JPH04356719A - Magnetic recording medium and production thereof - Google Patents

Magnetic recording medium and production thereof

Info

Publication number
JPH04356719A
JPH04356719A JP15742991A JP15742991A JPH04356719A JP H04356719 A JPH04356719 A JP H04356719A JP 15742991 A JP15742991 A JP 15742991A JP 15742991 A JP15742991 A JP 15742991A JP H04356719 A JPH04356719 A JP H04356719A
Authority
JP
Japan
Prior art keywords
magnetic
layer
thin film
oxygen
nonmagnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15742991A
Other languages
Japanese (ja)
Other versions
JP2729544B2 (en
Inventor
Masato Funahashi
舟橋 真人
Koji Sasazawa
笹沢 幸司
Naoto Abe
直人 阿部
Jiyunichi Nakamigawa
順一 中三川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP3157429A priority Critical patent/JP2729544B2/en
Publication of JPH04356719A publication Critical patent/JPH04356719A/en
Application granted granted Critical
Publication of JP2729544B2 publication Critical patent/JP2729544B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To provide the magnetic recording medium of a ferromagnetic metallic thin film type which can attain an improvement in reproduced output and C/N in a particularly high frequency range, i.e., short wavelength in order to obtain the high reproduced output and C/N over a wide recording frequency range. CONSTITUTION:A nonmagnetic substrate layer 2 formed by a vacuum film forming method and a high magnetic energy layer 3 which is so formed as to increase the quantity of the oxygen to be introduced into the vapor flow of a ferromagnetic metal in the late period of film formation are successively laminated on a nonmagnetic base body 1. The above-mentioned high magnetic energy layer 3 is the high magnetic energy layer having >=6.5X10<6> (gauss oersted) product of the residual magnetic flux density and antimagnetic force thereof. In addition, this high magnetic energy layer contains oxygen and the oxygen concn. on the front surface side thereof is higher than the oxygen concn. on the nonmagnetic base body side.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、真空蒸着法により非磁
性基体上に強磁性金属薄膜を磁性層として形成してなる
、いわゆる強磁性金属薄膜型の磁気記録媒体の改良に関
し、特にハイビジョン用途等の広帯域信号記録および高
密度記録に適した強磁性金属薄膜型の磁気記録媒体に関
するものである。
[Field of Industrial Application] The present invention relates to the improvement of so-called ferromagnetic metal thin film type magnetic recording media, which are formed by forming a ferromagnetic metal thin film as a magnetic layer on a non-magnetic substrate by a vacuum evaporation method, and particularly for high-definition use. The present invention relates to a ferromagnetic metal thin film type magnetic recording medium suitable for broadband signal recording and high-density recording such as the above.

【0002】0002

【従来の技術】磁気記録媒体は高密度記録が強く指向さ
れ続けている。高密度記録の達成のためには、再生出力
を大きくすること、ノイズを低減させること、或いは両
者を達成していわゆるC/N(再生出力Cとノイズの比
)を高くすることが必要である。
2. Description of the Related Art High-density recording continues to be a strong trend in magnetic recording media. In order to achieve high-density recording, it is necessary to increase the reproduction output, reduce noise, or achieve both to increase the so-called C/N (ratio of reproduction output C to noise). .

【0003】従来より広く使われている塗布型の磁気記
録媒体においても使用する磁性材料を酸化鉄粉末から強
磁性金属粉末にするなど材料自体を変更すると共に、夫
々の材料に於いても磁気特性の向上、微粒子化などの改
良を図り、高密度で高S/Nの磁気記録再生特性を達成
してきた。
In addition to changing the magnetic material used in coating-type magnetic recording media, which has been widely used in the past, such as changing from iron oxide powder to ferromagnetic metal powder, the magnetic properties of each material have also changed. We have achieved magnetic recording and reproducing characteristics with high density and high S/N by making improvements such as improving the particle size and making the particles finer.

【0004】しかしながら、これらの努力にも拘らず塗
布型の記録媒体では高密度記録に限界が見られ始め、次
の高密度記録達成のための新たな材料として金属薄膜型
媒体の開発が進められている。金属磁性薄膜の作成方法
としては、高分子フィルム等の基体上に強磁性金属をス
パッタリング法、イオンプレーティング法、電子ビーム
蒸着法などの真空中で薄膜を形成する真空成膜方法、お
よび水溶液中で基体上に薄膜を形成するいわゆるメッキ
方法などが知られている。
However, despite these efforts, coating-type recording media are beginning to reach their limits in high-density recording, and development of metal thin-film media is progressing as a new material to achieve the next high-density recording. ing. Methods for creating metal magnetic thin films include vacuum deposition methods in which a thin film is formed in a vacuum such as sputtering, ion plating, and electron beam evaporation of ferromagnetic metals on a substrate such as a polymer film, and methods in which a thin film is formed in a vacuum in an aqueous solution. A so-called plating method is known in which a thin film is formed on a substrate.

【0005】これらの中で電子ビーム蒸着法による磁気
テープ媒体の一部は8ミリビデオシステム用の磁気テー
プ、いわゆる「Hi−8ME」として実用に供され始め
ている。しかしながら近年、更なる高記録密度達成への
要望は極めて強く、例えば、ハイビジョンシステム用の
記録媒体としての要求など、大容量記録への要求はます
ます強くなってきている。このような要請に応えるため
に、強磁性金属薄膜型磁気記録媒体に於いても、その特
性改良研究が進められてきている。
Among these, some magnetic tape media produced by electron beam evaporation have begun to be put into practical use as magnetic tapes for 8 mm video systems, so-called "Hi-8ME." However, in recent years, there has been an extremely strong desire to achieve even higher recording densities, and the demand for large-capacity recording, for example as a recording medium for high-definition systems, has become increasingly strong. In order to meet such demands, research has been carried out to improve the characteristics of ferromagnetic metal thin film magnetic recording media.

【0006】これまでの金属薄膜型の記録媒体の特性改
良方法としては、Co−Niを採用した電子ビーム蒸着
法によるものでは、■  磁性膜粒子構造の改良、例え
ば真空蒸着時の酸素導入による保磁力の増大とノイズの
低減、耐蝕性を向上させる技術(例えば、特公昭57−
23931号公報、特開昭58−32234号公報に開
示されている。)、■  強磁性金属蒸気流を非磁性基
体上に斜めに導入して成膜する斜方入射蒸着法により、
磁気特性を改良する方法(例えば、特公昭41−148
12号公報、特公昭56−52377号公報に開示され
ている。)、■  複数層の蒸着膜を多層構造化するこ
とによるノイズの低減および磁性膜の磁気特性改良によ
る記録再生特性を改善させる方法(非磁性中間層を設け
ることも含む)(例えば、特公昭57−3133号公報
に開示されている。)、■  斜方入射蒸着による膜を
多層構造化して、磁性粒子の成長方向を制御することに
より、記録再生特性の方向依存性をなくす技術(例えば
、特開昭54−141608号公報、特開昭57−32
23号公報に開示されている。)等の試みがなされてき
た。
Conventional methods for improving the characteristics of metal thin film type recording media include electron beam evaporation using Co-Ni; Technology that increases magnetic force, reduces noise, and improves corrosion resistance (for example,
It is disclosed in Japanese Patent Application Laid-open No. 23931 and Japanese Patent Application Laid-open No. 58-32234. ), ■ Oblique incidence evaporation method in which a ferromagnetic metal vapor flow is introduced obliquely onto a non-magnetic substrate to form a film.
Methods for improving magnetic properties (for example, Japanese Patent Publication No. 41-148
This method is disclosed in Japanese Patent Publication No. 12 and Japanese Patent Publication No. 56-52377. ), ■ A method of reducing noise by creating a multilayer structure of multiple vapor-deposited films and improving recording and reproducing characteristics by improving the magnetic properties of a magnetic film (including providing a non-magnetic intermediate layer) (for example, Japanese Patent Publication No. 57 (Disclosed in Japanese Patent Publication No. 3133), ■ Technology to eliminate the directional dependence of recording and reproducing characteristics by forming a film formed by oblique incidence deposition into a multilayer structure and controlling the growth direction of magnetic particles (for example, Publication No. 54-141608, Japanese Patent Publication No. 57-32
It is disclosed in Publication No. 23. ), etc. have been attempted.

【0007】これらの試みの中でも、特に強磁性薄膜中
に酸素を導入する方法及び斜方入射蒸着法は磁気特性を
高め電磁変換特性の優れた高密度記録用の磁気記録媒体
の作成技術として注目されている。
Among these attempts, the method of introducing oxygen into a ferromagnetic thin film and the oblique incidence evaporation method have attracted particular attention as techniques for creating magnetic recording media for high-density recording with improved magnetic properties and excellent electromagnetic conversion characteristics. has been done.

