JPH04355357A - Constant volume combustion apparatus for combustion characteristic evaluation for liquid fuel oil - Google Patents

Constant volume combustion apparatus for combustion characteristic evaluation for liquid fuel oil

Info

Publication number
JPH04355357A
JPH04355357A JP15509491A JP15509491A JPH04355357A JP H04355357 A JPH04355357 A JP H04355357A JP 15509491 A JP15509491 A JP 15509491A JP 15509491 A JP15509491 A JP 15509491A JP H04355357 A JPH04355357 A JP H04355357A
Authority
JP
Japan
Prior art keywords
combustion chamber
combustion
liquid fuel
fuel oil
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15509491A
Other languages
Japanese (ja)
Inventor
Haruo Komoriya
小森谷 晴夫
Hiroaki Hara
原 浩昭
Hiromichi Ikebe
池辺 博道
Shigehisa Yamada
山田 重久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
COSMO SOGO KENKYUSHO KK
Cosmo Oil Co Ltd
Original Assignee
COSMO SOGO KENKYUSHO KK
Cosmo Oil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by COSMO SOGO KENKYUSHO KK, Cosmo Oil Co Ltd filed Critical COSMO SOGO KENKYUSHO KK
Priority to JP15509491A priority Critical patent/JPH04355357A/en
Publication of JPH04355357A publication Critical patent/JPH04355357A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

PURPOSE:To obtain a combustion apparatus which enables observation of a flame propagation state of a liquid fuel oil and easy and accurate measurement of a combustion speed in a laboratory manner. CONSTITUTION:A combustion apparatus is provided with a burning apparatus body which has a combustion chamber 11 closed inside while having a window 12 for observation, a heater 3 mounted on the external surface of the burning apparatus body, a temperature detector 4 for detecting the temperature of the combustion chamber 11, a liquid fuel oil feeder 5 to supply a specified amount of a liquid fuel oil to the combustion chamber 11, an air feeder for supplying air to the combustion chamber 11, a stirrer 7 having a stirring member 22 movable in the combustion chamber 11 and an ignition plug 8 which can form a spark in the combustion chamber 11. When performing a measurement, first, the combustion chamber 11 is purged inside and then, the liquid fuel oil as sample is supplied thereto. The stirring member 22 is operated manually to form a premixed gas with the air. Thereafter, the mixed gas is ignited. The state of flame propagation is observed through the window 12 for observation.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この本発明は、液体燃料油の燃焼
性を評価するために液体燃料油の火炎伝播状態の観察と
、燃焼速度を実験室的に測定する定容燃焼器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a constant volume combustor for observing the state of flame propagation of liquid fuel oil and measuring the combustion rate in a laboratory in order to evaluate the combustibility of liquid fuel oil.

【0002】0002

【従来の技術】火花点火機関の出力を向上させるために
は、熱サイクルを圧縮上死点での点火による定容燃焼に
もとづくオット―サイクルにできるだけ近づけることが
熱効率を高める上で重要である。
2. Description of the Related Art In order to improve the output of a spark ignition engine, it is important to make the thermal cycle as close as possible to the Otto cycle, which is based on constant volume combustion with ignition at compression top dead center, in order to increase thermal efficiency.

【0003】現在のところ実際の燃焼には、クランク角
で40〜60°程度の期間が必要であり、ノッキングと
NOx の発生を防止しつつこの燃焼期間の短縮を図る
こと、すなわち燃焼速度を高めることが、出力或いは熱
効率を向上させる対策として切望される。このため、燃
焼速度と燃料油性状の関係が把握できれば、出力向上を
狙った燃料油の設計が可能である。そのためには、液体
燃料油を蒸発させて空気と予混合した混合気の燃焼速度
を、機関の運転時と類似の条件下で計測することが必要
である。
[0003] At present, actual combustion requires a period of about 40 to 60 degrees of crank angle, and efforts are being made to shorten this combustion period while preventing knocking and NOx generation, that is, increasing the combustion speed. This is desperately needed as a measure to improve output or thermal efficiency. Therefore, if the relationship between combustion speed and fuel oil properties can be understood, it is possible to design fuel oil with the aim of improving output. To do this, it is necessary to measure the combustion rate of a mixture of evaporated liquid fuel oil and premixed air with air under conditions similar to those during engine operation.

【0004】0004

【発明が解決しようとする課題】しかし、実際の機関を
用いて燃焼速度、燃焼圧力や火炎伝播速度を測定する方
法は、燃料油の使用条件に即した方法ではあるが、関連
するファクタ―が多過ぎ特定の燃料油性状と特定の燃焼
速度等の関係を明確に把握できない等の問題がある。
[Problems to be Solved by the Invention] However, although the method of measuring combustion speed, combustion pressure, and flame propagation velocity using an actual engine is a method that conforms to the usage conditions of fuel oil, there are many related factors. If there are too many, there are problems such as the inability to clearly understand the relationship between specific fuel oil properties and specific combustion speed, etc.

【0005】一方、基礎的な燃焼速度の計測法としては
、バ―ナ―法や円管法等がある。しかし、これらは気体
燃料での計測が中心であり、これらの方法を液体燃料油
に適用すると液体燃料と気体燃料とはそれぞれの性状が
著しく相違するため前記の従来のバ―ナ―法や円管法等
では液体燃料の予混合気の形成が困難なため、機関内の
燃焼状態の再現が難しい等の問題がある。また、予混合
気の形成方法についても、燃焼室と切り離された外部タ
ンクで予混合気を形成し、燃焼室に燃料を供給する方法
が提案されているが、この場合、混合燃料を用いると移
送過程で混合成分の拡散速度の違いで組成が変化し、正
確な測定が出来ない等の問題がある。このようなことか
ら、液体燃料油の火炎伝播状態の観測と燃焼速度を実験
室的に測定し得る定容燃焼装置の開発が望まれている。
On the other hand, basic combustion rate measurement methods include the burner method and the circular tube method. However, these methods mainly measure measurements using gaseous fuel, and when these methods are applied to liquid fuel oil, the properties of liquid fuel and gaseous fuel are significantly different, so the conventional burner method and circular method described above are difficult to apply. With the pipe method, etc., it is difficult to form a premixture of liquid fuel, so there are problems such as difficulty in reproducing the combustion state inside the engine. Regarding the method of forming a premixture, a method has been proposed in which a premixture is formed in an external tank separated from the combustion chamber and fuel is supplied to the combustion chamber, but in this case, if mixed fuel is used, During the transfer process, the composition changes due to differences in the diffusion rate of the mixed components, causing problems such as the inability to make accurate measurements. For this reason, it is desired to develop a constant volume combustion apparatus that can observe the flame propagation state of liquid fuel oil and measure the combustion rate in a laboratory.

