする熱サイクル」
、特開昭59−173245号公報記載の「鋼管を94
0〜1050℃に加熱後急冷し、続いてAc1 変態点
以下の温度で焼き戻す熱サイクル」、および特開昭59
−232220号公報記載の「鋼管を、Ac3変態点〜
結晶粒粗大化温度未満から焼き入れし、続いてAc3 
変態点〜結晶粒粗大化温度未満に加熱した後再度焼き入
れし、その後Ac1 変態点以下の温度で焼き戻す熱サ
イクル」など、各種の熱サイクルがある。
[Prior Art] Seamless steel pipes are manufactured using rolling methods such as Mannesmann plug mills and Mannesmann Assel mills, which are suitable for mass production of steel pipes with good inner and outer skin and small wall thickness unevenness. Products are subjected to various heat treatments to improve their physical properties. For the heat treatment, for example, Japanese Patent Application Laid-open No. 57-89436
``A steel pipe is heated at a rate of 1 to 30 degrees Celsius/second in the temperature range from Ac1 transformation point to Ac1 transformation point + 50 degrees Celsius, and from the highest heating temperature from that temperature to the austenite grain coarsening starting temperature. Heat cycle for hardening
, “Steel pipe 94
"Thermal cycle of heating to 0 to 1050°C followed by rapid cooling and then tempering at a temperature below the Ac1 transformation point" and JP-A-59
-232220
Quenching from below the grain coarsening temperature, followed by Ac3
There are various types of thermal cycles, such as a thermal cycle in which the material is heated to a temperature below the transformation point to the crystal grain coarsening temperature, then quenched again, and then tempered at a temperature below the Ac1 transformation point.

【0003】さらに最近では建築、橋梁分野において、
大地震に対する安全性の確保から、高強度でしかも十分
な塑性変形能を保有する降伏比の低いシームレス鋼管が
要求されている。一般に高強度鋼の低降伏比化は、転位
論から、低転位密度のフェライトと高転位密度のマルテ
ンサイトおよびベーナイトの混合組織にすることが知ら
れている。しかしながら、シームレス鋼管は、加熱と圧
延を繰り返す煩雑な製管工程を経て製造されるため、そ
のような混合組織を安定して得ることは困難である。ま
して、前記のようなAc3 変態点以上の高温度から焼
き入れする熱処理法において、混合組織を得ることも困
難であった。
[0003]More recently, in the fields of architecture and bridges,
To ensure safety against large earthquakes, seamless steel pipes with high strength, sufficient plastic deformability, and a low yield ratio are required. In general, it is known from dislocation theory that high-strength steel can be made to have a mixed structure of ferrite with a low dislocation density and martensite and bainite with a high dislocation density to lower the yield ratio. However, since seamless steel pipes are manufactured through a complicated pipe-making process that involves repeating heating and rolling, it is difficult to stably obtain such a mixed structure. Moreover, it is also difficult to obtain a mixed structure in the heat treatment method of quenching at a high temperature above the Ac3 transformation point as described above.

【0004】0004

【発明が解決しようとする課題】本発明は、このような
技術の現状および要求にかんがみ、降伏比の低い高強度
シームレス鋼管を安定して得ることのできる製造方法を
提供することを目的とする。
[Problems to be Solved by the Invention] In view of the current state of technology and demands, an object of the present invention is to provide a manufacturing method that can stably obtain a high-strength seamless steel pipe with a low yield ratio. .

【0005】[0005]