【0008】しかしながら、これらの技術は、広い記録
信号の周波数帯域に渡って、その再生出力やC/Nを向
上させるには不十分であり、ハイビジョンシステムのよ
うに記録波長が0.4μm以下、トラック幅5μm以下
で、1μm2 /bit以下の高密度記録信号や高転送
レートのデジタル信号を高密度に記録するために必要な
、広い周波数領域、即ち広い記録波長の領域に渡って、
高い再生出力が得られるような磁気記録媒体を得るには
充分でなかった。
However, these techniques are insufficient to improve the reproduction output and C/N over a wide frequency band of recorded signals, and when the recording wavelength is 0.4 μm or less, such as in a high-definition system, Over a wide frequency range, that is, a wide recording wavelength range, necessary for recording high-density recording signals of 1 μm2/bit or less and digital signals with high transfer rates with a track width of 5 μm or less,
This was not sufficient to obtain a magnetic recording medium that could provide high reproduction output.

【0009】[0009]

【発明が解決しようとする課題】本発明は、この様な従
来の状況に鑑みてなされたものであり、本発明の目的は
広い記録周波数領域にわたり、高い再生出力と高いC/
N比を得るため、特に高い周波数領域、即ち短波長にお
いて、再生出力とC/N比の向上を達成しうる強磁性金
属薄膜型の磁気記録媒体を提供するものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the conventional situation, and an object of the present invention is to provide high playback output and high C/R over a wide recording frequency range.
The object of the present invention is to provide a ferromagnetic metal thin film type magnetic recording medium that can improve reproduction output and C/N ratio particularly in a high frequency region, that is, in a short wavelength.

【0010】0010

【課題を解決するための手段】本発明の目的は、非磁性
基体上に、真空成膜法で形成された薄膜を2層以上積層
してなる層構成を有し、かつ該層構成は1層以上の強磁
性薄膜を含むものである磁気記録媒体において、前記層
構成の最上層の薄膜は、その残留磁束密度(Br(ガウ
ス))と抗磁力(Hc(エルステッド))の積(Br×
Hc)が6.5×106 (ガウス・エルステッド)以
上の高磁気エネルギー層であり、且つ前記高磁気エネル
ギー層は酸素を含有し、その表面側における酸素濃度の
方が非磁性基体側における酸素濃度よりも高いことを特
徴とする磁気記録媒体、および非磁性基体上に、少なく
とも1層以上の強磁性薄膜もしくは非磁性薄膜を真空成
膜法で形成した後、該強磁性薄膜もしくは該非磁性薄膜
の上に強磁性金属蒸気流の前記非磁性基体に対する入射
角が最大入射角(θmax )から最小入射角(θmi
n )へと連続的に変化し、且つ前記最大入射角(θm
ax )近傍よりも最小入射角(θmin )近傍の方
が酸素の導入量が多くなるように、前記強磁性金属気流
中に酸化性ガスを導入する斜方入射蒸着法により高磁気
エネルギー層を形成する磁気記録媒体の製造方法により
達成できる。
[Means for Solving the Problems] An object of the present invention is to have a layer structure in which two or more thin films formed by a vacuum film forming method are laminated on a non-magnetic substrate, and the layer structure is one layer structure. In a magnetic recording medium that includes a ferromagnetic thin film of more than one layer, the uppermost thin film of the layer structure has a ferromagnetic thin film whose residual magnetic flux density (Br (Gauss)) and coercive force (Hc (Oersted)) are multiplied by the product (Br×
Hc) is 6.5 x 106 (Gauss Oersted) or more, and the high magnetic energy layer contains oxygen, and the oxygen concentration on the surface side is higher than the oxygen concentration on the nonmagnetic substrate side. After forming at least one ferromagnetic thin film or nonmagnetic thin film on a nonmagnetic substrate by a vacuum film forming method, the ferromagnetic thin film or the nonmagnetic thin film is The angle of incidence of the ferromagnetic metal vapor flow on the non-magnetic substrate varies from the maximum angle of incidence (θmax) to the minimum angle of incidence (θmi).
n ), and the maximum incident angle (θm
A high magnetic energy layer is formed by an oblique incidence evaporation method in which an oxidizing gas is introduced into the ferromagnetic metal air flow so that the amount of oxygen introduced is larger near the minimum incidence angle (θmin) than near the minimum incident angle (θmin). This can be achieved by a method of manufacturing a magnetic recording medium.

【0011】即ち、本発明は非磁性基体上に予め少なく
とも一層の非磁性薄膜の層もしくは強磁性薄膜の層を真
空成膜法により設けた上に、同じく真空成膜法により膜
厚方向の酸素分布をその表面側における酸素濃度の方が
非磁性基体側における酸素濃度よりも高くなるように制
御した強磁性薄膜を設けることにより、その強磁性薄膜
のBrとHcの積を6.5×106 (ガウス・エルス
テッド)以上にすることができることを特徴とするもの
である。
That is, in the present invention, at least one nonmagnetic thin film layer or ferromagnetic thin film layer is previously provided on a nonmagnetic substrate by a vacuum film forming method, and then oxygen is removed in the film thickness direction by a vacuum film forming method. By providing a ferromagnetic thin film whose distribution is controlled so that the oxygen concentration on the surface side is higher than the oxygen concentration on the non-magnetic substrate side, the product of Br and Hc of the ferromagnetic thin film is 6.5 x 106. (Gauss-Oersted) or more.

【0012】言い換えれば、本発明の磁気記録媒体は、
Br×Hcが大きい高磁気エネルギー層を有するので、
広帯域信号記録に対応すると共に記録波長が小さい、例
えば、0.4μm以下程度の磁気記録方式にあっても高
出力が維持できる。このことは、磁気記録の原理に基づ
くものである。
In other words, the magnetic recording medium of the present invention:
Since it has a high magnetic energy layer with large Br×Hc,
It is compatible with broadband signal recording and can maintain high output even in a magnetic recording system where the recording wavelength is small, for example, about 0.4 μm or less. This is based on the principle of magnetic recording.

【0013】このような高磁気エネルギー層が形成され
る機構の詳細は不明であるが、およそ次のように考えら
れる。非磁性基体に強磁性薄膜を直接成膜した場合、表
面が高温に晒されることによりポリエチレンフタレート
のような高分子フィルムの表面から発生する低分子量成
分、水分等の気体成分により強磁性結晶粒子の初期の成
長に対し何等かのゆらぎを誘発しこの成長が乱されるが
、本発明のように高磁気エネルギー層の下部に強磁性薄
膜または非磁性薄膜が設けられているとこれを防止でき
ること、およびこの高磁気エネルギー層の酸素分布を上
記の如く規定することにより前記と同様に強磁性結晶粒
子の初期成長の乱れを最小限に抑えることができること
によると考えられる。
Although the details of the mechanism by which such a high magnetic energy layer is formed are unknown, it is thought to be approximately as follows. When a ferromagnetic thin film is directly deposited on a non-magnetic substrate, the ferromagnetic crystal grains are damaged by low molecular weight components and gas components such as moisture generated from the surface of the polymer film such as polyethylene phthalate when the surface is exposed to high temperatures. Although this growth is disturbed by inducing some kind of fluctuation in the initial growth, this can be prevented by providing a ferromagnetic thin film or a nonmagnetic thin film under the high magnetic energy layer as in the present invention; This is thought to be due to the fact that by defining the oxygen distribution in this high magnetic energy layer as described above, disturbances in the initial growth of ferromagnetic crystal grains can be minimized in the same way as described above.

【0014】このような、高磁気エネルギー層を有する
磁気記録媒体を製造するための具体的方法は特に制限は
ないが、高磁気エネルギー層をその成膜後期(高磁気エ
ネルギー層の表面形成時)に酸素の導入量を多くするこ
とにより製造できる。具体的には、上述の通り高磁気エ
ネルギー層を形成する強磁性金属蒸気流を非磁性基体に
対する入射角が最大入射角(θmax )から最小入射
角(θmin )へと連続的に変化し、且つ前記最大入
射角(θmax )近傍よりも最小入射角(θmin 
)近傍の方が酸素の導入量が多くなるように、前記強磁
性金属気流中に酸化性ガスを導入する斜法入射蒸着法に
より製造できる。
[0014] There is no particular restriction on the specific method for producing a magnetic recording medium having such a high magnetic energy layer, but the high magnetic energy layer may be formed in the late stage of film formation (at the time of surface formation of the high magnetic energy layer). It can be produced by increasing the amount of oxygen introduced. Specifically, as described above, the incident angle of the ferromagnetic metal vapor flow forming the high magnetic energy layer with respect to the nonmagnetic substrate changes continuously from the maximum incidence angle (θmax) to the minimum incidence angle (θmin), and The minimum incident angle (θmin) is smaller than the vicinity of the maximum incidence angle (θmax).
) It can be manufactured by an oblique incidence evaporation method in which an oxidizing gas is introduced into the ferromagnetic metal air flow so that the amount of oxygen introduced is larger in the vicinity of the ferromagnetic metal.

