JPH04356540A - Production of thermoplastic resin foam - Google Patents

Production of thermoplastic resin foam

Info

Publication number
JPH04356540A
JPH04356540A JP23310891A JP23310891A JPH04356540A JP H04356540 A JPH04356540 A JP H04356540A JP 23310891 A JP23310891 A JP 23310891A JP 23310891 A JP23310891 A JP 23310891A JP H04356540 A JPH04356540 A JP H04356540A
Authority
JP
Japan
Prior art keywords
thermoplastic resin
producing
temperature
resin foam
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23310891A
Other languages
Japanese (ja)
Other versions
JP3061213B2 (en
Inventor
Akira Kabumoto
昭 株本
Kiyoshi Nakayama
清 中山
Masayasu Ito
正康 伊藤
Satoshi Ono
聡 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP23310891A priority Critical patent/JP3061213B2/en
Publication of JPH04356540A publication Critical patent/JPH04356540A/en
Application granted granted Critical
Publication of JP3061213B2 publication Critical patent/JP3061213B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To produce a thermoplastic resin foam having many fine cells and only lowly undergoing thermal deformation or shrinkage even in a high temperature atmosphere. CONSTITUTION:The title process comprises the steps of adding an inert gas to a thermoplastic resin under elevated pressure, expending the obtained thermoplastic resin by heating to a temperature range at which the semicrystallization time of the resin is 5 min or below, and cooling the obtained thermoplastic resin.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は保温材、断熱材などの材
料として好適な熱可塑性樹脂発泡体の製造方法に関する
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a thermoplastic resin foam suitable as a material for heat insulating materials, heat insulating materials, and the like.

【0002】0002

【従来の技術】従来、ポリエチレン、ポリスチレン、ポ
リプロピレンなどの熱可塑性樹脂の発泡体が、それらが
有する柔軟性、軽量性、断熱性などの特徴を活かして、
建材や包装材などに広く用いられている。しかし、これ
らの発泡体は、機械的強度、弾性回復率、耐熱性などが
不十分であるという問題がある。また、バルク状態で前
述した樹脂よりも機械的性質に優れているポリエステル
の発泡体も製造されているが、その機械的性質は不十分
である。
[Prior Art] Conventionally, thermoplastic resin foams such as polyethylene, polystyrene, and polypropylene have been used to make use of their characteristics such as flexibility, lightness, and heat insulation.
It is widely used for building materials and packaging materials. However, these foams have problems such as insufficient mechanical strength, elastic recovery rate, and heat resistance. Polyester foams have also been produced which have better mechanical properties in bulk than the aforementioned resins, but their mechanical properties are inadequate.

【0003】これらの発泡体は主に、樹脂に発泡剤を混
和し、成形と同時に、または一旦成形した後、加熱して
発泡させる方法により製造されている。しかし、この方
法により得られた発泡体では、含有される気泡が不均質
でかつ大きくなり過ぎるため、機械的性質を十分に満足
できない。
[0003] These foams are mainly manufactured by mixing a foaming agent with a resin and foaming the mixture by heating at the same time as molding or after molding. However, in the foam obtained by this method, the bubbles contained are inhomogeneous and too large, so that the mechanical properties cannot be fully satisfied.

【0004】このほかに、樹脂発泡体の製造方法として
は、以下のような方法が知られている。例えば、高圧下
で不活性ガスを含有させた樹脂ペレットを押出機へ供給
し、溶融して混練りした後、大気中へ押し出すことによ
り発泡体を得る方法がある(特公昭53−28189号
公報、特公昭54−23386号公報)。また、押出機
内で溶融状態にある樹脂に、バレルの途中から不活性ガ
スを注入し、十分に混練りした後、大気中へ押し出すこ
とにより発泡体を得る方法がある。
[0004] In addition, the following methods are known as methods for producing resin foams. For example, there is a method of obtaining a foam by supplying resin pellets containing an inert gas to an extruder under high pressure, melting and kneading them, and then extruding them into the atmosphere (Japanese Patent Publication No. 53-28189). , Japanese Patent Publication No. 54-23386). Another method is to obtain a foam by injecting an inert gas into the resin in a molten state in an extruder from the middle of the barrel, thoroughly kneading the resin, and then extruding the resin into the atmosphere.

【0005】しかし、これらの方法は、溶融状態の樹脂
を急激に大気中へ押し出して発泡体を製造するものであ
るため、樹脂中での気泡の成長速度が大きく、微細な気
泡を含有する発泡体は得られない。
However, since these methods produce foam by rapidly extruding molten resin into the atmosphere, the growth rate of bubbles in the resin is high, and foams containing fine bubbles cannot be produced. I can't get the body.