【課題を解決するための手段】前記目的を達成すべく、
本発明者らは種々検討した結果、前記のようなシームレ
ス鋼管製造過程の熱処理において、前もって焼き入れ前
の組織をフェライト(α)とパーライト主体の混合粗大
組織にすることによって、強度、溶接性その他諸々の特
性を損なうことなく、目的のシームレス鋼管が容易に製
造できるという知見を得た。本発明は、この知見に基づ
いて本発明を構成したもので、その要旨とするところは
、製管圧延途中の素(粗)管に900℃〜750℃の温
度にて3%〜10%の歪みを付与した後、650℃以下
の温度に低下させることなく900℃〜1150℃の温
度に再加熱して定形圧延を行ない、その後空冷してフェ
ライト・パーライト主体の混合組織を有するシームレス
鋼管を、Ac1 変態点+10℃〜Ac1 変態点+1
30℃の温度に加熱し保定した後急速冷却する、あるい
はさらに650℃以下の温度で焼き戻し処理する降伏比
の低い高強度シームレス鋼管の製造法である。
[Means for solving the problem] In order to achieve the above purpose,
As a result of various studies, the present inventors have found that by changing the structure before quenching into a coarse mixed structure consisting mainly of ferrite (α) and pearlite in the heat treatment during the manufacturing process of seamless steel pipes as described above, strength, weldability, etc. We obtained the knowledge that the desired seamless steel pipe can be easily manufactured without impairing various properties. The present invention has been constructed based on this knowledge, and its gist is that 3% to 10% of After imparting strain, the pipe is reheated to a temperature of 900°C to 1150°C without lowering the temperature to 650°C or lower, subjected to shape rolling, and then cooled in air to produce a seamless steel pipe having a mixed structure consisting mainly of ferrite and pearlite. Ac1 transformation point +10℃~Ac1 transformation point +1
This is a method for producing high-strength seamless steel pipes with a low yield ratio, in which the pipe is heated to a temperature of 30°C, maintained, and then rapidly cooled, or further tempered at a temperature of 650°C or lower.

【0006】以下、本発明について詳細に説明する。前
記したような通常の圧延方式によって製管されるシーム
レス鋼管の製管圧延途中に小歪みを付与し、引き続き温
度を低下させることなく定形圧延前に均熱加熱を施す。 このようにして均熱加熱された鋼素管は粗大オーステナ
イト粒組織に成長し、その後の定形圧延後自然冷却され
ることにより特殊合金(高合金鋼管)を除いてほとんど
粗大フェライト・パーライト主体の混合組織となる。こ
の組織は微視的に炭素濃度差のある組織である。このよ
うな炭素濃度差のある組織を有する鋼素管は、次工程の
Ac1 変態点以上の温度にて加熱保持するとα粒界お
よび炭素濃度の高い箇所からα−γ変態が優先して起こ
る。したがってAc1 変態点以上の適当な温度にて加
熱保持することにより、γとαの理想的な混合組織を得
ることができ、その後の急冷処理によりγは低温変態生
成組織に変態して強度を付与する。同時にαは降伏強度
に影響を及ぼし、α粒が大きい程、α面積率が高い程、
降伏強度を低下させることを知見した。したがって降伏
比を低める方法としてα粒が粗大な方が有効である。
The present invention will be explained in detail below. A small strain is imparted to a seamless steel pipe produced by the above-described normal rolling method during pipe-making rolling, and soaking is subsequently performed before shaping rolling without lowering the temperature. The steel tube that has been soaked and heated in this way grows into a coarse austenite grain structure, and is then naturally cooled after rolling to a shape, resulting in a mixture of mainly coarse ferrite and pearlite, except for special alloys (high alloy steel tubes). Become an organization. This structure has a microscopic difference in carbon concentration. When a steel pipe having such a structure with a difference in carbon concentration is heated and held at a temperature equal to or higher than the Ac1 transformation point in the next step, α-γ transformation occurs preferentially from α grain boundaries and locations with high carbon concentration. Therefore, by heating and holding at an appropriate temperature above the Ac1 transformation point, an ideal mixed structure of γ and α can be obtained, and by subsequent rapid cooling treatment, γ transforms into a low-temperature transformation-generated structure and imparts strength. do. At the same time, α influences the yield strength, and the larger the α grains and the higher the α area ratio, the more
It was found that the yield strength was reduced. Therefore, as a method of lowering the yield ratio, it is more effective to make the α grains coarser.