【0015】本出願人は、本発明に至る過程で、同一の
非磁性基体上に単一の磁性層、下地層+磁性層、下層磁
性層+非磁性中間層+上層磁性層などの様々な層構成よ
りなる強磁性金属薄膜型磁気記録媒体を数多く作製し、
基体より最も離れた強磁性薄膜層AのBr×Hcおよび
膜中酸素分布状態と短波長領域でのC/Nとの関係を調
べた。前述のように本発明は強磁性薄膜層A、即ち高磁
気エネルギー層と非磁性基体との間に少なくとも一層以
上の強磁性薄膜もしくは非磁性薄膜を有し、高磁気エネ
ルギー層の残留磁束密度Br(ガウス)と抗磁力Hc(
エルステッド)との積Br×Hcが6.5×106 (
ガウス・エルステッド)以上であり、高磁気エネルギー
層の表面側に含まれる酸素濃度がその基体側に含まれる
酸素濃度よりも高いことが、短波長領域で高いC/Nを
得るために重要であることを見出した。
In the process of arriving at the present invention, the present applicant discovered that various layers such as a single magnetic layer, underlayer + magnetic layer, lower magnetic layer + nonmagnetic intermediate layer + upper magnetic layer, etc., were formed on the same nonmagnetic substrate. We have produced many ferromagnetic metal thin film magnetic recording media with a layered structure,
The relationship between Br×Hc of the ferromagnetic thin film layer A that is farthest from the substrate, the oxygen distribution state in the film, and the C/N in a short wavelength region was investigated. As mentioned above, the present invention has a ferromagnetic thin film layer A, that is, at least one ferromagnetic thin film or a nonmagnetic thin film between the high magnetic energy layer and the nonmagnetic substrate, and the residual magnetic flux density Br of the high magnetic energy layer is (Gauss) and coercive force Hc (
Br×Hc is 6.5×106 (
Gauss-Oersted) or higher, and it is important for the oxygen concentration contained on the surface side of the high magnetic energy layer to be higher than the oxygen concentration contained on the substrate side in order to obtain a high C/N in the short wavelength region. I discovered that.

【0016】即ち、強磁性薄膜層Aの基体側に多くの酸
素を含む場合、Br×Hcを大きくするには成膜時の導
入酸素量を少なくして、Brを大きくする方法が有効で
あるが、導入酸素量が少なくなると磁性層を形成してい
る粒子の大きさが増大し、それに伴ってノイズレベルが
急激に大きくなり、Br増大により出力レベルが上がっ
てもC/Nとしては大きくならないのに対し、本発明に
おける高磁気エネルギー層の如く強磁性薄膜層Aと該基
体との間に少なくとも一層以上の強磁性薄膜もしくは非
磁性薄膜があり且つ基体側に含まれる酸素が少ない場合
、導入酸素量を特に少なくしなくとも比較的容易にBr
を大きくすることができ、その結果ノイズレベルを上げ
ることなく出力レベルを上げることができ、C/Nが大
きくなるのである。
That is, when the substrate side of the ferromagnetic thin film layer A contains a large amount of oxygen, an effective method for increasing Br×Hc is to reduce the amount of oxygen introduced during film formation to increase Br. However, when the amount of introduced oxygen decreases, the size of the particles forming the magnetic layer increases, and the noise level increases rapidly, and even if the output level increases due to an increase in Br, the C/N does not increase. On the other hand, when there is at least one ferromagnetic thin film or non-magnetic thin film between the ferromagnetic thin film layer A and the substrate, such as the high magnetic energy layer in the present invention, and the amount of oxygen contained on the substrate side is small, the introduction It is relatively easy to reduce Br without particularly reducing the amount of oxygen.
As a result, the output level can be increased without increasing the noise level, and the C/N ratio can be increased.

【0017】本発明の磁気記録媒体における高磁気エネ
ルギー層の磁気特性の測定は、非磁性基体上に非磁性層
を真空成膜法で成膜し、その上に高磁気エネルギー層と
同じ構成の磁性層を同一条件で成膜した測定用試料を、
別途、作成して行った。該磁気特性は、振動試料型磁力
計(VSM)により測定した。
To measure the magnetic properties of the high magnetic energy layer in the magnetic recording medium of the present invention, a nonmagnetic layer is formed on a nonmagnetic substrate by a vacuum deposition method, and a layer having the same structure as the high magnetic energy layer is deposited on top of the nonmagnetic layer. A measurement sample with a magnetic layer formed under the same conditions was
I created it separately. The magnetic properties were measured using a vibrating sample magnetometer (VSM).

【0018】本発明において構成層の最上層の強磁性薄
膜層(即ち基体よりも最も離れた所に位置する磁性層で
ある高磁気エネルギー層)の膜中酸素分布は、該磁性層
の表面側に含まれる酸素濃度が該層の基体側に含まれる
酸素濃度よりも高いことを満たしていればよく、酸素濃
度の絶対値を制限するものではないが、上記磁気特性が
得られ、且つ実用的な耐久性を得るためには、該磁性層
の表面側の酸素濃度は10原子%〜50原子%が好まし
く、基体側の酸素濃度は5原子%〜30原子%が好まし
い。ここで、表面側及び基体側の酸素濃度とは、例えば
、該磁性層の厚みをdとすると、表面からd/10の厚
さでの酸素濃度の平均を表面側酸素濃度の、該磁性層と
それに隣接する層との界面からd/10の厚さでの酸素
濃度の平均を基体側または界面側酸素濃度の各々目安と
するとよいであろう。
In the present invention, the oxygen distribution in the uppermost ferromagnetic thin film layer of the constituent layers (that is, the high magnetic energy layer which is the magnetic layer located farthest from the substrate) is as follows: It is sufficient that the oxygen concentration contained in the layer is higher than the oxygen concentration contained in the substrate side of the layer, and the absolute value of the oxygen concentration is not limited. In order to obtain good durability, the oxygen concentration on the surface side of the magnetic layer is preferably 10 at % to 50 at %, and the oxygen concentration on the substrate side is preferably 5 at % to 30 at %. Here, the oxygen concentration on the surface side and the substrate side means, for example, if the thickness of the magnetic layer is d, the average oxygen concentration at a thickness of d/10 from the surface is the oxygen concentration on the surface side of the magnetic layer. The average oxygen concentration at a thickness of d/10 from the interface between the substrate and the layer adjacent thereto may be used as a guideline for the oxygen concentration on the substrate side or the interface side, respectively.

【0019】本発明の磁気記録媒体における前記高磁気
エネルギー層の積(Br×Hc)は6.5×106 以
上、好ましくは7.0×106以上、更に好ましくは8
.0×106 エルステッド・ガウス以上である。
In the magnetic recording medium of the present invention, the product (Br x Hc) of the high magnetic energy layer is 6.5 x 106 or more, preferably 7.0 x 106 or more, more preferably 8
.. 0x106 It is more than Ørsted Gauss.

【0020】他の磁気特性については特に限定するもの
ではないが、Brが3000ガウス以下と小さすぎると
高密度記録に十分な出力が得られず、Hcが800エル
ステッド以下と小さすぎても高密度記録に十分な出力が
得られない。従ってBrは3000ガウス以上が好まし
く、特に4500ガウス以上が好ましい。また、Hcは
800エルステッド以上が好ましく、特に1300エル
ステッド以上が好ましい。
There are no particular limitations on other magnetic properties, but if Br is too small (3000 Gauss or less), sufficient output for high-density recording cannot be obtained, and if Hc is too small (800 Oe or less), high-density recording cannot be achieved. Insufficient output for recording. Therefore, Br is preferably 3000 Gauss or more, particularly preferably 4500 Gauss or more. Further, Hc is preferably 800 Oe or more, particularly preferably 1300 Oe or more.