【0006】米国特許第4,473,665号には、(
1)加圧下において予め成形された高分子材料をアルゴ
ン、窒素、二酸化炭素などの不活性ガスで飽和させ、こ
れをガラス転移温度まで加熱し、材料を減圧にすること
により材料中でガスの過飽和状態を作り出して気泡核を
生成させると同時に気泡を成長させ、気泡の成長を抑え
るために材料の温度を急激に下げる方法、(2)加圧下
において予め成形された高分子材料を非反応性ガスで飽
和させ、材料がガスで過飽和状態になるまで減圧して気
泡核を生成させ、これをガラス転移温度に加熱して気泡
を成長させ、気泡の成長を抑えるために材料の温度を急
激に下げる方法、または(3)加圧下において高分子材
料を不活性ガスで飽和させ、十分な高圧下で高分子材料
を溶融して成形し、材料がガスで過飽和状態になるまで
温度および圧力を下げて気泡核を生成させ、これをガラ
ス転移温度に加熱して気泡を成長させ、気泡の成長を抑
えるために材料の温度を急激に下げる方法、などが開示
されている。
[0006] US Patent No. 4,473,665 has (
1) Supersaturation of the gas in the material by saturating a preformed polymeric material with an inert gas such as argon, nitrogen, or carbon dioxide under pressure, heating it to the glass transition temperature, and reducing the pressure of the material. (2) A method of rapidly lowering the temperature of the material to suppress the growth of bubbles by creating a state in which bubble nuclei are generated and the bubbles grow at the same time. The material is saturated with gas, the pressure is reduced until the material is supersaturated with gas to generate bubble nuclei, which are heated to the glass transition temperature to grow bubbles, and the temperature of the material is rapidly lowered to suppress bubble growth. or (3) saturating the polymeric material with an inert gas under pressure, melting and forming the polymeric material under sufficiently high pressure, and reducing the temperature and pressure until the material is supersaturated with the gas. A method has been disclosed in which bubble nuclei are generated, the bubbles are grown by heating them to a glass transition temperature, and the temperature of the material is rapidly lowered to suppress the bubble growth.

【0007】[0007]

【発明が解決しようとする課題】この方法により得られ
た発泡体は、非常に微細な気泡を含むものである。しか
し、この方法で得られた発泡体を高温で使用すると、変
形や収縮が生じやすいという問題がある。これは、以下
のような理由による。すなわち、前記のいずれの方法に
おいても、気泡核を成長させて気泡を形成させる温度が
ガラス転移温度付近であるため、得られた発泡体の結晶
化が十分に進行していない。このような発泡体を高温の
雰囲気にさらすと、結晶化が進行するため変形や収縮が
生じやすくなる。
[Problems to be Solved by the Invention] The foam obtained by this method contains very fine cells. However, when the foam obtained by this method is used at high temperatures, there is a problem in that it tends to deform and shrink. This is due to the following reasons. That is, in any of the above methods, the temperature at which bubble nuclei are grown and bubbles are formed is around the glass transition temperature, so crystallization of the obtained foam does not proceed sufficiently. When such a foam is exposed to a high temperature atmosphere, crystallization progresses, making it susceptible to deformation and shrinkage.

【0008】以上述べたように、現状では、微細な気泡
を有し、高温で使用しても変形や収縮の小さい熱可塑性
樹脂発泡体を得ることは困難である。
As described above, it is currently difficult to obtain thermoplastic resin foams that have fine bubbles and exhibit little deformation or shrinkage even when used at high temperatures.

【0009】本発明の目的は、無数の微細な気泡を含有
し、高温雰囲気においても変形や収縮が非常に小さい熱
可塑性樹脂発泡体を製造できる方法を提供することにあ
る。
[0009] An object of the present invention is to provide a method for producing a thermoplastic resin foam that contains countless microscopic cells and exhibits very little deformation or shrinkage even in a high-temperature atmosphere.

【0010】0010

【課題を解決するための手段】本発明の熱可塑性樹脂発
泡体の製造方法は、加圧下において、熱可塑性樹脂中に
非反応性ガスを含有させる工程(以下、「第1工程」と
いう)と、非加圧下において、得られた熱可塑性樹脂を
、示差走査熱量計により測定されるその樹脂の結晶化ピ
ーク温度以上かつ融点ピーク温度以下の温度範囲で加熱
して発泡させる工程(以下、「第2工程」という)と、
得られた熱可塑性樹脂を冷却する工程(以下、「第3工
程」という)とを有するものである。
[Means for Solving the Problems] The method for producing a thermoplastic resin foam of the present invention includes a step of incorporating a non-reactive gas into a thermoplastic resin under pressure (hereinafter referred to as the "first step"). , a step of foaming the obtained thermoplastic resin by heating it under no pressure in a temperature range that is higher than the crystallization peak temperature and lower than the melting point peak temperature of the resin as measured by a differential scanning calorimeter (hereinafter referred to as "step 1"). 2 steps) and
The method includes a step of cooling the obtained thermoplastic resin (hereinafter referred to as "third step").