【0007】次に圧延および熱処理条件の限定理由につ
いて述べる。圧延途中、歪みを付与する温度は未再結晶
温度域である必要があり、900℃以上の温度では再結
晶が起こり細粒化することから本発明の目的にそぐわな
い。又、750℃以下の温度では均一な歪み付与が難し
いことから、歪み付与温度範囲を900℃〜750℃と
した。歪み付与量は大きすぎても小さすぎてもγ粒の粗
大化効果が消失することから歪み付与量を3%〜10%
とした。再加熱前の温度はα変態量に関係するが、α変
態量が多すぎると再加熱によりγ粒の細粒化が起こるこ
とと、圧延途中で付与した歪みが消失し、γ粒の粗大化
効果がなくなることから650℃以上とした。定形圧延
前の再加熱温度はAc3 変態点以上であれば問題はな
いが低すぎるとγ粒の粗大化効果が小さくなることから
下限温度を900℃とした。又、γ粒の粗大化のために
は上限温度は高いほどよいが1150℃を超える温度で
は、γ粒の粗大化効果が飽和域に達し、生成スケールの
増大をもたらし、鋼管の表面性状を悪化し、熱処理コス
トの上昇をもたらす問題がある。以上の理由により加熱
温度範囲を900℃〜1150℃とした。
Next, the reasons for limiting the rolling and heat treatment conditions will be described. The temperature at which strain is imparted during rolling must be in the non-recrystallization temperature range; temperatures of 900°C or higher cause recrystallization and grain refinement, which is not suitable for the purpose of the present invention. Furthermore, since it is difficult to impart uniform strain at temperatures below 750°C, the strain imparting temperature range was set to 900°C to 750°C. If the amount of strain applied is too large or too small, the coarsening effect of γ grains will disappear, so the amount of strain applied should be 3% to 10%.
And so. The temperature before reheating is related to the amount of α transformation, but if the amount of α transformation is too large, reheating will cause the γ grains to become finer, and the strain imparted during rolling will disappear, causing the γ grains to become coarser. Since the effect would be lost, the temperature was set at 650°C or higher. There is no problem as long as the reheating temperature before shaping rolling is equal to or higher than the Ac3 transformation point, but if it is too low, the effect of coarsening the γ grains becomes small, so the lower limit temperature was set at 900°C. In addition, the higher the upper limit temperature is, the better for coarsening of γ grains, but at temperatures exceeding 1150°C, the coarsening effect of γ grains reaches a saturation range, resulting in an increase in the generated scale and deterioration of the surface quality of the steel pipe. However, there is a problem that the heat treatment cost increases. For the above reasons, the heating temperature range was set to 900°C to 1150°C.

【0008】900℃〜1150℃の温度に再加熱保定
後、定形圧延され自然冷却されたシームレス鋼管は、特
殊合金(高合金鋼管)を除いてほとんど粗粒フェライト
・パーライト主体の混合組織となる。このようにして製
造されたシームレス鋼管は、鋼管の強度および降伏比特
性を改善するためにAc1 変態点+10℃〜Ac1 
変態点+130℃のαおよびγの二相域温度に加熱し保
定した後、急速冷却する焼き入れ処理を施して、該鋼管
の強度および降伏特性を改善する。しかし、Ac1 変
態点+10℃未満の低い温度では二相混合組織の生成に
時間がかかり、しかもγ組織への変態量が少ないことか
ら急速冷却後においても高強度の鋼管が得られない。そ
の反対にAc1 変態点+130℃を超える高い温度で
は、γ組織への変態が不必要に増大すると共に細粒化し
、降伏比を高める問題がある。また、この場合の冷却速
度については、高温度で生成した二相混合組織の特性を
低温度においても保持するため、速い程好ましい。こう
して製造されたシームレス鋼管は、高強度で降伏比の低
い特性をもち、製品として建築、橋梁など多くの分野で
建設用素材として使用に供することができる。
[0008] Seamless steel pipes that are reheated and maintained at a temperature of 900° C. to 1150° C., rolled into a shape, and then naturally cooled have a mixed structure consisting mostly of coarse ferrite and pearlite, except for special alloys (high alloy steel pipes). Seamless steel pipes manufactured in this way are manufactured at Ac1 transformation point +10°C to Ac1 in order to improve the strength and yield ratio characteristics of steel pipes.
After being heated to and held at a temperature in the α and γ two-phase region of the transformation point +130° C., a quenching treatment is performed in which the steel pipe is rapidly cooled to improve the strength and yield characteristics of the steel pipe. However, at a low temperature below the Ac1 transformation point +10° C., it takes time to generate the two-phase mixed structure, and the amount of transformation to the γ structure is small, so a high-strength steel pipe cannot be obtained even after rapid cooling. On the other hand, at a high temperature exceeding the Ac1 transformation point +130° C., there is a problem in that the transformation to the γ structure increases unnecessarily and the grains become finer, increasing the yield ratio. Further, regarding the cooling rate in this case, the faster the better, in order to maintain the characteristics of the two-phase mixed structure generated at high temperature even at low temperature. Seamless steel pipes manufactured in this way have high strength and low yield ratio, and can be used as construction materials in many fields such as architecture and bridges.