【0021】前記高磁気エネルギー層の厚みは特に規定
するものではないが、上記特性の強磁性薄膜をえるため
には厚み300乃至5000Å、好ましくは600乃至
3500Å、更に好ましくは800乃至2500Åであ
る。
The thickness of the high magnetic energy layer is not particularly limited, but in order to obtain a ferromagnetic thin film with the above characteristics, the thickness is 300 to 5000 Å, preferably 600 to 3500 Å, and more preferably 800 to 2500 Å.

【0022】厚みが300Åより薄い膜では磁気特性を
確保することは実質的に困難である。また厚みが300
0Å以上になると、表面粗さが粗くなりスペーシングロ
スの増大に伴い出力が低下すると共に、柱状粒子の大き
さが大きくなり再生時のノイズが増加して実用的でない
[0022] It is substantially difficult to ensure magnetic properties with a film thinner than 300 Å in thickness. Also, the thickness is 300
When it is 0 Å or more, the surface roughness becomes rough and the output decreases due to an increase in spacing loss, and the size of the columnar particles increases and noise during reproduction increases, making it impractical.

【0023】本発明における高磁気エネルギー層を最上
層とする層構成は、非磁性基体と該高磁気エネルギー層
との間に少なくとも1層以上の磁性および/または非磁
性の薄膜層を有した構成で真空成膜法により形成したも
のであれば、積層させる層の数や各々の層の材質、厚み
、作製方法については何等制限するものではない。例え
ば、高磁気エネルギー層を形成するために予め設けられ
る層が極端な場合組成的に高磁気エネルギー層と同じで
あってもよい。即ち、非磁性基体上に少なくとも2層以
上の薄膜が形成されており、しかも該基体より最も離れ
た所に位置する高磁気エネルギー層と非磁性基体との間
に少なくとも1層以上の非磁性層もしくは真空成膜法で
形成された磁性層が存在するという条件を満たしていれ
ばよい。
[0023] The layer structure in which the high magnetic energy layer is the uppermost layer in the present invention has at least one magnetic and/or nonmagnetic thin film layer between the nonmagnetic substrate and the high magnetic energy layer. As long as it is formed by a vacuum film forming method, there are no restrictions on the number of layers to be laminated, the material and thickness of each layer, and the manufacturing method. For example, in extreme cases, the layer previously provided to form the high magnetic energy layer may be compositionally the same as the high magnetic energy layer. That is, at least two or more thin films are formed on a nonmagnetic substrate, and at least one nonmagnetic layer is provided between the high magnetic energy layer located farthest from the substrate and the nonmagnetic substrate. Alternatively, the condition that a magnetic layer formed by a vacuum film forming method is present may be satisfied.

【0024】本発明による磁気記録媒体の層構成の具体
例としては、図1、2の構成が例示できる。図1の例で
は、非磁性基体1の上に非磁性下地層2を形成した後、
高磁気エネルギー層3を形成した構造であり、図2の例
は、非磁性基体1の上に下層磁性層4、非磁性中間層5
、高磁気エネルギー層6を順次積層した構成である。
Specific examples of the layer structure of the magnetic recording medium according to the present invention include the structures shown in FIGS. 1 and 2. In the example of FIG. 1, after forming the nonmagnetic underlayer 2 on the nonmagnetic substrate 1,
It has a structure in which a high magnetic energy layer 3 is formed, and the example shown in FIG.
, high magnetic energy layers 6 are sequentially laminated.

【0025】強磁性金属薄膜の形成手段としては、気相
メッキ法、スパッタリング法、蒸着法、イオンプレーテ
ィング法、CVD法等が例示される。本発明の目的を更
に効果的に達成するためには、高磁気エネルギー層の形
成手段として斜方入射蒸着法が好ましく、これにより形
成される斜方柱状粒子からなる強磁性金属薄膜がよい。
Examples of means for forming the ferromagnetic metal thin film include vapor phase plating, sputtering, vapor deposition, ion plating, and CVD. In order to more effectively achieve the object of the present invention, oblique incidence deposition is preferred as a means for forming the high magnetic energy layer, and a ferromagnetic metal thin film made of orthorhombic columnar particles formed by this method is preferred.

【0026】この斜方柱状粒子とは、具体的に構造の特
徴を述べれば、微結晶の集合体である柱状粒子が斜めに
折り重なって配列しているもの等が挙げられる。斜方入
射蒸着とは、移動する基体に対して蒸発源からそれらの
金属の蒸発原子を最大入射角(θmax )から最小入
射角(θmin )へと連続的に変化させながら基体上
に蒸着させることにより形成するもので、基体を円筒状
のキャンに沿わせて搬送する場合は、蒸着された強磁性
金属薄膜は湾曲した柱状の強磁性金属結晶よりなる。
Specifically speaking, the orthorhombic columnar particles include those in which columnar particles, which are aggregates of microcrystals, are arranged in a diagonally folded manner. Oblique incidence deposition refers to evaporating metal atoms from an evaporation source onto a moving substrate while continuously changing the angle of incidence from the maximum angle of incidence (θmax) to the minimum angle of incidence (θmin). When the substrate is transported along a cylindrical can, the deposited ferromagnetic metal thin film is made of curved columnar ferromagnetic metal crystals.

【0027】本発明の製造方法において、該θmax 
の範囲としては、60〜90度、好ましくは80〜90
度が、該θmin の範囲としては、20〜60度、好
ましくは30〜50度が挙げられる。
In the manufacturing method of the present invention, the θmax
The range is 60 to 90 degrees, preferably 80 to 90 degrees.
The range of θmin is 20 to 60 degrees, preferably 30 to 50 degrees.

【0028】また、本発明の磁気記録媒体及びその製造
方法においては、該斜方入射蒸着中に真空槽に酸素を含
む酸化性ガスもしくは酸化性ガスと不活性ガスとの混合
ガスを導入して酸化物を含む柱状の粒子形態の膜を形成
することができる。
Further, in the magnetic recording medium and the manufacturing method thereof of the present invention, an oxidizing gas containing oxygen or a mixed gas of an oxidizing gas and an inert gas is introduced into the vacuum chamber during the oblique incidence deposition. A film containing an oxide in the form of columnar particles can be formed.

【0029】酸化性ガスとしては、酸素の他、オゾン、
過酸化水素等が使用できる。また、不活性ガスとしては
、ヘリウム、アルゴン等が挙げられる。特に、強磁性金
属蒸気流の該θmax 近傍からよりも該θmin 近
傍からの酸素導入量を多くすることにより、前記高磁気
エネルギー層内の酸素の分布を基体に近い方よりも表面
に近い方を多くなるようにすることが出来るので好まし
い。該θmax 近傍、該θmin 近傍とは、θma
x 、θmin をも包含する意味である。
In addition to oxygen, the oxidizing gas includes ozone,
Hydrogen peroxide etc. can be used. Further, examples of the inert gas include helium, argon, and the like. In particular, by increasing the amount of oxygen introduced from the vicinity of θmin of the ferromagnetic metal vapor flow than from the vicinity of θmax, the distribution of oxygen in the high magnetic energy layer is changed closer to the surface than closer to the substrate. This is preferable because it can be made to increase in number. The vicinity of θmax and the vicinity of θmin refer to θmax
The meaning also includes x and θmin.

【0030】ここで、該θmax および該θmin 
における強磁性金属蒸気流への酸素導入量の具体的量と
しては、特に制限はなく、蒸着装置の大きさ規模等によ
り適宜調整される。
Here, the θmax and the θmin
The specific amount of oxygen introduced into the ferromagnetic metal vapor flow is not particularly limited, and is appropriately adjusted depending on the size and scale of the vapor deposition apparatus.

【0031】従って、前記高磁気エネルギー層を斜方入
射蒸着法で成膜する際の酸化性ガスの導入を低入射角側
のみから行ってもよい。これら酸化性ガスを導入して得
た膜では特に、磁気特性に優れ、再生出力やノズルに優
れると共に、磁気テープとした場合の耐久性の向上がで
きる。
Therefore, when forming the high magnetic energy layer by oblique incidence deposition, the oxidizing gas may be introduced only from the low incidence angle side. In particular, films obtained by introducing these oxidizing gases have excellent magnetic properties, excellent reproduction output and nozzle performance, and can improve durability when used as a magnetic tape.

【0032】一方、高磁気エネルギー層以外の強磁性薄
膜層または非磁性層の形成方法は、真空成膜法によるも
のであれば特に制限されない。例えば、真空蒸着法、ス
パッタリング法、イオンプレーティング法、CVD法等
が挙げられる。
On the other hand, the method of forming the ferromagnetic thin film layer or nonmagnetic layer other than the high magnetic energy layer is not particularly limited as long as it is a vacuum film forming method. Examples include a vacuum evaporation method, a sputtering method, an ion plating method, a CVD method, and the like.