【0011】本発明においては、第2工程の発泡処理を
熱可塑性樹脂の半結晶化時間が5分以下である温度範囲
において行うことが好ましい。
In the present invention, it is preferable that the second step of foaming treatment is carried out in a temperature range in which the half-crystallization time of the thermoplastic resin is 5 minutes or less.

【0012】以下、本発明の製造方法を工程毎に詳細に
説明する。
The manufacturing method of the present invention will be explained step by step in detail below.

【0013】第1工程は、加圧下において熱可塑性樹脂
中に非反応性ガスを含有させる工程である。この工程で
いう含有とは、例えば、液体中に非反応性ガスが溶解し
たのと同様の状態をいう。
The first step is a step of incorporating a non-reactive gas into the thermoplastic resin under pressure. Containment in this step refers to, for example, a state similar to that in which a non-reactive gas is dissolved in the liquid.

【0014】この処理は、例えば予め成形された熱可塑
性樹脂を、非反応性ガスで加圧された加圧容器中に入れ
ることにより行われる。また、押出機などで熱可塑性樹
脂を押出成形しながら、非反応性ガスで加圧された加圧
容器に導く方法を用いてもよい。
[0014] This treatment is carried out, for example, by placing a pre-shaped thermoplastic resin into a pressurized container pressurized with a non-reactive gas. Alternatively, a method may be used in which the thermoplastic resin is extruded using an extruder or the like and introduced into a pressurized container pressurized with a non-reactive gas.

【0015】加圧条件は特に制限されるものではないが
、熱可塑性樹脂中への非反応性ガスの含有量を増大させ
るためには、室温で30〜70kg/cm2 の範囲の
圧力とすることが好ましい。
[0015] Pressurization conditions are not particularly limited, but in order to increase the content of non-reactive gas in the thermoplastic resin, the pressure should be in the range of 30 to 70 kg/cm2 at room temperature. is preferred.

【0016】熱可塑性樹脂としては、ポリエチレンテレ
フタレートまたはポリブチレンテレフタレートなどのポ
リエステル、ナイロン6またはナイロン66などのポリ
アミドが挙げられる。
Examples of thermoplastic resins include polyesters such as polyethylene terephthalate or polybutylene terephthalate, and polyamides such as nylon 6 or nylon 66.

【0017】微細な気泡を含有する発泡体を得るために
は、熱可塑性樹脂は、結晶化度が5%以上のものが好ま
しく、10%以上のものが更に好ましい。なお、樹脂の
結晶化度は、密度法(ASTM  D1505−85)
、示差走査熱量計による方法、IRによる方法、X線回
折による方法を用いて測定できる。また、結晶化度また
は結晶化速度を上げるために、熱可塑性樹脂に結晶核剤
または結晶化促進剤を添加してもよい。結晶核剤または
結晶化促進剤としては、タルク、マイカ、カオリン、シ
リカなどの無機化合物、カルボキシル基を有する有機化
合物もしくは高分子化合物の金属塩、ポリオレフィンに
変性剤を添加して変性させた変性ポリオレフィン、ポリ
オレフィン系エラストマーに変性剤を添加して変性させ
た変性ポリオレフィン系エラストマー、エステル系可塑
剤などが挙げられる。更に、本発明の目的を損なわない
範囲内で、熱可塑性樹脂に抗酸化剤、帯電防止剤、紫外
線防止剤、顔料、染料、滑剤などの各種添加剤を配合す
ることもできる。
In order to obtain a foam containing fine cells, the thermoplastic resin preferably has a crystallinity of 5% or more, more preferably 10% or more. The crystallinity of the resin is determined by the density method (ASTM D1505-85).
, a method using differential scanning calorimetry, a method using IR, and a method using X-ray diffraction. Furthermore, a crystal nucleating agent or a crystallization accelerator may be added to the thermoplastic resin in order to increase the crystallinity or crystallization rate. Examples of crystal nucleating agents or crystallization accelerators include inorganic compounds such as talc, mica, kaolin, and silica, metal salts of organic compounds or polymeric compounds having carboxyl groups, and modified polyolefins obtained by adding a modifier to polyolefins. , a modified polyolefin elastomer obtained by adding a modifier to a polyolefin elastomer, and an ester plasticizer. Furthermore, various additives such as antioxidants, antistatic agents, ultraviolet inhibitors, pigments, dyes, and lubricants may be added to the thermoplastic resin within a range that does not impair the purpose of the present invention.