【0009】本発明は上記のように急速冷却によって製
造されたシームレス鋼管に、さらに必要によっては焼き
戻し処理をする。この焼き戻し処理は、内部歪みを除去
し強度、硬さ、降伏比をバランス化するもので650℃
以下の温度で行われる。この場合、650℃を超える温
度では、著しい強度低下をもたらす問題がある。また、
このような焼き戻し処理されたシームレス鋼管は、本発
明の目的範囲内で、各特性を一層バランス化したものが
得られる。
[0009] According to the present invention, the seamless steel pipe produced by rapid cooling as described above is further subjected to a tempering treatment, if necessary. This tempering process removes internal distortion and balances strength, hardness, and yield ratio at 650°C.
It is carried out at the following temperatures: In this case, there is a problem that a temperature exceeding 650° C. causes a significant decrease in strength. Also,
A seamless steel pipe subjected to such tempering treatment has better balance of properties within the objective range of the present invention.

【0010】0010

【実施例】次に本発明の実施例について説明する。表1
に示す成分組成の鋼素材を供試材として、通常の製管圧
延した鋼材と、熱間製管圧延途中に歪みを付与しオース
テナイト粒粗大化処理を施しα粒を意識的に変えた鋼材
を、Ac1 変態点+10℃〜Ac1 変態点+130
℃の各温度に加熱、保持後常温まで急速冷却した。次い
で材質調整を目的として焼き戻し処理を施した。この時
の諸条件を表2に試験結果と共に表示した。
[Example] Next, an example of the present invention will be described. Table 1
The steel materials with the chemical compositions shown in the table were used as test materials; one was a steel material that had been rolled for regular pipe making, and the other was a steel material that had been subjected to austenite grain coarsening treatment by applying strain during hot pipe rolling to intentionally change the alpha grains. , Ac1 transformation point +10℃~Ac1 transformation point +130
After being heated to and held at various temperatures of °C, it was rapidly cooled to room temperature. Next, a tempering treatment was performed for the purpose of material adjustment. The various conditions at this time are shown in Table 2 together with the test results.

【0011】比較法による鋼と本発明法による鋼を同一
強度レベルで比較すると本発明鋼の降伏比が低いことが
明らかである。
[0011] When steel produced by the comparative method and steel produced by the method of the present invention are compared at the same strength level, it is clear that the steel of the present invention has a lower yield ratio.

【0012】0012

【表1】[Table 1]

【0013】[0013]

【表2】[Table 2]

【0014】[0014]

【発明の効果】以上説明したように、本発明方法によっ
て製造された鋼材は、高強度でかつ低降伏比であること
から、建築、橋梁などの分野で使用しても十分に安全性
を確保されるものであり、その工業的効果は極めて大き
い。
[Effects of the Invention] As explained above, the steel manufactured by the method of the present invention has high strength and a low yield ratio, so it can be used in fields such as architecture and bridges to ensure sufficient safety. The industrial effect is extremely large.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  製管圧延途中の素管に900℃〜75
0℃の温度にて3%〜10%の歪みを付与した後、65
0℃以下の温度に低下させることなく900℃〜115
0℃の温度に再加熱して定形圧延を行ない、その後空冷
してフェライト・パーライト主体の混合組織を有するシ
ームレス鋼管を、Ac1 変態点+10℃〜Ac1 変
態点+130℃の温度に加熱し保定した後急速冷却する
ことを特徴とする降伏比の低い高強度シームレス鋼管の
製造法。
[Claim 1] The raw pipe is heated at 900°C to 75°C during rolling for pipe making.
After applying a strain of 3% to 10% at a temperature of 0°C, 65
900℃~115℃ without reducing the temperature below 0℃
After reheating to a temperature of 0°C, performing shape rolling, and then air cooling, a seamless steel pipe having a mixed structure consisting mainly of ferrite and pearlite is heated to a temperature of Ac1 transformation point +10°C to Ac1 transformation point +130°C and then held. A method for manufacturing high-strength seamless steel pipes with a low yield ratio characterized by rapid cooling.
【請求項2】  製管圧延途中の素管に900℃〜75
0℃の温度にて3%〜10%の歪みを付与した後、65
0℃以下の温度に低下させることなく900℃〜115
0℃の温度に再加熱して定形圧延を行ない、その後空冷
してフェライト・パーライト主体の混合組織を有するシ
ームレス鋼管を、Ac1 変態点+10℃〜Ac1 変
態点+130℃の温度に加熱し保定した後急速冷却し、
続いて650℃以下の温度で焼き戻し処理することを特
徴とする降伏比の低い高強度シームレス鋼管の製造法。
[Claim 2] The raw pipe is heated at 900°C to 75°C during rolling for pipe making.
After applying a strain of 3% to 10% at a temperature of 0°C, 65
900℃~115℃ without reducing the temperature below 0℃
After reheating to a temperature of 0°C, performing shape rolling, and then air cooling, a seamless steel pipe having a mixed structure consisting mainly of ferrite and pearlite is heated to a temperature of Ac1 transformation point +10°C to Ac1 transformation point +130°C and then held. Rapid cooling,
A method for producing a high-strength seamless steel pipe with a low yield ratio, which comprises subsequently performing a tempering treatment at a temperature of 650°C or lower.
JP1226491A 1991-02-01 1991-02-01 Manufacturing method of high strength seamless steel pipe with low yield ratio Expired - Lifetime JP2957717B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1226491A JP2957717B2 (en) 1991-02-01 1991-02-01 Manufacturing method of high strength seamless steel pipe with low yield ratio