【0006】この発明は上記のごとき事情に鑑みて成さ
れたものであって、液体燃料油の火炎伝播状態の観察と
、燃焼速度を実験室的に容易かつ確実に測定できる燃焼
器の開発と、更に詳しくは、単一又は混合液体燃料油の
うち、特にガソリン基材及び添加剤の燃焼特性を評価す
る実験室的技術を提供することを目的とする。
The present invention was made in view of the above circumstances, and aims to develop a combustor that can easily and reliably measure the flame propagation state of liquid fuel oil and the combustion rate in a laboratory. More specifically, the object is to provide a laboratory technique for evaluating the combustion characteristics of single or mixed liquid fuel oils, particularly gasoline base materials and additives.

【0007】[0007]

【課題を解決するための手段】発明者等は、上記課題を
解決するために鋭意検討を重ねた結果、容器内へ予め所
定量の空気を供給し、次に液体燃料油を注入した後、攪
拌することにより、直接的に均一な混合気が形成でき、
更にこの混合気を点火、燃焼させることにより、生じた
火炎伝播を観察窓を通し、レ―ザ―ビ―ム屈折法等で測
定することが可能な定容燃焼器を用いれば、液体燃料油
の燃焼性を実験室的に評価することができることを見出
し、本発明を完成するに至った。
[Means for Solving the Problems] As a result of intensive studies to solve the above problems, the inventors have found that after supplying a predetermined amount of air into a container in advance, and then injecting liquid fuel oil, By stirring, a homogeneous mixture can be formed directly.
Furthermore, by using a constant volume combustor that can measure the resulting flame propagation through an observation window by igniting and burning this air-fuel mixture, using a laser beam refraction method, etc., liquid fuel oil can be measured. The present inventors have discovered that the flammability of flammability can be evaluated in a laboratory, and have completed the present invention.

【0008】すなわち、本発明の要旨は、内部に密閉さ
れた燃焼室を形成しかつ観測用窓を有する燃焼器本体と
、前記燃焼器本体の外面に装着されたヒ−タ−と、前記
燃焼室の温度を検出する温度検出器と、前記燃焼室に所
定量の液体燃料油を供給する液体燃料油供給器と、前記
燃焼室に空気を供給する空気供給器と、前記燃焼室で可
動の攪拌部材を有する攪拌器と、及び前記燃焼室内に火
花を形成し得る点火栓とを備えることを特徴としている
That is, the gist of the present invention is to provide a combustor main body that forms a sealed combustion chamber inside and has an observation window, a heater attached to the outer surface of the combustor main body, and a combustor main body that has an observation window. a temperature detector that detects the temperature of the combustion chamber; a liquid fuel oil supply device that supplies a predetermined amount of liquid fuel oil to the combustion chamber; an air supply device that supplies air to the combustion chamber; The combustion chamber is characterized in that it comprises a stirrer having a stirring member, and a spark plug capable of forming a spark within the combustion chamber.

【0009】[0009]

【作用】燃焼室の温度を設定値に保ちながら、燃焼室内
をパ―ジし、空気を所定量供給し、次に測定の対象であ
る液体燃料油を液体燃料油供給器から攪拌部材上に滴下
する。次に攪拌部材を上下動させて、燃焼室内に液体燃
料油と空気の予混合気を形成する。次に予混合気を点火
栓で火花点火した後、火炎伝播を観測用窓から光学的測
定器で観測する。また本発明装置によれば、燃焼室内に
おいて直接的に予混合気が形成できるため、単一液体燃
料のみならず、混合液体燃料についても適用が可能とな
る。
[Operation] While keeping the temperature of the combustion chamber at the set value, the combustion chamber is purged, a predetermined amount of air is supplied, and then the liquid fuel oil to be measured is transferred from the liquid fuel oil supply device onto the stirring member. Drip. Next, the stirring member is moved up and down to form a premixture of liquid fuel oil and air in the combustion chamber. Next, after igniting the premixed mixture with a spark, the flame propagation is observed through an observation window using an optical measuring instrument. Further, according to the device of the present invention, since a premixture can be directly formed in the combustion chamber, it can be applied not only to a single liquid fuel but also to a mixed liquid fuel.

【0010】0010

【実施例】以下、本発明の詳細を一実施例を示す図面に
ついて説明する。図1において、1は燃焼装置である。 燃焼装置1は燃焼器本体2と、ヒ−タ−3と、温度検出
器4と、液体燃料油供給器5と、ガス給排器6と、攪拌
器7と、点火栓8とを有する。燃焼器本体2は主な材質
として、ステンレス(SUS304)を用い、内部に密
閉された燃焼室11を形成する。燃焼室11の大きさ及
び形状には特に制限はないが、均一混合気の形成を考慮
すると約30〜80mm×約30〜80mm×約150
〜400mmの直方体若しくは相当容量の円筒等である
。燃焼室11の容積は300cc以上である。燃焼室1
1が円筒体や直方体の場合、燃焼室11を貫通する直線
上に貫通する二壁面には燃焼室内の火炎伝播状況の観察
が行えるように観察用窓12が形成され、観察用窓12
はパイレックスガラスで気密に閉じられている。観察用
窓12を通して光学的測定装置のレ―ザ―光等が燃焼室
11内に照射され、そのレ―ザ―光の反射、透過、減衰
、屈折等を利用して、火炎等の燃焼室内の状況を観察可
能である。観察用窓12以外の全ての燃焼器本体2の外
面には、温度コントロ―ル用のヒ―タ3を装着し、更に
その上を断熱材で覆ってある。ヒ―タ3としてはシ―ス
ヒ―タを使用することができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The details of the present invention will be explained below with reference to the drawings showing one embodiment. In FIG. 1, 1 is a combustion device. The combustion device 1 includes a combustor main body 2, a heater 3, a temperature detector 4, a liquid fuel oil supply device 5, a gas supply/discharge device 6, an agitator 7, and a spark plug 8. The main material of the combustor body 2 is stainless steel (SUS304), and a sealed combustion chamber 11 is formed inside. There is no particular restriction on the size and shape of the combustion chamber 11, but considering the formation of a homogeneous mixture, it is approximately 30 to 80 mm x approximately 30 to 80 mm x approximately 150 mm.
It is a rectangular parallelepiped of ~400 mm or a cylinder of equivalent capacity. The volume of the combustion chamber 11 is 300 cc or more. Combustion chamber 1
When 1 is a cylinder or a rectangular parallelepiped, an observation window 12 is formed on two wall surfaces penetrating the combustion chamber 11 in a straight line so that the flame propagation situation inside the combustion chamber can be observed.
is sealed airtight with Pyrex glass. Laser light, etc. from an optical measuring device is irradiated into the combustion chamber 11 through the observation window 12, and reflection, transmission, attenuation, refraction, etc. of the laser light is used to detect flames, etc. in the combustion chamber. The situation can be observed. Heaters 3 for temperature control are attached to all the outer surfaces of the combustor main body 2 other than the observation window 12, and the heaters 3 are further covered with a heat insulating material. As the heater 3, a sheathed heater can be used.