【0018】非反応性ガスとしては、アルゴン、窒素、
二酸化炭素などの不活性ガス、もしくは酸素、空気、ま
たはこれらの混合ガスが挙げられる。これらの中でも、
熱可塑性樹脂中への含有量を最も増大できるガスとして
、二酸化炭素が好ましい。
[0018] As the non-reactive gas, argon, nitrogen,
Examples include inert gas such as carbon dioxide, oxygen, air, or a mixed gas thereof. Among these,
Carbon dioxide is preferred as the gas that can most increase the content in the thermoplastic resin.

【0019】第2工程は、非加圧下において、非反応性
ガスが含有された熱可塑性樹脂を加熱して発泡させる工
程である。この工程においては、非加圧下、即ち、加圧
容器から取り出すなどして圧力を解放する。この結果、
樹脂は非反応性ガスで過飽和の状態になる。その後、樹
脂を直ちに加熱して発泡させる。このときの発泡温度は
、示差走査熱量計(DSC)により測定される熱可塑性
樹脂の結晶化ピーク温度以上で融点ピーク温度以下の温
度範囲に設定される。温度範囲をこのように規定したの
は、樹脂中での気泡の成長と同時に、樹脂の結晶化を進
行させるためである。
The second step is a step of heating and foaming the thermoplastic resin containing a non-reactive gas under non-pressurized conditions. In this step, the pressure is released under non-pressurized conditions, ie, by taking it out from the pressurized container. As a result,
The resin becomes supersaturated with non-reactive gases. Thereafter, the resin is immediately heated and foamed. The foaming temperature at this time is set in a temperature range that is higher than the crystallization peak temperature of the thermoplastic resin and lower than the melting point peak temperature, as measured by a differential scanning calorimeter (DSC). The reason why the temperature range is defined in this way is to promote the crystallization of the resin at the same time as the growth of bubbles in the resin.

【0020】この温度範囲外であると、樹脂の結晶化が
十分に進行せず、樹脂中で独立した微細な気泡を形成す
ることができない。このため、得られた発泡体を高温で
使用したときに、結晶化が進行して変形や収縮を生じや
すい。特に、融点ピーク温度を超える温度で発泡させる
と、気泡数が著しく減少するうえ、気泡径が大きくなり
すぎて、発泡過程においても変形を生じる。
[0020] If the temperature is outside this range, the crystallization of the resin will not proceed sufficiently, making it impossible to form independent fine bubbles in the resin. Therefore, when the obtained foam is used at high temperatures, crystallization progresses and deformation and shrinkage tend to occur. In particular, when foaming is carried out at a temperature exceeding the peak melting point temperature, the number of cells decreases significantly and the cell diameter becomes too large, causing deformation during the foaming process.

【0021】ただし、結晶化ピーク温度および融点ピー
ク温度は、示差走査熱量計による測定条件、特に昇温速
度に大きく依存し、相対的な値しか求められない。この
ため、良好な物性を有する発泡体を得るための精密な製
造条件を確立するには適当でない。
[0021] However, the crystallization peak temperature and the melting point peak temperature largely depend on the measurement conditions by the differential scanning calorimeter, especially on the rate of temperature rise, and only relative values can be determined. Therefore, it is not suitable for establishing precise manufacturing conditions for obtaining a foam with good physical properties.

【0022】そこで、加熱による発泡処理は、熱可塑性
樹脂の半結晶化時間が5分以下である温度範囲で行うこ
とがより好ましい。半結晶化時間(τ)とは、熱可塑性
樹脂が結晶化する際に、到達結晶化度の半分の結晶化度
が得られる時間のことであり、結晶化速度を表す値とし
て一般的に用いられている。
[0022] Therefore, it is more preferable that the foaming treatment by heating is carried out in a temperature range in which the half-crystallization time of the thermoplastic resin is 5 minutes or less. Half-crystalization time (τ) is the time required to obtain half the crystallinity of the final crystallinity when a thermoplastic resin crystallizes, and is generally used as a value representing the crystallization rate. It is being

【0023】半結晶化時間(τ)は、以下のようにして
測定できる。熱可塑性樹脂を所定の温度(例えば200
℃)雰囲気下に保持する。所定時間ごとに熱可塑性樹脂
の結晶化度を測定し、経過時間と結晶化度の関係を作図
する。その図から、到達結晶化度の半分の結晶化度が得
られる時間を決定する。
Half crystallization time (τ) can be measured as follows. The thermoplastic resin is heated to a predetermined temperature (for example, 200
°C) kept under atmosphere. The degree of crystallinity of the thermoplastic resin is measured at predetermined intervals, and the relationship between the elapsed time and the degree of crystallinity is plotted. From the diagram, determine the time required to obtain half the crystallinity of the achieved crystallinity.

【0024】この操作を種々の温度で行い、温度と半結
晶化時間との関係を作図する。この図から、半結晶化時
間が5分以下となる温度範囲を決定できる。
This operation is carried out at various temperatures, and the relationship between temperature and half-crystallization time is plotted. From this figure, it is possible to determine the temperature range in which the half-crystallization time is 5 minutes or less.