【0033】本発明にける非磁性基体への成膜の層構成
は、真空槽内で連続して行うことが好ましく、また、連
続した非磁性基体上に高速で成膜可能な方法が望ましい
。前記高磁気エネルギー層と非磁性基体との間の非磁性
層を蒸着法で成膜する場合には、基本的に強磁性金属薄
膜を作製するための真空蒸着装置が使用できる。即ち、
蒸着させる金属材料を例えばCu、Pt、Ti、Al、
Cr、Biなどの非磁性金属材料を用いること、或いは
これらの金属材料の蒸発を酸素含有ガスを導入しつつ行
うことなどによって作製できる。或いは、本発明の実施
にあたっては非磁性層は実質的に非磁性であればよいの
で、磁性金属材料を使用する場合には、蒸着時に酸素含
有ガスを導入しつつ行うことによって非磁性酸化物とし
て作製することができる。好ましい金属単体としては、
Cu、Ti、Au及びAl等が、好ましい金属酸化物と
しては、Co、Ni、Si及びTi等の酸化物が挙げら
れる。
[0033] The layer structure for forming a film on a non-magnetic substrate in the present invention is preferably carried out continuously in a vacuum chamber, and a method that can form a film on a continuous non-magnetic substrate at high speed is desirable. When forming the nonmagnetic layer between the high magnetic energy layer and the nonmagnetic substrate by a vapor deposition method, a vacuum vapor deposition apparatus basically used for producing a ferromagnetic metal thin film can be used. That is,
The metal material to be evaporated may be, for example, Cu, Pt, Ti, Al,
It can be manufactured by using non-magnetic metal materials such as Cr and Bi, or by evaporating these metal materials while introducing an oxygen-containing gas. Alternatively, in carrying out the present invention, the nonmagnetic layer only needs to be substantially nonmagnetic, so if a magnetic metal material is used, it can be formed as a nonmagnetic oxide by introducing an oxygen-containing gas during vapor deposition. It can be made. Preferred metals include:
Preferred metal oxides include Cu, Ti, Au, Al, etc., and oxides of Co, Ni, Si, Ti, etc. can be mentioned.

【0034】図3に本発明の製造に使用しうる真空蒸着
装置例の概略を示す。この装置は図示しない真空ポンプ
によって所定の真空度、例えば、1×10−4Torr
以下にする。酸素ガスを導入して磁性膜を形成する時は
圧力を1×10−3Torr以下にする。また、非磁性
層を金属酸化物で形成する時は1×10−3Torr以
上にする。真空槽7の内部に、20KeV程度の電子ビ
ーム加熱装置8等の加熱手段によって加熱される蒸発源
9、蒸着原子の入射角θmin を規制するための遮蔽
板10、冷却用の円筒状キャン11、基体の表面洗浄及
び帯電除去に使用されるグロー放電処理室12、酸素等
ガスのガス導入部13、14、巻出しロール15及び巻
取りリール16などが配置されている。巻出しロール1
5より供給される非磁性基体1を上記キャン11に沿わ
せて連続的に走行させながら、上記蒸発源9からの蒸発
原子を上記基体に被着させ、この蒸発原子の連続膜を磁
性層または非磁性層として形成する。
FIG. 3 schematically shows an example of a vacuum evaporation apparatus that can be used in the production of the present invention. This device uses a vacuum pump (not shown) to maintain a predetermined degree of vacuum, e.g., 1 x 10-4 Torr.
Do the following. When introducing oxygen gas to form a magnetic film, the pressure is set to 1.times.10@-3 Torr or less. Further, when the nonmagnetic layer is formed of a metal oxide, the pressure is set to 1×10 −3 Torr or more. Inside the vacuum chamber 7, an evaporation source 9 heated by a heating means such as an electron beam heating device 8 of about 20 KeV, a shielding plate 10 for regulating the incident angle θmin of the evaporated atoms, a cylindrical can 11 for cooling, A glow discharge treatment chamber 12 used for surface cleaning and charge removal of the substrate, gas introduction sections 13 and 14 for gas such as oxygen, an unwinding roll 15, a take-up reel 16, and the like are arranged. Unwinding roll 1
While the non-magnetic substrate 1 supplied from 5 is continuously run along the can 11, evaporated atoms from the evaporation source 9 are deposited on the substrate, and a continuous film of the evaporated atoms is formed into a magnetic layer or Formed as a nonmagnetic layer.

【0035】従って、上記の真空蒸着法のみを使用して
本発明を製造する場合には同一装置にて複数回繰り返し
蒸着することによって図1もしくは図2に示すような構
造の磁気記録媒体を得ることができる。この場合、蒸発
源9の金属種は交換してもしなくともよい。
Therefore, when manufacturing the present invention using only the above-mentioned vacuum evaporation method, a magnetic recording medium having a structure as shown in FIG. 1 or 2 can be obtained by repeating the evaporation several times using the same apparatus. be able to. In this case, the metal type of the evaporation source 9 may or may not be replaced.

【0036】本発明に使用される強磁性金属薄膜の材料
としては、特にFe、Co、Ni等の金属、或いはこれ
らの合金、或いはこれらの金属にCu、Pt、Crなど
が添加された合金が望ましい。
Materials for the ferromagnetic metal thin film used in the present invention include metals such as Fe, Co, and Ni, alloys thereof, and alloys in which Cu, Pt, Cr, etc. are added to these metals. desirable.

【0037】本発明に使用される非磁性基体としては、
ポリエチレンテレフタレートフィルム(PET)、ポリ
エチレンナフタレートフィルム(PEN)、ポリアラミ
ドフィルム、ポリイミドフィルム、ポリアミドフィルム
などのベースが使用される。それらの厚みは磁気テープ
用途としては数ミクロンから十数ミクロンのものが主と
して用いられる。これらの材料、その厚みなどは磁気記
録媒体システムに適合するものを選択するべき事項であ
り、本発明を規定するものではない。これらベースの表
面には、山状突起やしわ状突起などの突起を一種以上設
けてもよい。これらを設けることによって磁性層表面に
微小突起を形成して磁気記録媒体としての耐久性を向上
させることができる。上記山状あるいは粒状突起は、高
分子フィルム成膜時に有機粒子あるいは無機粒子を内添
したり、フィルム表面に有機粒子あるいは無機粒子を塗
布するなどによって得られる。しわ状突起は例えば樹脂
の希薄溶液を塗布・乾燥することによって形成すること
ができる。これらの高さ、分布、密度などは適宜選択す
れば良いが、突起の高さは30〜200Å、密度は1×
104 〜3×107 個/mm2 程度のものが好ま
しい。
[0037] The nonmagnetic substrate used in the present invention includes:
Bases such as polyethylene terephthalate film (PET), polyethylene naphthalate film (PEN), polyaramid film, polyimide film, polyamide film, etc. are used. For magnetic tape applications, those having a thickness of several microns to more than ten microns are mainly used. These materials, their thickness, etc. are matters to be selected that are compatible with the magnetic recording medium system, and do not define the present invention. The surface of these bases may be provided with one or more types of protrusions such as mountain-like protrusions and wrinkle-like protrusions. By providing these, minute protrusions can be formed on the surface of the magnetic layer, thereby improving the durability of the magnetic recording medium. The above-mentioned mountain-like or granular protrusions can be obtained by adding organic particles or inorganic particles internally during the formation of a polymer film, or by coating the film surface with organic particles or inorganic particles. The wrinkle-like protrusions can be formed, for example, by applying and drying a dilute resin solution. The height, distribution, density, etc. of these may be selected appropriately, but the height of the protrusion is 30 to 200 Å, and the density is 1×
It is preferable that the number is about 104 to 3×107 pieces/mm2.

【0038】真空成膜の際の発熱によって、非磁性層基
体上から多くの成分の脱ガスがある。本発明では高磁気
エネルギー層を形成する前に他の層を非磁性基体上に形
成しておくので、高磁気エネルギー層の成膜には、この
脱ガスは影響を受けない。従って、前記のように非磁性
基体上に該塗布層を形成した場合には本発明の磁気記録
媒体は特に有利である。
Due to the heat generated during vacuum film formation, many components are degassed from the nonmagnetic layer substrate. In the present invention, since other layers are formed on the nonmagnetic substrate before forming the high magnetic energy layer, this outgassing is not affected by the formation of the high magnetic energy layer. Therefore, the magnetic recording medium of the present invention is particularly advantageous when the coating layer is formed on a nonmagnetic substrate as described above.