【0011】燃焼器本体2には燃焼器本体2の壁または
燃焼室11の温度を検出する温度検出器4が取り付けら
れている。温度検出器4としては、例えば外径1.6m
mのKタイプ熱電対(シ−ス型)を燃焼室11の上面か
ら78mmの側面にその先端が内壁面と面一まで挿入し
て取り付ける。ただしヒ−タを燃焼器本体2の全体を覆
うように取り付けた場合には燃焼室11の壁面内の温度
はほぼ均一にすることができるので、温度検出器4の取
付位置は特に限定されるものではない。
A temperature detector 4 is attached to the combustor body 2 to detect the temperature of the wall of the combustor body 2 or the temperature of the combustion chamber 11. For example, the temperature sensor 4 has an outer diameter of 1.6 m.
A K-type thermocouple (sheath type) of 1.5 m is inserted and attached to the side surface 78 mm from the top surface of the combustion chamber 11 until its tip is flush with the inner wall surface. However, if the heater is installed to cover the entire combustor body 2, the temperature within the wall surface of the combustion chamber 11 can be made almost uniform, so the installation position of the temperature sensor 4 is particularly limited. It's not a thing.

【0012】燃焼室11の頂部には点火栓8が設けられ
ている。点火栓8は自動車用のもの(例えばNGK製・
ZFR5A−11)等を使用することができる。但し点
火性を高めるため、点火栓の電極径を0.5mmに、間
隙を1.2mmにそれぞれすることができる。点火栓8
は電極間に火花が飛ぶように組まれている回路(図示せ
ず)によって駆動される。
An ignition plug 8 is provided at the top of the combustion chamber 11. The ignition plug 8 is one for automobiles (for example, one made by NGK,
ZFR5A-11) etc. can be used. However, in order to improve ignitability, the electrode diameter of the spark plug can be set to 0.5 mm, and the gap can be set to 1.2 mm. Spark plug 8
is driven by a circuit (not shown) configured to cause sparks to fly between the electrodes.

【0013】燃焼器本体2の頂部に液体燃料供給器5が
配設されている。液体燃料供給器5は燃焼室11に所定
量の液体燃料油を供給するもので、液体燃料供給器5と
しては、例えばマイクロシリンジを使用することができ
る。燃焼室11はガス給排器6に接続している。ガス給
排器6は空気取入管13、空気送入管14、空気供給管
15、ガス吸引管16、ガス排出管17、並びに空気送
入管14に接続する圧縮空気源18、ガス吸引管16に
接続する真空ポンプ21とを備えている。空気取入管1
3にバルブA、空気送入管14にバルブBが、ガス排出
管17にバルブC、ガス吸引管16にバルブDが、それ
ぞれ設けられている。空気供給管15、ガス吸引管16
及びガス排出管17は燃焼室11に連通している。
A liquid fuel supply device 5 is disposed at the top of the combustor body 2. The liquid fuel supplier 5 supplies a predetermined amount of liquid fuel oil to the combustion chamber 11, and for example, a microsyringe can be used as the liquid fuel supplier 5. The combustion chamber 11 is connected to the gas supply/exhaust device 6. The gas supply/discharge device 6 includes an air intake pipe 13 , an air supply pipe 14 , an air supply pipe 15 , a gas suction pipe 16 , a gas discharge pipe 17 , a compressed air source 18 connected to the air supply pipe 14 , and a gas suction pipe 16 . The vacuum pump 21 is connected to the vacuum pump 21. Air intake pipe 1
3 is provided with a valve A, the air supply pipe 14 is provided with a valve B, the gas discharge pipe 17 is provided with a valve C, and the gas suction pipe 16 is provided with a valve D, respectively. Air supply pipe 15, gas suction pipe 16
And the gas exhaust pipe 17 communicates with the combustion chamber 11 .

【0014】攪拌器7は攪拌部材22と駆動軸23を有
する。攪拌部材22は燃焼室11内に配設されていて、
穴開きの板状をなしており、燃焼室11の中心軸方向に
直角に位置していて燃焼室11内で移動可能である。、
攪拌部材22は駆動軸23に取り付けられている。駆動
軸23は燃焼室11を中心軸方向に貫通していて、かつ
、燃焼室11の上下の壁24、25を気密に摺動可能に
貫通している。駆動軸23の上下の端部にはハンドル2
7、28が設けられていて、このハンドル27、28を
握って駆動軸23を上下動させると、この上下動に伴っ
て攪拌部材22が燃焼室11内を上下動し、燃焼室11
内のガスを攪拌する。
The stirrer 7 has a stirring member 22 and a drive shaft 23. The stirring member 22 is disposed within the combustion chamber 11,
It has a plate shape with holes, is located perpendicular to the central axis direction of the combustion chamber 11, and is movable within the combustion chamber 11. ,
The stirring member 22 is attached to a drive shaft 23. The drive shaft 23 passes through the combustion chamber 11 in the central axis direction, and also passes through the upper and lower walls 24 and 25 of the combustion chamber 11 so as to be able to slide in an airtight manner. Handles 2 are attached to the upper and lower ends of the drive shaft 23.
7 and 28 are provided, and when the drive shaft 23 is moved up and down by grasping these handles 27 and 28, the stirring member 22 moves up and down in the combustion chamber 11 along with this up and down movement, and the stirring member 22 moves up and down in the combustion chamber 11.
Stir the gas inside.

【0015】燃焼室11内の燃焼圧力の測定のために燃
焼器本体2に圧力検出器31が取付けられている。圧力
検出器31としては圧力差を電圧差として感知するピエ
ゾ式圧電変換器で行い、図2に示すように、チャ―ジア
ンプ9(例えばキスラ―製・5007型)にて増幅した
後オシロスコ―プ10に入力する。
A pressure detector 31 is attached to the combustor body 2 to measure the combustion pressure within the combustion chamber 11. The pressure detector 31 is a piezoelectric transducer that detects the pressure difference as a voltage difference, and as shown in FIG. Enter 10.

【0016】オシロスコ―プでは毎秒数メ―トルという
オ―ダ―の火炎伝播速度を示す燃焼を、レ―ザビ―ム屈
折法光学的測定装置及び圧力変換器により測定する場合
、その取り込み速度が重要となる。オシロスコ―プとし
ては、例えば高速度ディジタルストレ―ジオシロスコ―
プを使用することができる。温度検出器4や圧力検出器
31で検出されたデ―タの解析及び保存は、パソコンで
専用ソフトを使用して行う。
When measuring a combustion exhibiting a flame propagation velocity on the order of several meters per second with an oscilloscope using a laser beam refraction optical measuring device and a pressure transducer, the capture velocity is becomes important. Examples of oscilloscopes include high-speed digital storage oscilloscopes.
can be used. Analysis and storage of data detected by the temperature detector 4 and pressure detector 31 is performed on a personal computer using dedicated software.

【0017】燃焼室11内の燃焼速度を測定するための
デ−タを得るために光学的測定装置32を使用する。光
学的測定装置32としては、例えば、レ−ザビ−ム屈折
法測定装置33を使用することができる。レ−ザビ−ム
屈折法測定装置33は、図3に示すように、He−Ne
ガスレ−ザ発振器34、透過率可変フィルタ35、プリ
ズム36、ハ−フミラ−37、表面反射鏡38、ハ−フ
ミラ−41、表面反射鏡42、表面反射鏡43、44、
45、集光レンズ46、47、48、受光素子アセンブ
リ51に組み込まれた受光素子52、53、54を備え
ている。He−Neガスレ−ザ発振器34から発射され
たレ−ザビ−ム55は透過率可変フィルタ35で強度を
調整された後、プリズム36で光路変更され、ハ−フミ
ラ−37で2分割されてビ−ム56とビ−ム57になる
。一方のビ−ム56はさらにハ−フミラ−41で2分割
されてビ−ム58、59となり、合計3本のビ−ム57
、58、59が生成される。この3本のビ−ム57、5
8、59が表面反射43、44、45で光路変更されて
窓12から燃焼室11に入り、燃焼室11の火炎によっ
て屈折を受けた後、集光レンズ46、47、48を通し
て受光素子アセンブリ51に組み込まれた受光素子52
、53、54に入射する。それぞれの3本のビ−ム57
、58、59における屈折の影響を調べることによって
燃焼室11内の状態を知ることができる。
An optical measurement device 32 is used to obtain data for measuring the combustion rate within the combustion chamber 11. As the optical measuring device 32, for example, a laser beam refraction measuring device 33 can be used. As shown in FIG. 3, the laser beam refraction measurement device 33
Gas laser oscillator 34, variable transmittance filter 35, prism 36, half mirror 37, front reflector 38, half mirror 41, front reflector 42, front reflector 43, 44,
45, condenser lenses 46, 47, and 48, and light receiving elements 52, 53, and 54 incorporated in a light receiving element assembly 51. A laser beam 55 emitted from a He-Ne gas laser oscillator 34 has its intensity adjusted by a variable transmittance filter 35, then its optical path is changed by a prism 36, and is divided into two by a half mirror 37 to form a beam. - beam 56 and beam 57. One beam 56 is further divided into two by a half mirror 41 to become beams 58 and 59, making a total of three beams 57.
, 58, 59 are generated. These three beams 57, 5
8 and 59 are changed in optical path by surface reflections 43, 44, and 45, enter the combustion chamber 11 through the window 12, and are refracted by the flame in the combustion chamber 11, and then pass through the condenser lenses 46, 47, and 48 to the light receiving element assembly 51. The light receiving element 52 incorporated in
, 53, 54. Each of the three beams 57
, 58, 59, the state inside the combustion chamber 11 can be known.

【0018】このように構成された燃焼装置1において
、液体燃料油の燃焼性評価を行う場合の操作は次の通り
である。まず、燃焼室11のパ―ジと予混合気の形成を
行う。[パ―ジ1]  ヒ―タ3を作動させ燃焼室11
の温度が初期設定温度(ガソリンの沸点範囲を考慮し、
大気圧下で室温〜200℃、好ましくは約50℃〜17
0℃)に到達した後、燃焼室11内のガスを底面のバル
ブD(図1参照)から真空ポンプ21で排出し、上部側
面に装着したバルブAより大気を吸引する作業をパ―ジ
するに十分な時間、例えば数分〜数十分継続する。[パ
―ジ2]  パ―ジ1の後、バルブAとバルブDを閉じ
、バルブCを開放し、バルブBより少量の圧縮空気を数
分〜数十分間好ましくは約3〜約8分間流す。その後、
バルブBとバルブCを閉じ、パ―ジは完了する。
In the combustion apparatus 1 configured as described above, the operation for evaluating the combustibility of liquid fuel oil is as follows. First, the combustion chamber 11 is purged and a premixture is formed. [Purge 1] Activate the heater 3 to clean the combustion chamber 11
The temperature is the initial setting temperature (taking into account the boiling point range of gasoline,
Room temperature to 200°C under atmospheric pressure, preferably about 50°C to 17
After the temperature reaches 0°C), the gas in the combustion chamber 11 is exhausted from the valve D on the bottom (see Figure 1) using the vacuum pump 21, and the air is sucked through the valve A installed on the upper side for purging. Continue for a sufficient period of time, for example from several minutes to several tens of minutes. [Purge 2] After purge 1, close valves A and D, open valve C, and apply a smaller amount of compressed air than valve B for several minutes to several tens of minutes, preferably for about 3 to about 8 minutes. Flow. after that,
Close valves B and C to complete the purge.

【0019】[予混合気の形成]  液体燃料1Kg中
の炭素、水素、酸素、窒素、硫黄をそれぞれc,h,o
,n.s(kg)とすると、燃料1Kgの燃焼に必要な
理論酸素量O0 は次の数式1により求まる。
[Formation of premixture] Carbon, hydrogen, oxygen, nitrogen, and sulfur in 1 kg of liquid fuel are converted to c, h, and o, respectively.
, n. s (kg), the theoretical oxygen amount O0 required for combustion of 1 kg of fuel can be found using the following equation 1.

【0020】[0020]

【数1】   O0 =1.867c+5.6(h−o/8)  
      +1.6n+0.7s  (Nm3 /K
g)    …(1)
[Math. 1] O0 = 1.867c + 5.6 (ho/8)
+1.6n+0.7s (Nm3/K
g) …(1)

【0021】硫黄が含まれた物質
を使用しない場合は計算式より0.7Sの項を削除する
。この場合は理論空気量A0 は、理論酸素量O0 を
空気中の酸素濃度で割ったものであるから、仮に21%
とすると次の数式2から求まる。
[0021] If a substance containing sulfur is not used, the term 0.7S is deleted from the calculation formula. In this case, the theoretical air amount A0 is the theoretical oxygen amount O0 divided by the oxygen concentration in the air, so let's say it is 21%.
Then, it can be found from the following equation 2.

【0022】[0022]

【数2】   A0 =O0 /0.21       =8.89c+26.67(h−o/8)
        +7.62n    (Nm3 /K
g)        …(2)
[Math. 2] A0 = O0 /0.21 = 8.89c + 26.67 (ho/8)
+7.62n (Nm3/K
g) …(2)

【0023】燃料量F0
 は、燃焼室の大きさ、温度、燃料油組成、当量比によ
り異なり、初期圧力と初期温度をもとに算出した、燃焼
室中の空気量をAr (ml)、当量比をφ、密度をρ
(g/cm3 )とすると、次の数式3から求まる。
[0023] Fuel amount F0
varies depending on the size, temperature, fuel oil composition, and equivalence ratio of the combustion chamber. Calculated based on the initial pressure and initial temperature, the amount of air in the combustion chamber is Ar (ml), the equivalence ratio is φ, and the density is ρ
(g/cm3), it can be found from the following equation 3.

【0024】[0024]

【数3】   F0 =Ar /A0 ×φ/ρ    (μl)
          …(3)但し、後に述べる実験で
は約20〜約140μl(0.02cc〜0.14cc
)を使用した。
[Formula 3] F0 = Ar /A0 ×φ/ρ (μl)
...(3) However, in the experiments described later, about 20 to about 140 μl (0.02 cc to 0.14 cc
)It was used.

【0025】数式3にて算出した燃料量をマイクロシリ
ンジ(但し、マイクロシリンジ以外でも僅かな量を正確
に計れ、しかも外部から供給できれば、いずれのもので
もよい)で計量し、攪拌部材22に滴下する。燃料の蒸
発状態を観察窓12を通し目視で確認した後、攪拌部材
22を50回以上好ましくは100回以上、上下に作動
させ攪拌して、予混合気を形成する。
[0025] The amount of fuel calculated using Equation 3 is measured using a microsyringe (any device other than a microsyringe may be used as long as it can accurately measure a small amount and can be supplied externally) and dripped into the stirring member 22. do. After visually confirming the evaporation state of the fuel through the observation window 12, the stirring member 22 is moved up and down 50 times or more, preferably 100 times or more, to stir and form a premixed mixture.

【0026】[ガス流動の安定化]  攪拌による乱れ
の影響がなくなり、混合気が均一になるまで約数分〜約
10数分、好ましくは約3〜10分間放置する。短すぎ
ると混合気不均一、長過ぎると重い燃料の場合、沈降し
、不均一となる恐れがある。
[Stabilization of gas flow] The mixture is left to stand for about several minutes to about 10-odd minutes, preferably about 3 to 10 minutes, until the influence of turbulence due to stirring disappears and the mixture becomes uniform. If it is too short, the mixture may become uneven; if it is too long, heavy fuel may settle and become uneven.

【0027】次に火炎面通過時刻の測定をする。点火装
置で混合気を点火すると、点火信号からのトリガにより
オシロスコ―プ10は測定を開始する。密度勾配の大き
な火炎がレ―ザビ―ムを横切ると、ビ―ムは屈折により
偏向し、受光素子例えばフォトトランジスタの受光量が
変化することにより、オシロスコ―プ上に電圧降下が記
録される。またそのデ―タはGPIBインタ―フェ―ス
等により、自動的にパソコン20に転送される。
Next, the flame front passage time is measured. When the air-fuel mixture is ignited by the ignition device, the oscilloscope 10 starts measurement in response to a trigger from the ignition signal. When a flame with a large density gradient crosses a laser beam, the beam is deflected by refraction, and the amount of light received by a light receiving element, such as a phototransistor, changes, thereby recording a voltage drop on the oscilloscope. Further, the data is automatically transferred to the personal computer 20 via a GPIB interface or the like.

【0028】次に必要に応じて燃焼圧力の測定をする。 燃焼圧力の測定は、圧力検出器31、例えば、圧力差を
電圧差として感知するピエゾ式圧電変換器により、火炎
面通過時刻の測定と同時に行われる。
Next, the combustion pressure is measured if necessary. Combustion pressure is measured by a pressure detector 31, for example, a piezoelectric transducer that detects a pressure difference as a voltage difference, at the same time as the flame front passage time is measured.

【0029】[実験例] (実験条件)初期圧力実際のエンジンにおいては、約8
.0〜15Kg・G/cm2 であるが、実験の容易性
と、安全性を優先して初期設定圧力は大気圧とした。当
量比    φ=1.2空気      基準Air注
1当量比=実際の燃空比/理論燃空比(化学量論比)当
量比>1…燃料過濃当量比<1…燃料希薄
[Experimental example] (Experimental conditions) Initial pressure In an actual engine, approximately 8
.. 0 to 15 Kg·G/cm 2 , but the initial pressure was set to atmospheric pressure in order to give priority to ease of experimentation and safety. Equivalence ratio φ = 1.2 Air Standard Air Note 1 Equivalence ratio = Actual fuel-air ratio / Theoretical fuel-air ratio (stoichiometric ratio) Equivalence ratio > 1... Fuel rich equivalence ratio < 1... Fuel lean

【0030】初期温度初期圧力の選択と同じ理由と、ガ
ソリンの沸点と化学反応温度を考慮し、初期設定温度を
約90〜120℃好ましくは、約100〜115℃とし
た。
Initial Temperature Considering the same reason as the selection of the initial pressure and the boiling point of gasoline and the chemical reaction temperature, the initial temperature was set at about 90 to 120°C, preferably about 100 to 115°C.

【0031】温度測定位置燃焼室の頂上から26mm,
78mm,130mm,182mmの位置で測定した。
Temperature measurement position 26mm from the top of the combustion chamber,
Measurements were taken at positions of 78 mm, 130 mm, and 182 mm.

【0032】火炎面通過時刻の測定位置レ―ザは容器の
中心軸と直角に交差するように設置した。レ―ザ通過位
置は実験目的により、3箇所を選び設定した。またその
位置は、次に示す基準で選定した。[燃料の火炎伝播速
度測定の主なレ―ザ通過位置]■点火栓電極間隙中心か
ら    4mm(a)(点火栓の放電の影響を受けな
い最短距離約3〜7mm)■点火栓電極間隙中心から 
 99mm(b)(燃焼室長さの2分の1)■点火栓電
極間隙中心から133mm(c)(燃焼室長さの3分の
2)
Measurement position of flame front passage time The laser was installed so as to intersect at right angles to the central axis of the container. Three laser passing positions were selected and set depending on the purpose of the experiment. The location was selected based on the following criteria. [Main laser passing position for fuel flame propagation velocity measurement] ■ 4 mm (a) from the center of the spark plug electrode gap (the shortest distance that is not affected by spark plug discharge, about 3 to 7 mm) ■ The center of the spark plug electrode gap from
99mm (b) (1/2 of the combustion chamber length) ■133mm (c) from the center of the spark plug electrode gap (2/3 of the combustion chamber length)

【0033】(結果及び考察)容器内火炎伝播速度
分布と燃焼圧力本実験においては、前記火炎面通過時刻
の測定位置に示した測定位置で計測した火炎面通過時刻
より、火炎面の移動の所要時間t(msec)を算出し
、その区間の平均火炎伝播速度を火炎伝播速度SL と
呼び、次の数式4により求めた。
(Results and Discussion) Flame Propagation Velocity Distribution and Combustion Pressure in the Container In this experiment, the required movement of the flame front was determined from the flame front passage time measured at the measurement position shown in the measurement position of the flame front passage time. The time t (msec) was calculated, and the average flame propagation speed in that section was called the flame propagation speed SL, which was calculated using the following equation 4.

【0034】[0034]

【数4】 SL =L/t    (m/sec)      …
(4)
[Formula 4] SL = L/t (m/sec)...
(4)

【0035】ここでLは火炎の移動距離(mm)
、tは移動の所要時間(msec)である。実験回数は
バラツキを考慮して、同一条件で3〜7回とし、その平
均値を所要時間とした。
[0035] Here, L is the distance the flame moves (mm)
, t is the time required for movement (msec). The number of experiments was 3 to 7 under the same conditions in consideration of variations, and the average value was taken as the required time.

【0036】図4は3種類の物質における容器内での火
炎の挙動を、点火栓の電極間隙中心部より4mmの位置
を通過した時刻を基準として、測定位置を火炎面が通過
した時刻をプロットしたものである。火炎伝播速度は点
火から容器1/3までは加速し、その後、容器中央まで
は、ほぼ等速で進行し、中央を越えてから減速している
ことがわかる。また、その傾向はどの物質でも同じで、
4〜133mmの間では、測定位置によって燃料間での
火炎面の到達順位が変ることはなかった。同じ条件での
圧力線図を図5に示す。圧力上昇は火炎伝播の挙動と同
様の傾向を示し、火炎面が容器1/3に達する辺りから
立ち上がり、容器中央辺りでほぼ一定となり、その後、
上昇率がいったん減少しある期間また一定となった後、
一気に上昇し最高圧力に到達する。この上昇率は、火炎
伝播速度の速いものほど大きく、短時間でより高い最高
圧力に達した。
[0036] Figure 4 shows the behavior of the flame in the container for three types of substances, and plots the time when the flame front passes the measurement position, with the time when the flame front passes the measurement position 4 mm from the center of the electrode gap of the ignition plug as a reference. This is what I did. It can be seen that the flame propagation speed accelerates from ignition to 1/3 of the container, then advances at almost constant speed until the center of the container, and then decelerates after passing the center. Moreover, this tendency is the same for all substances,
Between 4 and 133 mm, the order of flame front arrival among fuels did not change depending on the measurement position. A pressure diagram under the same conditions is shown in FIG. The pressure rise shows the same tendency as the flame propagation behavior, rising when the flame surface reaches 1/3 of the container, becoming almost constant around the center of the container, and then...
After the rate of increase decreases and becomes constant again for a period of time,
It rises rapidly and reaches the maximum pressure. This rate of increase was greater as the flame propagation speed was faster, and a higher maximum pressure was reached in a shorter time.

【0037】表1には供試燃料及びその火炎伝播速度(
m/sec)、最高圧力(bar)の結果を示した。
Table 1 lists the test fuels and their flame propagation speeds (
m/sec) and maximum pressure (bar).

【表1】[Table 1]

【0038】[0038]

【発明の効果】この発明によれば、従来測定が困難であ
った液体燃料油特に、混合液体燃料油の火炎伝播状態の
観測と燃焼速度を実験室的に測定することができる。し
たがってこの定容燃焼装置によれば、ガソリン基材及び
添加剤の評価を容易に行うことができ、ガソリン設計が
可能になる。攪拌装置は外部からの操作によって燃焼室
内に良好な予混合気を容易に形成することができ、良好
な測定条件を形成することができる。
According to the present invention, it is possible to observe the flame propagation state and burn rate of liquid fuel oil, especially mixed liquid fuel oil, in a laboratory, which has been difficult to measure in the past. Therefore, according to this constant volume combustion device, it is possible to easily evaluate gasoline base materials and additives, and gasoline design becomes possible. The stirring device can easily form a good premixture in the combustion chamber by external operation, and can create good measurement conditions.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】燃焼器本体の縦断面説明図。FIG. 1 is an explanatory longitudinal cross-sectional view of a combustor main body.

【図2】定容燃焼装置における測定系の構成を示す構成
説明図。
FIG. 2 is a configuration explanatory diagram showing the configuration of a measurement system in a constant volume combustion apparatus.

【図3】光学測定装置を示す構成説明図。FIG. 3 is a configuration explanatory diagram showing an optical measurement device.

【図4】燃焼室内の火炎伝播挙動を示すグラフ。FIG. 4 is a graph showing flame propagation behavior within the combustion chamber.

【図5】燃焼室における圧力経過を示すグラフ。FIG. 5 is a graph showing the pressure course in the combustion chamber.

【符号の説明】[Explanation of symbols]

1  燃焼装置 2  燃焼器本体 3  ヒ―タ 4  温度検出器 5  液体燃料油供給器 6  ガス給排器 7  攪拌器 8  点火栓 11  燃焼室 12  観察用窓 13  空気取入管 14  空気送入管 15  空気供給管 16  ガス吸引管 17  ガス排出管 18  圧縮空気源 20  パソコン 21  真空ポンプ 22  攪拌部材 23  駆動軸 24  上壁 25  下壁 26  側壁 27  上ハンドル 28  下ハンドル 31  圧力検出器 32  光学測定装置 33  レ―ザビ―ム屈折法測定装置 34  He−Neガスレ―ザ発振器 35  透過率可変フィルタ 36  プリズム 37  ハ―フミラ― 38  表面反射鏡 41  ハ―フミラ― 42  表面反射鏡 43  表面反射鏡 44  表面反射鏡 45  表面反射鏡 46  集光レンズ 47  集光レンズ 48  集光レンズ 51  受光素子アセンブリ 52  受光素子 53  受光素子 54  受光素子 55  レ―ザビ―ム 56  レ―ザビ―ム 57  レ―ザビ―ム 1 Combustion device 2 Combustor body 3 Heater 4 Temperature detector 5 Liquid fuel oil supply device 6 Gas supply/discharge device 7 Stirrer 8. Spark plug 11 Combustion chamber 12 Observation window 13 Air intake pipe 14 Air supply pipe 15 Air supply pipe 16 Gas suction pipe 17 Gas exhaust pipe 18 Compressed air source 20 PC 21 Vacuum pump 22 Stirring member 23 Drive shaft 24 Upper wall 25 Lower wall 26 Side wall 27 Upper handle 28 Lower handle 31 Pressure detector 32 Optical measurement device 33 Laser beam refraction measurement device 34 He-Ne gas laser oscillator 35 Transmittance variable filter 36 Prism 37 Half mirror 38 Surface reflector 41 Half mirror 42 Surface reflector 43 Surface reflector 44 Surface reflector 45 Surface reflector 46 Condensing lens 47 Condensing lens 48 Condensing lens 51 Photo receiving element assembly 52 Photo receiving element 53 Photo receiving element 54 Photo receiving element 55 Laser beam 56 Laser beam 57 Laser beam

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  内部に密閉された燃焼室を形成しかつ
観測用窓を有する燃焼器本体と、前記燃焼器本体の外面
に装着されたヒ−タ−と、前記燃焼室の温度を検出する
温度検出器と、前記燃焼室に所定量の液体燃料油を供給
する液体燃料油供給器と、前記燃焼室に空気を供給する
空気供給器と、前記燃焼室で可動の攪拌部材を有する攪
拌器と、及び前記燃焼室内に火花を形成し得る点火栓と
を備えることを特徴とする液体燃料油の燃焼特性評価定
容燃焼装置。
[Claim 1] A combustor body forming a sealed combustion chamber inside and having an observation window, a heater attached to an outer surface of the combustor body, and detecting the temperature of the combustion chamber. a temperature detector, a liquid fuel oil supply device that supplies a predetermined amount of liquid fuel oil to the combustion chamber, an air supply device that supplies air to the combustion chamber, and an agitator having a stirring member movable in the combustion chamber. A constant-volume combustion device for evaluating combustion characteristics of liquid fuel oil, comprising: and a spark plug capable of forming a spark within the combustion chamber.
【請求項2】  前記燃焼室内の圧力を検出する圧力検
出器を備えることを特徴とする請求項1記載の液体燃料
油の燃焼特性評価定容燃焼装置。
2. The constant volume combustion apparatus for evaluating combustion characteristics of liquid fuel oil according to claim 1, further comprising a pressure detector for detecting the pressure within the combustion chamber.
JP15509491A 1991-05-31 1991-05-31 Constant volume combustion apparatus for combustion characteristic evaluation for liquid fuel oil Pending JPH04355357A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15509491A JPH04355357A (en) 1991-05-31 1991-05-31 Constant volume combustion apparatus for combustion characteristic evaluation for liquid fuel oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15509491A JPH04355357A (en) 1991-05-31 1991-05-31 Constant volume combustion apparatus for combustion characteristic evaluation for liquid fuel oil

Publications (1)

Publication Number Publication Date
JPH04355357A true JPH04355357A (en) 1992-12-09

Family

ID=15598505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15509491A Pending JPH04355357A (en) 1991-05-31 1991-05-31 Constant volume combustion apparatus for combustion characteristic evaluation for liquid fuel oil

Country Status (1)

Country Link
JP (1) JPH04355357A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102788817A (en) * 2012-08-24 2012-11-21 中煤科工集团重庆研究院 Research method of ultralow temperature gas explosion experiment under ultralow temperature environment
CN103267643A (en) * 2013-05-10 2013-08-28 天津大学 Sleeve for constant-volume combustion bomb
CN103592332A (en) * 2013-11-27 2014-02-19 上海化工研究院 Airbag external-pressurization type mixed gas blasting determination apparatus
CN104330263A (en) * 2014-10-24 2015-02-04 奇瑞汽车股份有限公司 Constant volume bomb window
CN105445033A (en) * 2015-12-31 2016-03-30 天津大学 Constant-volume burning device for studying spraying form and micro-characteristics of spraying form
CN105588788A (en) * 2015-12-31 2016-05-18 天津大学 System and method for measuring spray micro-characteristics in constant-volume combustion device
CN105628566A (en) * 2015-12-31 2016-06-01 天津大学 System and method for synchronously measuring spraying macromorphology and microscope properties
CN107037081A (en) * 2017-03-30 2017-08-11 中国航空工业集团公司西安飞机设计研究所 A kind of fuel tank incendiary source checking test method
CN109668931A (en) * 2017-10-17 2019-04-23 中国石油化工股份有限公司 The quickly device and method of test fuel gas firing temperature

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102788817A (en) * 2012-08-24 2012-11-21 中煤科工集团重庆研究院 Research method of ultralow temperature gas explosion experiment under ultralow temperature environment
CN103267643A (en) * 2013-05-10 2013-08-28 天津大学 Sleeve for constant-volume combustion bomb
CN103592332A (en) * 2013-11-27 2014-02-19 上海化工研究院 Airbag external-pressurization type mixed gas blasting determination apparatus
CN103592332B (en) * 2013-11-27 2015-07-15 上海化工研究院 Airbag external-pressurization type mixed gas blasting determination apparatus
CN104330263A (en) * 2014-10-24 2015-02-04 奇瑞汽车股份有限公司 Constant volume bomb window
CN105588788A (en) * 2015-12-31 2016-05-18 天津大学 System and method for measuring spray micro-characteristics in constant-volume combustion device
CN105445033A (en) * 2015-12-31 2016-03-30 天津大学 Constant-volume burning device for studying spraying form and micro-characteristics of spraying form
CN105628566A (en) * 2015-12-31 2016-06-01 天津大学 System and method for synchronously measuring spraying macromorphology and microscope properties
CN105445033B (en) * 2015-12-31 2018-12-04 天津大学 A kind of CONSTANT VOLUME MODEL COMBUSTION CHAMBER for studying spray discharge pattern and its microscopic characteristics
CN105588788B (en) * 2015-12-31 2018-12-04 天津大学 A kind of CONSTANT VOLUME MODEL COMBUSTION CHAMBER is sprayed the measuring system and method for microscopic characteristics
CN105628566B (en) * 2015-12-31 2018-12-07 天津大学 A kind of synchro measure is sprayed the system and method for macro morphology and microscopic characteristics
CN107037081A (en) * 2017-03-30 2017-08-11 中国航空工业集团公司西安飞机设计研究所 A kind of fuel tank incendiary source checking test method
CN107037081B (en) * 2017-03-30 2020-05-22 中国航空工业集团公司西安飞机设计研究所 Fuel tank ignition source verification test method
CN109668931A (en) * 2017-10-17 2019-04-23 中国石油化工股份有限公司 The quickly device and method of test fuel gas firing temperature

Similar Documents

Publication Publication Date Title
Kadota et al. Soot formation by combustion of a fuel droplet in high pressure gaseous environments
Biordi et al. Molecular beam mass spectrometry applied to determining the kinetics of reactions in flames. I. Empirical characterization of flame perturbation by molecular beam sampling probes
Malte et al. Measurement of atomic oxygen and nitrogen oxides in jet-stirred combustion
Eckbreth CARS thermometry in practical combustors
Brackmann et al. Thermometry in internal combustion engines via dual-broadband rotational coherent anti-Stokes Raman spectroscopy
JPH04355357A (en) Constant volume combustion apparatus for combustion characteristic evaluation for liquid fuel oil
Wong et al. Disruptive burning of aluminum/arbon slurry droplets
Reuter et al. Periodic mixing and combustion processes in gas fired pulsating combustors
Reisel et al. Quantitative LIF measurements and modeling of nitric oxide in high-pressure C2H4/O2/N2 flames
US3002819A (en) Apparatus for testing fuels
Kim et al. Exhaust and in-situ measurements of nitric oxide for laminar partially premixed C2H6-air flames: effect of premixing level at constant fuel flowrate
Foster et al. Factors affecting NOx formation from nitrogen-containing fuels
Tripathi et al. Effect of mixture constituents on the laminar burning velocity of lpg-co 2-air mixtures
Kawahara et al. Unburned gas temperature measurement in a spark-ignition engine using fibre-optic heterodyne interferometry
Abdulwahhab et al. STUDY THE EFFECT OF AN INERT GAS ISOLATING ON THE FLAME CHARACTERISTICS WITH A STABILIZER IN A VERTICAL GAS BURNER
Hall et al. Fiber optic sensor for crank angle resolved measurements of burned gas residual fraction in the cylinder of an SI engine
CN109556112A (en) A kind of concentric alternately wake gas burner based on stoichiometric number proportion
RU95107352A (en) DEVICE FOR EVALUATING INFLAMMABILITY INDICATORS OF CONSTRUCTION STRUCTURES
JP3378085B2 (en) Fuel gas flammability measuring method, its measuring device, its managing method and its managing device
GB712700A (en) Improvements in or relating to flame photometers
Ewart et al. Comparison of in-Cylinder coherent anti-stokes-Raman scattering temperature measurements with predictions from an engine simulation
US2845334A (en) Method for testing fuels
SHABAN et al. A STUDY OF THE EFFECT OF AMMONIA BLENDING ON BURNING VELOCITY OF LPG AT INITIAL PRESSURE WITH HIGH-SPEED CAMERA
SU545829A1 (en) Device for measuring the fuel-air ratio
Geiger et al. Optical Evaluation of Directly Injected Methane Using a Newly Developed Highly Repetitive Laser Diagnostics System