【0025】なお、詳細は“ポリエステル繊維、H.L
udewing原著、横内澪、中村至(訳)、p.10
1、コロナ社、1967年”、または“飽和ポリエステ
ル樹脂ハンドブック、湯木和男編集、p.219、日刊
工業新聞社、1989年)に記載されている。
[0025]For details, refer to "Polyester fiber, H.L.
udewing original author, Mio Yokouchi, Itaru Nakamura (translators), p. 10
1, Corona Publishing, 1967" or "Saturated Polyester Resin Handbook, edited by Kazuo Yuki, p. 219, Nikkan Kogyo Shimbun, 1989).

【0026】ガスを含有する熱可塑性樹脂を半結晶化時
間(τ)が5分以下となるような温度範囲で加熱して発
泡させると、結晶化速度が速いため、気泡の成長よりも
結晶化の方が先に進行する。この結晶化に伴って樹脂の
剛性が上がるため、気泡の巨大化が抑制され、微細な気
泡を含有する発泡体が得られる。
When a gas-containing thermoplastic resin is heated and foamed in a temperature range in which the half-crystallization time (τ) is 5 minutes or less, the crystallization rate is faster, so crystallization occurs faster than bubble growth. will proceed first. Since the rigidity of the resin increases with this crystallization, the enlargement of the bubbles is suppressed, and a foam containing fine bubbles is obtained.

【0027】発泡温度がこの範囲外では、微細な気泡を
含有する発泡体が得られない。すなわち、高温側では樹
脂の剛性が低下しているうえ、結晶化が進行しないため
、気泡の成長を抑制することができず、気泡が著しく大
きくなる。一方、低温側でも結晶化があまり進行しない
。また、もともと樹脂の剛性が非常に高い場合には、低
温側では気泡がほとんど成長せず、発泡倍率が大きくな
らないこともある。
[0027] If the foaming temperature is outside this range, a foam containing fine cells cannot be obtained. That is, on the high temperature side, the rigidity of the resin is reduced and crystallization does not proceed, so the growth of bubbles cannot be suppressed and the bubbles become significantly larger. On the other hand, crystallization does not progress much even at low temperatures. Furthermore, if the resin has very high rigidity to begin with, the foaming ratio may not increase because the bubbles hardly grow on the low temperature side.

【0028】加熱時間は、熱可塑性樹脂の熱容量、およ
び含有させた非反応性ガスの量などを考慮して適宜設定
する。
The heating time is appropriately set in consideration of the heat capacity of the thermoplastic resin and the amount of non-reactive gas contained.

【0029】第3工程は、加熱して発泡終了後、冷却す
る工程である。この工程における冷却処理としては、冷
水に浸漬するなどの公知の手段を適用できる。
The third step is a step of cooling after heating and foaming. As the cooling treatment in this step, known means such as immersion in cold water can be applied.

【0030】[0030]

【実施例】以下、本発明の実施例を説明する。[Examples] Examples of the present invention will be described below.

【0031】実施例1〜7及び比較例1〜2熱可塑性樹
脂として、ポリエチレンテレフタレート−A(ユニチカ
株式会社製、商品名MA−2103−4)、ポリエチレ
ンテレフタレート−B(ユニチカ株式会社製、商品名M
A−2103−2)、ポリエチレンテレフタレート−C
(ユニチカ株式会社製、商品名MA−2103−3)、
ポリブチレンテレフタレート(東レ株式会社製、商品名
1401−X04)、ナイロン6(東レ株式会社製、商
品名CM−1046)、ナイロン66(旭化成工業株式
会社製、商品名レオナ)を用いた。これらの熱可塑性樹
脂の物性を表1および表2に示す。また、ポリエチレン
テレフタレート−Aについて、温度と半結晶化時間との
関係を図1に示す。
Examples 1 to 7 and Comparative Examples 1 to 2 As thermoplastic resins, polyethylene terephthalate-A (manufactured by Unitika Co., Ltd., trade name MA-2103-4), polyethylene terephthalate-B (manufactured by Unitika Co., Ltd., trade name M
A-2103-2), polyethylene terephthalate-C
(manufactured by Unitika Co., Ltd., product name MA-2103-3),
Polybutylene terephthalate (manufactured by Toray Industries, Inc., trade name 1401-X04), nylon 6 (manufactured by Toray Industries, Inc., trade name CM-1046), and nylon 66 (manufactured by Asahi Kasei Corporation, trade name Leona) were used. The physical properties of these thermoplastic resins are shown in Tables 1 and 2. Further, for polyethylene terephthalate-A, the relationship between temperature and half-crystallization time is shown in FIG.