【0039】本発明の高磁気エネルギー層の最外表面は
、磁性膜の耐食性や耐久性などを向上させるための保護
膜や潤滑剤或いは両者を設けることができる。保護膜と
しては、酸化物の薄膜、窒化物の薄膜及びカーボン系の
薄膜等が挙げられる。潤滑剤としては、各種脂肪酸、そ
のエステル、パーフルオロポリエーテル等が挙げられ、
通常、2〜40mg/m2 、好ましくは、3〜20m
g/m2 の範囲でそのままもしくは有機溶剤等にて希
釈して塗布される。
The outermost surface of the high magnetic energy layer of the present invention can be provided with a protective film, a lubricant, or both in order to improve the corrosion resistance and durability of the magnetic film. Examples of the protective film include an oxide thin film, a nitride thin film, and a carbon-based thin film. Examples of lubricants include various fatty acids, their esters, perfluoropolyethers, etc.
Usually 2-40mg/m2, preferably 3-20m
It can be applied as is or diluted with an organic solvent or the like in a range of g/m2.

【0040】磁性層の表面形状は特に規定されないが、
10〜500Åの高さの突起を有している場合、特に走
行性・耐久性に優れる。
Although the surface shape of the magnetic layer is not particularly defined,
When it has protrusions with a height of 10 to 500 angstroms, it has particularly excellent runnability and durability.

【0041】磁気記録媒体の形状は、テープ、シート、
カード、ディスク等いずれでもよいが、特に好ましいの
はテープ状、ディスク状である。本発明の磁気記録媒体
の走行耐久性を更に高めるため磁性層がある面とは反対
側の面に非磁性粒子と結合剤樹脂からなるバック層を設
けることができる。
The shape of the magnetic recording medium is tape, sheet,
It may be a card, a disk, or the like, but tapes and disks are particularly preferred. In order to further improve the running durability of the magnetic recording medium of the present invention, a back layer made of non-magnetic particles and a binder resin can be provided on the surface opposite to the surface on which the magnetic layer is located.

【0042】[0042]

【実施例】以下に本発明を実施例により更に具体的に説
明する。ここに示す成分、割合、操作順序等は本発明の
精神から逸脱しない範囲において変更しうるものである
ことは本業界に携わるものにとっては容易に理解される
ことである。
[Examples] The present invention will be explained in more detail with reference to Examples below. It will be readily understood by those skilled in the art that the ingredients, proportions, order of operations, etc. shown herein may be modified without departing from the spirit of the invention.

【0043】従って、本発明は下記の実施例に制限され
るべきではない。図3にその概略を示す蒸着装置を用い
て、図1にその断面図を示す構成の実施例について説明
する。非磁性基体1として強磁性金属薄膜が被着される
側の表面に高さが約200Å、密度1.2×107 個
/mm2 のSiO2 の微粒子よりなる微小突起が設
けられている厚さ10μmのポリエチレンテレフタレー
トフィルムを使用した。
[0043] Therefore, the present invention should not be limited to the following examples. An embodiment of the configuration whose cross-sectional view is shown in FIG. 1 will be described using a vapor deposition apparatus whose outline is shown in FIG. 3. The nonmagnetic substrate 1 is a 10 μm thick substrate on which microprotrusions made of SiO2 particles with a height of about 200 Å and a density of 1.2×10 7 particles/mm 2 are provided on the surface on which the ferromagnetic metal thin film is deposited. Polyethylene terephthalate film was used.

【0044】先ずは下層磁性層を形成するために該非磁
性基体1を、その中に含まれる水分の除去および該基体
表面のクリーニングのための酸素プラズマによるグロー
放電処理室12を通過させた後、冷却用の円筒状キャン
11に沿って、電子ビーム加熱装置8と蒸発源9と遮蔽
板10およびガス導入部13、14より構成される成膜
部を通過させた。蒸発源9としてCuを用い、電子ビー
ム加熱することによって蒸発させ、該基体に厚さ約20
0Åの非磁性下地層を被着させた。
First, in order to form the lower magnetic layer, the nonmagnetic substrate 1 is passed through a glow discharge treatment chamber 12 using oxygen plasma for removing moisture contained therein and cleaning the surface of the substrate. A film forming section composed of an electron beam heating device 8, an evaporation source 9, a shielding plate 10, and gas introduction sections 13 and 14 was passed along a cylindrical can 11 for cooling. Using Cu as the evaporation source 9, it is evaporated by electron beam heating, and a thickness of about 20 mm is deposited on the substrate.
A 0 Å nonmagnetic underlayer was deposited.

【0045】次に高磁気エネルギー層3を形成するため
に、非磁性下地層2が設けられた基体を上記と同様に搬
送しつつ、蒸発源としてCo80%、Ni20%の組成
の合金を用い、電子ビーム加熱することによって蒸発さ
せ、該基体に下層磁性層を被着させた。この時、電子ビ
ームの強度・2箇所のガス導入部13、14から導入さ
れる酸素ガスの量・非磁性基体の搬送速度・遮蔽板10
と蒸発源9の相対位置、即ち、θmax 、θmin 
を適当に選ぶことにより、高磁気エネルギー層の厚さが
約1000〜2000Åで、磁気特性および膜中酸素分
布を調整した。この時の酸素ガス導入量500〜150
0SCCM(Standard Cubic cc p
er Minuttes)は、表1に記載した。また、
電子ビームの強度は、20keV、非磁性基体の搬送速
度は0.5m/秒、θmax は90度、θmin は
40度とした。
Next, in order to form the high magnetic energy layer 3, while transporting the substrate provided with the nonmagnetic underlayer 2 in the same manner as described above, an alloy having a composition of 80% Co and 20% Ni was used as an evaporation source. A lower magnetic layer was deposited on the substrate by evaporation by electron beam heating. At this time, the intensity of the electron beam, the amount of oxygen gas introduced from the two gas introduction sections 13 and 14, the conveyance speed of the nonmagnetic substrate, the shielding plate 10
and the relative position of the evaporation source 9, i.e. θmax, θmin
By appropriately selecting , the thickness of the high magnetic energy layer was approximately 1000 to 2000 Å, and the magnetic properties and oxygen distribution in the film were adjusted. The amount of oxygen gas introduced at this time is 500 to 150
0SCCM (Standard Cubic cc p
er Minutes) are listed in Table 1. Also,
The intensity of the electron beam was 20 keV, the transport speed of the nonmagnetic substrate was 0.5 m/sec, θmax was 90 degrees, and θmin was 40 degrees.

【0046】以上の手順により、非磁性下地層2は同一
で、磁気特性および膜中酸素分布の異なる高磁気エネル
ギー層3を有する2層構造の磁性膜を持つ磁気テープサ
ンプル#1〜#7を作製した。#1、2、3、4は高磁
気エネルギー層作製時にガス導入部13のみより酸素を
導入して作製し、#5、6、7は高磁気エネルギー層作
製時にガス導入部13および14より酸素を導入して作
製した。また、比較のため非磁性下地層2が無く、厚み
が約2000Åである強磁性単層膜をサンプル#8をガ
ス導入部13および14より酸素を導入して作製した。 #2、3、4は本発明の実施例であり、#1、5、6、
7、8は比較例である。
By the above procedure, magnetic tape samples #1 to #7 having two-layered magnetic films having the same non-magnetic underlayer 2 and high magnetic energy layer 3 having different magnetic properties and oxygen distribution in the film were prepared. Created. #1, 2, 3, and 4 are made by introducing oxygen only from the gas introduction part 13 when producing the high magnetic energy layer, and #5, 6, and 7 are made by introducing oxygen from the gas introduction part 13 and 14 when producing the high magnetic energy layer. It was created by introducing. For comparison, a ferromagnetic single layer film without the non-magnetic underlayer 2 and having a thickness of about 2000 Å was prepared by introducing oxygen into sample #8 through the gas introduction portions 13 and 14. #2, 3, 4 are examples of the present invention, #1, 5, 6,
7 and 8 are comparative examples.

【0047】サンプル#1〜#7の高磁気エネルギー層
又はサンプル#8の強磁性単層膜に関する特性として、
厚み、面内長手方向の磁気特性、表面近傍100Åおよ
び非磁性下地層2(#1〜#7の場合)もしくは非磁性
基体(#8の場合)との界面近傍100Åでの平均酸素
濃度とを表1に示す。
The characteristics of the high magnetic energy layers of samples #1 to #7 or the ferromagnetic single layer film of sample #8 are as follows:
Thickness, in-plane longitudinal magnetic properties, average oxygen concentration at 100 Å near the surface and at 100 Å near the interface with the non-magnetic underlayer 2 (in the case of #1 to #7) or the non-magnetic substrate (in the case of #8). It is shown in Table 1.