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1226491A JP2957717B2 (en) 1991-02-01 1991-02-01 Manufacturing method of high strength seamless steel pipe with low yield ratio

Publications (2)

Publication Number Publication Date
JPH04358024A true JPH04358024A (en) 1992-12-11
JP2957717B2 JP2957717B2 (en) 1999-10-06

Family

ID=11800512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1226491A Expired - Lifetime JP2957717B2 (en) 1991-02-01 1991-02-01 Manufacturing method of high strength seamless steel pipe with low yield ratio

Country Status (1)

Country Link
JP (1) JP2957717B2 (en)

Also Published As

Publication number Publication date
JP2957717B2 (en) 1999-10-06

Similar Documents

Publication Publication Date Title
JPS58188532A (en) Manufacture of hollow stabilizer
JPH04231414A (en) Production of highly corrosion resistant oil well pipe
US4609410A (en) Method for producing high-strength deep-drawable dual-phase steel sheets
US6939418B2 (en) Process for the thermomechanical treatment of steel
JPH04358024A (en) Production of high strength seamless steel tube reduced in yield ratio
JPS62253724A (en) Production of wire rod for cold forging having granular cementite structure
CA1182387A (en) Method for producing high-strength deep drawable dual phase steel sheets
JPS63293111A (en) Manufacture of seamless pipe of martensitic stainless steel
JPH01104718A (en) Manufacture of bar stock or wire rod for cold forging
JPS5913024A (en) Manufacture of directly spheroidized steel material
JPH04147919A (en) Production of high strength seamless steel tube reduced in yield ratio
TWI811081B (en) Manganese-boron steel and method for manufacturing the same
JP2705284B2 (en) Manufacturing method of high strength seamless steel pipe
JPS5931573B2 (en) Direct heat treatment method for hot rolled wire rod
JPS6046318A (en) Preparation of steel excellent in sulfide cracking resistance
JPS6347354A (en) High strength wire rod having superior ductility and relaxation characteristic and its manufacture
JPH04210453A (en) Martensitic stainless steel pipe excellent in low temperature toughness and its manufacture
JPH0143815B2 (en)
CN107043894B (en) Ductility and the excellent pearlite steel and its manufacturing method of impact flexibility
JP2985730B2 (en) Manufacturing method of high carbon cold rolled steel strip
JPH046218A (en) Production of seamless cr-mo steel tube
KR100973922B1 (en) Non-Annealing Steel Having Ferrite Formed by Strain Induced Dynamic Transformation and Method for Manufacturing the Steel
TW202409301A (en) Manganese-boron steel and method for manufacturing the same
JPS6386815A (en) Production of steel having excellent cold workability
JPS58117832A (en) Production of seamless steel pipe of low-carbon equivalent component type having high strength and toughness

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990615