【0032】各熱可塑性樹脂を押出成形し、厚さ1mm
のシートを成形した。得られた各シートを、オートクレ
ーブ中で、60kg/cm2 の圧力下、12時間保持
し、シート中に二酸化炭素を含有させた。その後、オー
トクレーブからシートを取り出し、直ちに熱媒であるポ
リアルキレングリコール中に1分間浸漬し、表1および
表2に記載の温度に加熱して発泡させた。発泡終了後、
シートを水に浸漬して冷却し、シート状の熱可塑性樹脂
発泡体を得た。
[0032] Each thermoplastic resin was extruded to a thickness of 1 mm.
A sheet was formed. Each sheet obtained was held in an autoclave under a pressure of 60 kg/cm2 for 12 hours to incorporate carbon dioxide into the sheet. Thereafter, the sheet was taken out from the autoclave, immediately immersed in polyalkylene glycol as a heating medium for 1 minute, and heated to the temperatures listed in Tables 1 and 2 to cause foaming. After foaming is finished,
The sheet was immersed in water and cooled to obtain a sheet-like thermoplastic resin foam.

【0033】得られた各発泡体について、密度、発泡倍
率および平均気泡径を調べた。発泡倍率は、未発泡体お
よび発泡体の密度の比を計算することにより算出した。 平均気泡径は以下のようにして測定した。まず発泡体の
断面を走査型電子顕微鏡により写真撮影し、一定面積内
に存在する気泡の数を数えた。その値をもとにして単位
体積当たりの気泡の数を算出した。その値と発泡倍率か
ら計算により平均気泡径を算出した。
[0033] The density, expansion ratio and average cell diameter of each of the obtained foams were examined. The expansion ratio was calculated by calculating the ratio of the densities of the unfoamed material and the foamed material. The average bubble diameter was measured as follows. First, a cross-section of the foam was photographed using a scanning electron microscope, and the number of bubbles present within a certain area was counted. Based on that value, the number of bubbles per unit volume was calculated. The average cell diameter was calculated from that value and the expansion ratio.

【0034】また、各発泡体を150℃に設定した恒温
槽中に22時間放置した後、目視により変形状況を調べ
、更に収縮率を調べた。熱収縮率は、恒温槽中への放置
する前と放置した後の発泡体の体積比から算出した。
[0034] Furthermore, after each foam was left in a constant temperature bath set at 150°C for 22 hours, the state of deformation was visually examined, and the shrinkage rate was also examined. The thermal shrinkage rate was calculated from the volume ratio of the foam before and after being left in a constant temperature bath.

【0035】これらの結果を表1および表2に示す。These results are shown in Tables 1 and 2.

【0036】表1および表2から、本発明の方法で得ら
れた熱可塑性樹脂発泡体は、150℃以上の高温雰囲気
中に長時間放置した場合でも、変形がなく、収縮も非常
に小さいことがわかる。
From Tables 1 and 2, it can be seen that the thermoplastic resin foam obtained by the method of the present invention does not deform and shrinks very little even when left in a high temperature atmosphere of 150° C. or higher for a long time. I understand.

【0037】[0037]

【表1】[Table 1]

【0038】[0038]

【表2】[Table 2]

【0039】実施例8、9 熱可塑性樹脂としてPET−Cを用いた。非反応性ガス
として二酸化炭素の代りに窒素またはアルゴンを用いた
以外は、前記と同様にして発泡体を得た。
Examples 8 and 9 PET-C was used as the thermoplastic resin. A foam was obtained in the same manner as above except that nitrogen or argon was used instead of carbon dioxide as the non-reactive gas.

【0040】得られた各発泡体について、密度、発泡倍
率および平均気泡径を調べた。また、各発泡体を150
℃に設定した恒温槽中に22時間放置した後、目視によ
り変形状況を調べ、更に収縮率を調べた。これらの結果
を表3に示す。
The density, expansion ratio and average cell diameter of each of the foams obtained were examined. Also, each foam is 150
After being left in a constant temperature bath set at ℃ for 22 hours, the state of deformation was visually checked, and the shrinkage rate was also checked. These results are shown in Table 3.

【0041】[0041]

【表3】[Table 3]

【0042】表3から、非反応性ガスとして窒素または
アルゴンを用いた場合でも、二酸化炭素を同様な効果が
得られることがわかる。
Table 3 shows that even when nitrogen or argon is used as the non-reactive gas, the same effect as carbon dioxide can be obtained.

【0043】[0043]

【発明の効果】以上詳述したように本発明の方法を用い
れば、非常に微細な気泡を無数に含有した熱可塑性樹脂
発泡体を得ることができる。そして、得られた熱可塑性
樹脂発泡体は、高温雰囲気中に長時間放置した場合でも
、熱による変形はなく、収縮も非常に小さい。
[Effects of the Invention] As described in detail above, by using the method of the present invention, it is possible to obtain a thermoplastic resin foam containing numerous extremely fine cells. Even when the obtained thermoplastic resin foam is left in a high-temperature atmosphere for a long time, it does not deform due to heat and shrinks very little.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】ポリエチレンテレフタレートについて温度と半
結晶化時間τとの関係を示す図。
FIG. 1 is a diagram showing the relationship between temperature and half-crystalization time τ for polyethylene terephthalate.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】  加圧下において、熱可塑性樹脂中に非
反応性ガスを含有させる工程と、非加圧下において、得
られた熱可塑性樹脂を、示差走査熱量計により測定され
るその樹脂の結晶化ピーク温度以上かつ融点ピーク温度
以下の温度範囲で加熱して発泡させる工程と、得られた
熱可塑性樹脂を冷却する工程とを具備したことを特徴と
する熱可塑性樹脂発泡体の製造方法。
Claim 1: A step of incorporating a non-reactive gas into a thermoplastic resin under pressure, and a step of crystallizing the obtained thermoplastic resin as measured by a differential scanning calorimeter under no pressure. A method for producing a thermoplastic resin foam, comprising the steps of heating and foaming at a temperature range above a peak temperature and below a peak melting point temperature, and cooling the obtained thermoplastic resin.
【請求項2】  熱可塑性樹脂を加熱して発泡させる工
程が、その樹脂の半結晶化時間が5分以下である温度範
囲で行われることを特徴とする請求項1記載の熱可塑性
樹脂発泡体の製造方法。
2. The thermoplastic resin foam according to claim 1, wherein the step of heating and foaming the thermoplastic resin is carried out in a temperature range in which the semi-crystallization time of the resin is 5 minutes or less. manufacturing method.
【請求項3】  熱可塑性樹脂が、飽和ポリエステル樹
脂であることを特徴とする請求項1記載の熱可塑性樹脂
発泡体の製造方法。
3. The method for producing a thermoplastic resin foam according to claim 1, wherein the thermoplastic resin is a saturated polyester resin.
【請求項4】  飽和ポリエステル樹脂が、ポリエチレ
ンテレフタレートまたはポリブチレンテレフタレートで
あることを特徴とする請求項3記載の熱可塑性樹脂発泡
体の製造方法。
4. The method for producing a thermoplastic resin foam according to claim 3, wherein the saturated polyester resin is polyethylene terephthalate or polybutylene terephthalate.
【請求項5】  熱可塑性樹脂が、ポリアミド樹脂であ
ることを特徴とする請求項1記載の熱可塑性樹脂発泡体
の製造方法。
5. The method for producing a thermoplastic resin foam according to claim 1, wherein the thermoplastic resin is a polyamide resin.
【請求項6】  ポリアミド樹脂が、ナイロン6または
ナイロン66であることを特徴とする請求項5記載の熱
可塑性樹脂発泡体の製造方法。
6. The method for producing a thermoplastic resin foam according to claim 5, wherein the polyamide resin is nylon 6 or nylon 66.
【請求項7】  熱可塑性樹脂に非反応性ガスを含有さ
せるときの圧力が、室温で30〜70kg/cm2 の
範囲であることを特徴とする請求項1記載の熱可塑性樹
脂発泡体の製造方法。
7. The method for producing a thermoplastic resin foam according to claim 1, wherein the pressure at which the non-reactive gas is contained in the thermoplastic resin is in the range of 30 to 70 kg/cm2 at room temperature. .
【請求項8】  非反応性ガスが、炭酸ガス、窒素ガス
またはアルゴンガスであることを特徴とする請求項1記
載の熱可塑性樹脂発泡体の製造方法。
8. The method for producing a thermoplastic resin foam according to claim 1, wherein the non-reactive gas is carbon dioxide gas, nitrogen gas or argon gas.
【請求項9】  室温で30〜70kg/cm2 の範
囲の加圧下において、密度法または示差走査熱量計によ
り測定される結晶化度が10%以上の飽和ポリエステル
樹脂中に炭酸ガスを含有させる工程と、非加圧下におい
て、得られた飽和ポリエステル樹脂を、135〜230
℃の温度範囲において加熱して発泡させる工程と、得ら
れた飽和ポリエステル樹脂を冷却する工程とを具備した
ことを特徴とする熱可塑性樹脂発泡体の製造方法。
9. A step of incorporating carbon dioxide gas into a saturated polyester resin having a crystallinity of 10% or more as measured by a density method or a differential scanning calorimeter under a pressure in the range of 30 to 70 kg/cm2 at room temperature; , under no pressure, the obtained saturated polyester resin was heated to 135 to 230
1. A method for producing a thermoplastic resin foam, comprising the steps of foaming by heating in a temperature range of 0.degree. C., and cooling the obtained saturated polyester resin.
JP23310891A 1990-09-17 1991-09-12 Method for producing thermoplastic resin foam Expired - Lifetime JP3061213B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23310891A JP3061213B2 (en) 1990-09-17 1991-09-12 Method for producing thermoplastic resin foam

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2-246726 1990-09-17
JP24672690 1990-09-17
JP23310891A JP3061213B2 (en) 1990-09-17 1991-09-12 Method for producing thermoplastic resin foam

Publications (2)

Publication Number Publication Date
JPH04356540A true JPH04356540A (en) 1992-12-10
JP3061213B2 JP3061213B2 (en) 2000-07-10

Family

ID=26530851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23310891A Expired - Lifetime JP3061213B2 (en) 1990-09-17 1991-09-12 Method for producing thermoplastic resin foam

Country Status (1)

Country Link
JP (1) JP3061213B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6095515A (en) * 1983-09-26 1985-05-28 テクトロニツクス・インコーポレイテツド Color filter
WO2006077395A1 (en) * 2005-01-18 2006-07-27 Zotefoams Plc Polyamide foams, process to make them and applications thereof
JP2010270238A (en) * 2009-05-22 2010-12-02 Toyobo Co Ltd Resin composition for foamed molding, resin sheet for foamed molding, and foamed molding
JP2011074200A (en) * 2009-09-30 2011-04-14 Sekisui Chem Co Ltd Method for producing thermoplastic resin foam
JP2015098587A (en) * 2013-10-18 2015-05-28 積水化成品工業株式会社 Thermoplastic polyester resin foam particles and method for producing the same, foam molding and method for producing the same, and composite foam

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6095515A (en) * 1983-09-26 1985-05-28 テクトロニツクス・インコーポレイテツド Color filter
WO2006077395A1 (en) * 2005-01-18 2006-07-27 Zotefoams Plc Polyamide foams, process to make them and applications thereof
JP2010270238A (en) * 2009-05-22 2010-12-02 Toyobo Co Ltd Resin composition for foamed molding, resin sheet for foamed molding, and foamed molding
JP2011074200A (en) * 2009-09-30 2011-04-14 Sekisui Chem Co Ltd Method for producing thermoplastic resin foam
JP2015098587A (en) * 2013-10-18 2015-05-28 積水化成品工業株式会社 Thermoplastic polyester resin foam particles and method for producing the same, foam molding and method for producing the same, and composite foam

Also Published As

Publication number Publication date
JP3061213B2 (en) 2000-07-10

Similar Documents

Publication Publication Date Title
US5369135A (en) Controlled microcellular foams of crystalline amorphous polymers
EP0229882B1 (en) Expandable polyolefin compositions and preparation process utilizing isobutane blowing agent
EP0442759B1 (en) Process of producing thermoplastic polyester series resin foamed material
EP1652876B1 (en) Polylactic acid resin foamed molding and process for manufacturing the same
US4284596A (en) Process for producing foamed articles of aromatic polyesters
US4694027A (en) Expandable polyolefin compositions and preparation process utilizing isobutane blowing agent
US5358675A (en) Controlling heterogeneous nucleation and growth of foams
WO1994017133A1 (en) Expandable composition and process for producing extruded thermoplastic foam
JPS59135237A (en) Heat resistant foam polyester
JPH0546852B2 (en)
JP2003504502A (en) Method for forming an article comprising closed cell microfoam from a thermoplastic resin
JPH03143933A (en) Expandable granule and method for preparation of foaming material therefrom
JPH04356540A (en) Production of thermoplastic resin foam
JPH0711041A (en) Preliminarily foamed granule of thermoplastic resin and its production
JP3512467B2 (en) Method for foaming polystyrene with flameproofing and molded article made of polystyrene
JP2004307662A (en) Method for producing crystalline polylactic acid-based resin foam
JP3688179B2 (en) Thermoplastic polyester resin foamed particles for in-mold foam molding and method for producing in-mold foam molded article using the same
JP3213871B2 (en) Thermoplastic polyester resin foam molded article, thermoplastic polyester resin pre-expanded particles, and method for producing thermoplastic polyester resin foam molded article from the pre-expanded particles
JPS61283633A (en) Production of polyolefin foam
JP3722727B2 (en) In-mold foam molded article of thermoplastic polyester resin, its production method and its use
JP2507864B2 (en) Method for producing thermoplastic polyester resin foam
JP2001269960A (en) Method for manufacturing in-mold foam molding made from aromatic polyester-based resin
JP2603858B2 (en) Method for producing spherical polyethylene expanded particles
JP3459454B2 (en) Polyarylene sulfide foam and method for producing the same
EP0476586A2 (en) A method for producing foamed plastics

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120428

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120428

Year of fee payment: 12