【0048】磁気特性の測定には振動試料型磁力計(T
OEI社製VSMP−1)を用いた。ここで面内長手方
向とは膜面内にあって基体搬送方向と平行な方向である
。平均酸素濃度の測定は、オージェ電子分光法により、
作製した膜に含まれるCo、Ni、O、Cuの深さ方向
の濃度分布を求めその内の酸素濃度について表面より1
00Åおよび非磁性下地層または非磁性基体との界面よ
り100Åでの平均値を算出した。測定には、アルバッ
クファイ社製PHI660型を用い、1次電子の加速電
圧は3kVで電流値は50nAであり、アルゴンイオン
によるエッチングは加速電圧3.5kV、電流値0.5
μAで2mm×2mmをラスタスキャンで行った。
A vibrating sample magnetometer (T
VSMP-1) manufactured by OEI was used. Here, the in-plane longitudinal direction is a direction within the film plane and parallel to the substrate transport direction. The average oxygen concentration is measured by Auger electron spectroscopy.
The concentration distribution of Co, Ni, O, and Cu contained in the fabricated film in the depth direction was determined, and the oxygen concentration among them was determined by 1 from the surface.
The average value was calculated at 00 Å and 100 Å from the interface with the nonmagnetic underlayer or nonmagnetic substrate. For the measurement, a PHI660 model manufactured by ULVAC-PHI was used, and the primary electron acceleration voltage was 3 kV and the current value was 50 nA. For etching with argon ions, the acceleration voltage was 3.5 kV and the current value was 0.5.
A raster scan of 2 mm x 2 mm was performed using μA.

【0049】次に、サンプル#1〜#8の磁性層と反対
側の基体面にバック層を塗布すると共に、磁性層表面に
丸和物産(株)製KRYTOX−K157SLを20m
g/m2 となるようにエニモント社製FOMBLIN
  ZS−100に溶解して塗布した。次いで8mm幅
に裁断して、8ミリビデオ用カセットに組み込み電磁変
換特性を測定した。
Next, a back layer was applied to the substrate surface opposite to the magnetic layer of Samples #1 to #8, and 20 m of KRYTOX-K157SL manufactured by Maruwa Bussan Co., Ltd. was coated on the surface of the magnetic layer.
g/m2
It was dissolved in ZS-100 and applied. Next, it was cut into 8 mm width and assembled into an 8 mm video cassette, and the electromagnetic conversion characteristics were measured.

【0050】電磁変換特性の測定は、富士写真フィルム
製Hi−8ムービーM870HRを改造し、周波数が9
MHzの単波長信号を最適記録電流にて記録し、その時
の再生レベルと6MHzでのノイズレベルをヒューレッ
トパッカード社製スペクトラムアナライザー3585A
を用いて求め、その差をC/Nとした。サンプル#8の
C/Nを測定基準(0dB)とした結果を表1に示す。
The electromagnetic conversion characteristics were measured using a modified Fuji Photo Film Hi-8 Movie M870HR.
A single wavelength signal of MHz was recorded at the optimum recording current, and the playback level and noise level at 6MHz were measured using a Hewlett-Packard Spectrum Analyzer 3585A.
The difference was determined as C/N. Table 1 shows the results using the C/N of sample #8 as the measurement standard (0 dB).

【0051】[0051]

【表1】[Table 1]

【0052】表1の結果を磁性層のBr×HcとC/N
の関係に注目してみると、Br×Hcが大きい程、高い
C/Nが得られることが分かる。特にBr×Hcが6.
5×106 Oe・G(エルステッド・ガウス)より大
きい範囲では、Br×Hcの値が同程度でも、表面側の
酸素濃度が界面側の酸素濃度より高くなっている実施例
の方が、界面側の酸素濃度が表面側の酸素濃度より高く
なっている比較例よりも約2dB程高いC/Nが得られ
ている。これは膜中酸素分布によって説明できる。即ち
、比較例のように界面側に多くの酸素を含む場合、Br
×Hcを大きくするには蒸着時の導入酸素量を少なくし
、Brを大きくする方法が有効であるが、導入酸素量が
少なくなると磁性層を形成している粒子の大きさが増大
し、それに伴ってノイズレベルが急激に大きくなり、B
r増大により出力レベルが上がってもC/Nとしては大
きくならないのに対し、実施例のように非磁性下地層が
あり且つ界面側に含まれる酸素の量が少ない場合、導入
酸素量を特に少なくしなくとも比較的容易にBrを大き
くすることができ、その結果ノイズレベルを上げること
なく出力レベルを上げることができ、C/Nが比較例よ
りも大きくなるのである。
The results in Table 1 are expressed as Br×Hc and C/N of the magnetic layer.
When paying attention to the relationship, it can be seen that the larger Br×Hc is, the higher the C/N can be obtained. Especially when Br×Hc is 6.
In a range larger than 5×106 Oe・G (Oersted Gauss), even if the values of Br×Hc are the same, the example in which the oxygen concentration on the surface side is higher than the oxygen concentration on the interface side is better. The C/N is about 2 dB higher than that of the comparative example in which the oxygen concentration on the surface side is higher than the oxygen concentration on the surface side. This can be explained by the oxygen distribution in the film. That is, when a large amount of oxygen is contained on the interface side as in the comparative example, Br
In order to increase ×Hc, it is effective to reduce the amount of oxygen introduced during vapor deposition and increase Br, but when the amount of introduced oxygen decreases, the size of the particles forming the magnetic layer increases, and As a result, the noise level increases rapidly, and B
Although the C/N does not increase even if the output level increases due to an increase in r, when there is a non-magnetic underlayer and the amount of oxygen contained on the interface side is small as in the example, the amount of introduced oxygen can be particularly reduced. Even without this, Br can be increased relatively easily, and as a result, the output level can be increased without increasing the noise level, and the C/N becomes larger than that of the comparative example.

【0053】この様に、膜中酸素分布により磁気特性が
変化する機構の詳細についてはまだ不明であるが、界面
での酸素等のガスの存在が強磁性薄膜形成の初期の段階
における結晶成長に対し何らかのゆらぎを誘発し、磁気
特性の劣化を招いているものと考えられる。一方界面近
傍での酸素導入が無く、なお且つCu下地層のような薄
膜層の上に作製された強磁性薄膜では、このようなゆら
ぎが少なく、良好な磁気特性が得られるものと考えられ
る。
Although the details of the mechanism by which the magnetic properties change due to the oxygen distribution in the film are still unknown, the presence of gas such as oxygen at the interface influences crystal growth in the early stages of forming a ferromagnetic thin film. However, it is thought that this induces some kind of fluctuation, leading to deterioration of the magnetic properties. On the other hand, in a ferromagnetic thin film that does not introduce oxygen near the interface and is formed on a thin film layer such as a Cu underlayer, such fluctuations are small and it is thought that good magnetic properties can be obtained.

【0054】以上、本発明の実施例として、非磁性下地
層にCuを用いた例で示したが、非磁性下地層に用いる
材料としては、非磁性に近い特性であれば如何なる材料
でも用いることは可能である。また、本発明の実施例で
は非磁性下地層の替わりに強磁性層を設けたり、非磁性
下地層の下に更に一つもしくは複数の強磁性層や非磁性
層を設けることも可能である。必要なのは非磁性基体と
該非磁性基体から最も離れた所に位置する強磁性層との
間に、少なくとも1層以上の磁性および/または非磁性
の薄膜層を有した構成であり、なお且つ該非磁性基体か
ら最も離れた所に位置する強磁性薄膜層、即ち、高磁気
エネルギー層の表面側酸素濃度が界面側酸素濃度よりも
高く、なお且つBr×Hcが6.5×106 (ガウス
・エルステッド)より大きいことである。
In the above embodiments of the present invention, Cu is used for the non-magnetic underlayer, but any material can be used for the non-magnetic underlayer as long as it has properties close to non-magnetic. is possible. Further, in the embodiments of the present invention, it is also possible to provide a ferromagnetic layer in place of the non-magnetic underlayer, or to provide one or more ferromagnetic layers or non-magnetic layers under the non-magnetic underlayer. What is required is a configuration that has at least one magnetic and/or nonmagnetic thin film layer between a nonmagnetic substrate and a ferromagnetic layer located farthest from the nonmagnetic substrate, and the nonmagnetic The oxygen concentration on the surface side of the ferromagnetic thin film layer located farthest from the substrate, that is, the high magnetic energy layer, is higher than the oxygen concentration on the interface side, and Br×Hc is 6.5×106 (Gauss-Oersted). It's bigger than that.

【0055】また、本発明の実施例として図3に示す装
置を使用した場合について説明したが、円筒状キャンを
2個、或いは3個を持つ蒸着装置を用いて一度の2層或
いは3層を形成することによって本発明の磁気記録媒体
を作製することも可能である。
[0055]Although the case where the apparatus shown in Fig. 3 is used as an embodiment of the present invention has been described, it is also possible to deposit two or three layers at once using a vapor deposition apparatus having two or three cylindrical cans. It is also possible to produce the magnetic recording medium of the present invention by forming a magnetic recording medium.

【0056】[0056]

【発明の効果】本発明による磁気記録媒体は、非磁性基
体よりも最も離れた強磁性金属薄膜層のBr×Hcが6
.5×106 (ガウス・エルステッド)以上であり、
該薄膜層においてその表面側に含まれる酸素濃度が基体
側に含まれる酸素濃度よりも高いことを特徴とすること
により、特に短波長領域において高い出力と低いノイズ
を得ることができ、C/N比を飛躍的に向上させること
ができる。またこれにより、ハイビジョン用等のビデオ
テープを安価に製造することができる。
Effects of the Invention In the magnetic recording medium according to the present invention, the ferromagnetic metal thin film layer farthest from the nonmagnetic substrate has a Br×Hc of 6.
.. 5×106 (Gauss Oersted) or more,
By having the thin film layer have a higher oxygen concentration on the surface side than the oxygen concentration on the substrate side, it is possible to obtain high output and low noise, especially in the short wavelength region, and to improve the C/N. The ratio can be dramatically improved. Furthermore, this allows high-definition video tapes to be manufactured at low cost.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の磁気記録媒体の断面の一例を模式的に
示す図である。
FIG. 1 is a diagram schematically showing an example of a cross section of a magnetic recording medium of the present invention.

【図2】本発明の磁気記録媒体の断面の一例を模式的に
示す図である。
FIG. 2 is a diagram schematically showing an example of a cross section of a magnetic recording medium of the present invention.

【図3】本発明の磁気記録媒体を製造するために用いる
真空蒸着装置の具体例を説明するための図である。
FIG. 3 is a diagram for explaining a specific example of a vacuum evaporation apparatus used to manufacture the magnetic recording medium of the present invention.

【符号の説明】[Explanation of symbols]

1  非磁性基体 2  非磁性下地層 3  高磁気エネルギー層 4  下層磁性層 5  非磁性中間層 6  高磁気エネルギー層 7  真空槽 8  電子ビーム加熱装置 9  蒸発源 10  遮蔽板 11  円筒状キャン 12  グロー放電処理室 13  ガス導入部 14  ガス導入部 15  巻き出しロール 16  巻き取りロール 1 Non-magnetic substrate 2 Non-magnetic underlayer 3 High magnetic energy layer 4 Lower magnetic layer 5 Nonmagnetic intermediate layer 6 High magnetic energy layer 7 Vacuum chamber 8 Electron beam heating device 9 Evaporation source 10 Shielding plate 11 Cylindrical can 12 Glow discharge treatment chamber 13 Gas introduction part 14 Gas introduction part 15 Unwinding roll 16 Take-up roll

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  非磁性基体上に、真空成膜法で形成さ
れた薄膜を2層以上積層してなる層構成を有し、かつ該
層構成は1層以上の強磁性薄膜を含むものである磁気記
録媒体において、前記層構成の最上層の薄膜は、その残
留磁束密度(Br(ガウス))と抗磁力(Hc(エルス
テッド))の積(Br×Hc)が6.5×106 (ガ
ウス・エルステッド)以上の高磁気エネルギー層であり
、且つ前記高磁気エネルギー層は酸素を含有し、その表
面側における酸素濃度の方が非磁性基体側における酸素
濃度よりも高いことを特徴とする磁気記録媒体。
Claim 1: A magnetic material having a layered structure consisting of two or more layers of thin films formed by vacuum deposition on a non-magnetic substrate, and the layered structure includes one or more ferromagnetic thin films. In the recording medium, the topmost thin film of the layer structure has a product (Br×Hc) of residual magnetic flux density (Br (Gauss)) and coercive force (Hc (Oersted)) of 6.5×106 (Gauss Oersted). ) A magnetic recording medium, characterized in that the high magnetic energy layer contains oxygen, and the oxygen concentration on the surface side is higher than the oxygen concentration on the nonmagnetic substrate side.
【請求項2】  非磁性基体上に、少なくとも1層以上
の強磁性薄膜もしくは非磁性薄膜を真空成膜法で形成し
た後、該強磁性薄膜もしくは該非磁性薄膜の上に強磁性
金属蒸気流の前記非磁性基体に対する入射角が最大入射
角(θmax )から最小入射角(θmin )へと連
続的に変化し、且つ前記最大入射角(θmax )近傍
よりも最小入射角(θmin )近傍の方が酸素の導入
量が多くなるように、前記強磁性金属気流中に酸化性ガ
スを導入する斜方入射蒸着法により高磁気エネルギー層
を形成する磁気記録媒体の製造方法。
2. After forming at least one ferromagnetic thin film or nonmagnetic thin film on a nonmagnetic substrate by a vacuum film forming method, a ferromagnetic metal vapor flow is applied onto the ferromagnetic thin film or the nonmagnetic thin film. The angle of incidence with respect to the non-magnetic substrate changes continuously from the maximum angle of incidence (θmax) to the minimum angle of incidence (θmin), and the angle of incidence near the minimum angle of incidence (θmin) is higher than the angle of incidence near the maximum angle of incidence (θmax). A method for manufacturing a magnetic recording medium, comprising forming a high magnetic energy layer by an oblique incidence deposition method in which an oxidizing gas is introduced into the ferromagnetic metal stream so as to increase the amount of oxygen introduced.
JP3157429A 1991-06-03 1991-06-03 Magnetic recording medium and method of manufacturing the same Expired - Fee Related JP2729544B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3157429A JP2729544B2 (en) 1991-06-03 1991-06-03 Magnetic recording medium and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3157429A JP2729544B2 (en) 1991-06-03 1991-06-03 Magnetic recording medium and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH04356719A true JPH04356719A (en) 1992-12-10
JP2729544B2 JP2729544B2 (en) 1998-03-18

Family

ID=15649447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3157429A Expired - Fee Related JP2729544B2 (en) 1991-06-03 1991-06-03 Magnetic recording medium and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2729544B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5798133A (en) * 1980-12-05 1982-06-18 Matsushita Electric Ind Co Ltd Magnetic recording medium

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5798133A (en) * 1980-12-05 1982-06-18 Matsushita Electric Ind Co Ltd Magnetic recording medium

Also Published As

Publication number Publication date
JP2729544B2 (en) 1998-03-18

Similar Documents

Publication Publication Date Title
EP0053811B1 (en) Magnetic recording media
JPH0546014B2 (en)
JP2684457B2 (en) Magnetic recording media
JPH1186275A (en) Magnetic recording medium
JPH0546013B2 (en)
JPH04356719A (en) Magnetic recording medium and production thereof
JPH0896339A (en) Magnetic recording medium
JPH04370518A (en) Magnetic recording medium and production thereof
JP2605803B2 (en) Magnetic recording media
JPS59157828A (en) Magnetic recording medium
JP2946748B2 (en) Manufacturing method of magnetic recording medium
JP2006048840A (en) Magnetic recording medium, its manufacturing method and recording and reproducing method of magnetic recording medium
JPS5966106A (en) Magnetic recording medium
JPH05258270A (en) Magnetic recording medium
JPH05166165A (en) Magnetic recording medium and production thereof
JPH04291022A (en) Production of magnetic recording medium
JPS6199921A (en) Magnetic recording medium
JPH04205813A (en) Magnetic recording medium
JPS6194238A (en) Preparation of magnetic recording medium
JPS61278026A (en) Production of magnetic recording medium
JPH08325718A (en) Film formation
JPH08306028A (en) Magnetic recording medium and its production
JPS63117320A (en) Production of magnetic recording medium
JP2000163733A (en) Magnetic recording medium
JPH06282841A (en) Magnetic recording medium and manufacture thereof

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071219

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071219

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081219

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081219

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091219

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101219

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees