JPH04355355A - Method of detecting pollution of window material for fluorescence x-ray analysis - Google Patents

Method of detecting pollution of window material for fluorescence x-ray analysis

Info

Publication number
JPH04355355A
JPH04355355A JP15777991A JP15777991A JPH04355355A JP H04355355 A JPH04355355 A JP H04355355A JP 15777991 A JP15777991 A JP 15777991A JP 15777991 A JP15777991 A JP 15777991A JP H04355355 A JPH04355355 A JP H04355355A
Authority
JP
Japan
Prior art keywords
intensity
window material
sample
ray
rays
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15777991A
Other languages
Japanese (ja)
Other versions
JP2615279B2 (en
Inventor
Shuji Kotomizu
言水 修治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rigaku Corp
Original Assignee
Rigaku Industrial Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rigaku Industrial Corp filed Critical Rigaku Industrial Corp
Priority to JP15777991A priority Critical patent/JP2615279B2/en
Publication of JPH04355355A publication Critical patent/JPH04355355A/en
Application granted granted Critical
Publication of JP2615279B2 publication Critical patent/JP2615279B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To detect pollution of a window material automatically for a fluorescence X-ray analyzer which analyzes a analysis sample comprising a liquid. CONSTITUTION:Two types of calibration samples 1H and 1L are set alternately at an irradiation point P beforehand and both the calibration samples 1H and 1L with primary X rays B1 to measure first and second reference intensities IH0 and IL0 of the fluorescence X rays B2. Then, prior to an analysis on an analysis sample 1 on the operation day, both the calibration samples 1H and 1L are irradiated with the primary X rays B1 to measure first and second measured intensities IH1 and IL1 of the fluorescence X rays B2. Thereafter, when a value as obtained by dividing the first measured intensity IH1 by the first reference intensity IH0 is smaller than a first threshold A (A is smaller than 1.0) while a value as obtained by dividing the second measured intensity IL1 by the second reference intensity IL0 is larger than the second threshold value B (B is larger than 1.0), the window material 6 is determined to be polluted by the analysis sample.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、石油のような液体の
分析試料を容器に充填して分析する蛍光X線分析装置に
おける窓材の汚染検出方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for detecting contamination of a window material in a fluorescent X-ray analyzer in which a container is filled with a liquid sample to be analyzed, such as petroleum.

【0002】0002

【従来の技術】一般に、液体の分析試料を容器に充填し
て蛍光X線分析を行う場合には、分析試料の下方にX線
源およびX線検出器を窓材を介挿して配置する。この種
の蛍光X線分析装置の一例を図1に示す。
2. Description of the Related Art Generally, when a liquid analysis sample is filled in a container and subjected to fluorescent X-ray analysis, an X-ray source and an X-ray detector are placed below the analysis sample with a window material interposed therebetween. An example of this type of fluorescent X-ray analyzer is shown in FIG.

【0003】図1において、軽油や重油のような分析試
料1は、容器2内に充填されて、試料載置窓3上に載置
されている。容器2の下部には、薄膜4を張った分析試
料1が充填されている。なお、薄膜4は、筒状の内容器
2aと外容器2bとの間で挟持されている。
In FIG. 1, an analysis sample 1 such as light oil or heavy oil is filled in a container 2 and placed on a sample placement window 3. The lower part of the container 2 is filled with an analysis sample 1 covered with a thin film 4. Note that the thin film 4 is held between a cylindrical inner container 2a and an outer container 2b.

【0004】上記分析試料1を充填した容器2の下方に
は、窓材6が設けられており、さらに、その下方にX線
管(放射線源)7およびX線検出器8が配置されている
。上記X線検出器8の上方にはフィルタ10が設けられ
ている。上記窓材6は、フィルタ10、X線管7および
X線検出器8などが汚れるのを防止するためのものであ
る。
A window member 6 is provided below the container 2 filled with the analysis sample 1, and an X-ray tube (radiation source) 7 and an X-ray detector 8 are further arranged below the window member 6. . A filter 10 is provided above the X-ray detector 8 . The window material 6 is for preventing the filter 10, the X-ray tube 7, the X-ray detector 8, etc. from getting dirty.

【0005】つぎに、分析方法について簡単に説明する
。上記X線管7から出射された一次X線(放射線)B1
は、窓材6を通して容器2内の分析試料1に照射される
。一次X線B1を受けた分析試料1は、原子が励起され
て、その元素固有の蛍光X線B2を発生する。蛍光X線
B2は、二次フィルタ10でサルファ分以外による蛍光
X線B2が吸収されて、X線検出器8に入射して、X線
強度が検出される。この検出結果から、分析試料1のサ
ルファ分の濃度が決定される。
[0005] Next, the analysis method will be briefly explained. Primary X-rays (radiation) B1 emitted from the X-ray tube 7
is irradiated onto the analysis sample 1 inside the container 2 through the window material 6. The atoms of the analysis sample 1 that have received the primary X-rays B1 are excited and generate fluorescent X-rays B2 unique to that element. Fluorescent X-rays B2 due to components other than sulfur are absorbed by the secondary filter 10, and are incident on the X-ray detector 8, where the X-ray intensity is detected. From this detection result, the concentration of sulfur in the analysis sample 1 is determined.

【0006】ところで、蛍光X線分析では、分析装置自
体の経時的変化により生じるX線強度の変化(装置ドリ
フト)を校正して、分析精度の向上を図っている。校正
を行うには、次の様な2種類の校正試料を用意する。第
1校正試料1Hは、分析試料1よりも検出すべき元素(
サルファ)の蛍光X線またはそれに近似したエネルギの
X線強度が大きく、一方、第2校正試料1Lは、分析試
料1よりも、検出すべき元素(サルファ)の蛍光X線ま
たはそれに近似したエネルギのX線強度が小さく設定さ
れている。両校正試料1H,1Lは必ずしも分析試料1
と同じ材質である必要はない。
By the way, in fluorescent X-ray analysis, the accuracy of analysis is improved by calibrating changes in X-ray intensity (device drift) caused by changes in the analyzer itself over time. To perform calibration, prepare the following two types of calibration samples. The first calibration sample 1H is more sensitive to the element to be detected than the analysis sample 1 (
The intensity of fluorescent X-rays of the element to be detected (sulfur) or X-rays with energy similar to it is high, while the second calibration sample 1L has a higher intensity of fluorescent X-rays of the element to be detected (sulfur) or energy similar to it than analysis sample 1. X-ray intensity is set low. Both calibration samples 1H and 1L are not necessarily analysis sample 1.
It doesn't have to be the same material.

【0007】装置ドリフトを校正した分析試料1のX線
強度Iは、下記の(1)式〜(3)式に基づいて求めら
れる。 I=Im ・α+β                
    …(1)α=(IH0−IL0)/(IH1−
IL1)  …(2)β=IH0−IH1・α    
              …(3)Im :分析試
料の測定強度 α,β:ドリフト補正係数 IH0:第1校正試料の基準強度 IL0:第2校正試料の基準強度 IH1:第1校正試料の測定強度 IL1:第2校正試料の測定強度
[0007] The X-ray intensity I of the analysis sample 1 with device drift calibrated is determined based on the following equations (1) to (3). I=Im ・α+β
...(1) α=(IH0-IL0)/(IH1-
IL1) ...(2) β=IH0-IH1・α
...(3) Im: Measured intensity α, β of the analysis sample: Drift correction coefficient IH0: Reference intensity of the first calibration sample IL0: Reference intensity of the second calibration sample IH1: Measured intensity of the first calibration sample IL1: Second calibration Measured intensity of sample

【0008】[0008]

【発明が解決しようとする課題】ところで、この種の液
体試料の蛍光X線分析においては、図1の窓材6が液体
試料で汚染される場合がある。たとえば、図1の容器2
内の分析試料1が薄膜4に沿って滲み出て、窓材6に付
着する場合がある。このような場合、この窓材6に付着
した汚染物からも蛍光X線B2が発生するとともに、分
析試料1から発生した蛍光X線B2が汚染物によって吸
収されるので、校正を行っても、正確な分析ができなく
なる。したがって、上記窓材6を適宣交換する必要があ
る。
By the way, in this type of fluorescent X-ray analysis of a liquid sample, the window material 6 shown in FIG. 1 may be contaminated with the liquid sample. For example, container 2 in Figure 1
The analysis sample 1 inside may seep out along the thin film 4 and adhere to the window material 6. In such a case, fluorescent X-rays B2 are also generated from the contaminants attached to the window material 6, and fluorescent X-rays B2 generated from the analysis sample 1 are absorbed by the contaminants, so even if calibration is performed, Accurate analysis becomes impossible. Therefore, it is necessary to replace the window material 6 as appropriate.

【0009】ここで、上記窓材6の汚染が目視で発見す
ることができない程度でも、分析誤差としては無視でき
ない場合がある。そこで、上記窓材6の汚染を検出し、
判定する必要が生じる。この発明は上記従来の問題に鑑
みてなされたもので、液体からなる分析試料の分析を行
う蛍光X線分析装置において、窓材の汚染を検出する検
出方法を提供することを目的とする。
[0009] Here, even if the contamination of the window material 6 cannot be visually detected, it may not be ignored as an analysis error. Therefore, the contamination of the window material 6 is detected,
It becomes necessary to make a judgment. The present invention has been made in view of the above-mentioned conventional problems, and an object of the present invention is to provide a detection method for detecting contamination of a window material in a fluorescent X-ray analyzer that analyzes an analysis sample made of a liquid.

【0010】0010

【課題を解決するための手段】上記目的を達成するため
に、この発明は、予め、図1の上記第1および第2校正
試料1H,1LについてX線強度を測定して、図2に示
す先の第1および第2測定値IH0,IL0を求める。 この後に、上記第1および第2校正試料1H,1Lにつ
いてX線強度を測定して、後の第1および第2測定値I
H1,IL1を求める。図2(b)のように、上記後の
第1測定値IH1が先の第1測定値IH0よりも小さく
、かつ、上記後の第2測定値IL1が先の第2測定値I
L0よりも大きくなったとき、上記窓材6が分析試料に
より汚染されていると判定する。
[Means for Solving the Problems] In order to achieve the above object, the present invention measures the X-ray intensities of the first and second calibration samples 1H and 1L shown in FIG. The first and second measured values IH0 and IL0 are obtained. After this, the X-ray intensities of the first and second calibration samples 1H and 1L are measured, and the later first and second measurement values I
Find H1 and IL1. As shown in FIG. 2(b), the first measured value IH1 after the above is smaller than the first measured value IH0, and the second measured value IL1 after the above is the second measured value IH0.
When it becomes larger than L0, it is determined that the window material 6 is contaminated by the analysis sample.

【0011】[0011]

【作用】この発明の原理を図1および図2を用いて説明
する。窓材6が汚染されていない場合において、装置ド
リフトが生じたときは、第1および第2校正試料1H,
1Lの後の測定値IH1,IL1は、図2(a)に示す
ように、共に、同一方向にドリフトする。
[Operation] The principle of this invention will be explained using FIGS. 1 and 2. When the window material 6 is not contaminated and device drift occurs, the first and second calibration samples 1H,
The measured values IH1 and IL1 after 1L both drift in the same direction, as shown in FIG. 2(a).

【0012】一方、窓材6が分析試料の成分で汚染され
ていると、X線強度が強い第1校正試料1Hの場合は、
付着物から発生する蛍光X線B2の強度のほうが、第1
校正試料1Hから発生した蛍光X線B2が付着物におい
て吸収される蛍光X線の強度よりも小さいので、図2(
b)のように、後の第1測定値IH1が低下する。逆に
、X線強度が低い第2校正試料1Lの場合は、付着物か
ら発生する蛍光X線B2の強度のほうが、第2校正試料
1Lから発生した蛍光X線B2が付着物において吸収さ
れる蛍光X線の強度よりも大きいので、後の第2測定値
IL1が大きくなる。
On the other hand, if the window material 6 is contaminated with components of the analysis sample, in the case of the first calibration sample 1H with strong X-ray intensity,
The intensity of the fluorescent X-ray B2 generated from the deposit is higher than the first one.
Since the intensity of the fluorescent X-rays B2 generated from the calibration sample 1H is smaller than the intensity of the fluorescent X-rays absorbed by the deposits, it is shown in Fig. 2(
As in b), the subsequent first measured value IH1 decreases. Conversely, in the case of the second calibration sample 1L, which has a low X-ray intensity, the intensity of the fluorescent X-rays B2 generated from the deposits is higher, and the fluorescence X-rays B2 generated from the second calibration sample 1L are absorbed by the deposits. Since the intensity is greater than the intensity of fluorescent X-rays, the subsequent second measured value IL1 becomes larger.

【0013】したがって、後の第1測定値IH1が先の
第1測定値IH0よりも小さく、かつ、後の第2測定値
IL1が先の第2測定値IL0よりも大きい場合に、窓
材6が汚染されていると判定することができる。
Therefore, when the later first measured value IH1 is smaller than the earlier first measured value IH0 and the later second measured value IL1 is larger than the earlier second measured value IL0, the window material 6 can be determined to be contaminated.

【0014】[0014]

【実施例】以下、この発明方法の一実施例を図面にした
がって説明する。なお、用いる分析装置および校正試料
1H,1Lは、従来例において説明したものと同じであ
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the method of the present invention will be described below with reference to the drawings. The analyzer and calibration samples 1H and 1L used are the same as those described in the conventional example.

【0015】予め、図1の両校正試料1H,1Lを照射
位置Pに交互にセットし、両校正試料1H, 1Lに一
次X線B1を照射して、その蛍光X線B2の第1および
第2基準強度(先の第1および第2測定値)IH0、I
L0を測定する。ついで、当日の分析試料1の分析前に
、両校正試料1H,1Lに一次X線B1を照射して、蛍
光X線B2の第1および第2測定強度(後の第1および
第2測定値)IH1,IL1を測定する。
In advance, both calibration samples 1H and 1L in FIG. 2 reference intensities (previous first and second measurement values) IH0, I
Measure L0. Next, before analyzing analysis sample 1 on the day, both calibration samples 1H and 1L are irradiated with primary X-rays B1, and the first and second measured intensities of fluorescent X-rays B2 (later first and second measured values ) Measure IH1 and IL1.

【0016】その後、上記各強度IH0,IH1,IL
0,IL1を用いて、上記第1測定強度IH1を第1基
準強度IH0で除した値が第1の閾値A(Aは1.0 
よりも小さい値)よりも小さく、かつ、上記第2測定強
度IL1を第2基準強度IL0で除した値が第2の閾値
B(Bは1.0 よりも大きい値)よりも大きい場合に
は、窓材6が分析試料により汚染されていると判定する
。つまり、下記の(4),(5)式を満足する場合には
、窓材6が汚染されていると判定する。 IH1/IH0<A  …(4)IL1/IL0>B 
 …(5)
[0016] After that, each of the above-mentioned intensities IH0, IH1, IL
0, IL1, the value obtained by dividing the first measured intensity IH1 by the first reference intensity IH0 is the first threshold value A (A is 1.0
, and the value obtained by dividing the second measured intensity IL1 by the second reference intensity IL0 is larger than the second threshold B (B is a value larger than 1.0). , it is determined that the window material 6 is contaminated by the analysis sample. That is, if the following equations (4) and (5) are satisfied, it is determined that the window material 6 is contaminated. IH1/IH0<A...(4) IL1/IL0>B
...(5)

【0017】上記、両閾値A,Bは、分析装
置ごとに設定するが、精度の高い分析が必要な場合ほど
、1.0 に近い値を用いる。一般には、第1の閾値A
はX線強度の統計的なばらつきによる変動率よりも充分
小さい、たとえば0.95とし、第2の閾値Bは充分大
きい、たとえば1.05程度の値を用いる。なお、窓材
6が汚染されていると判断した場合には、アラームメッ
セージを出して、オペレータに知らせる。
[0017] Both threshold values A and B mentioned above are set for each analyzer, but values closer to 1.0 are used when more accurate analysis is required. Generally, the first threshold value A
is set to be sufficiently smaller than the rate of variation due to statistical variations in X-ray intensity, for example, 0.95, and the second threshold value B is set to a sufficiently large value, for example, about 1.05. Note that if it is determined that the window material 6 is contaminated, an alarm message is issued to notify the operator.

【0018】上記判定方法において、第1校正試料1H
は、分析試料1よりもX線強度が強い。そのため、窓材
6が分析試料1で汚染されている場合は、作用の項で説
明したように、図2(b)の第1測定強度IH1が第1
基準強度IH0よりも小さくなる。一方、第2校正試料
1Lは分析試料1よりもX線強度分が弱い。そのため、
窓材6が分析試料1で汚染されている場合は、逆に、第
2測定強度IL1が第2基準強度IL0よりも大きくな
る。したがって、上記(4),(5)式をともに満足す
る場合には、窓材6が汚染されていると判断できる。
In the above determination method, the first calibration sample 1H
has stronger X-ray intensity than analysis sample 1. Therefore, if the window material 6 is contaminated with the analysis sample 1, the first measured intensity IH1 in FIG.
It becomes smaller than the reference intensity IH0. On the other hand, the second calibration sample 1L has a weaker X-ray intensity than the analysis sample 1. Therefore,
Conversely, when the window material 6 is contaminated with the analysis sample 1, the second measured intensity IL1 becomes larger than the second reference intensity IL0. Therefore, if both the above equations (4) and (5) are satisfied, it can be determined that the window material 6 is contaminated.

【0019】ところで、X線強度は窓材6の汚染以外に
経時変化によっても変動する。したがって基準強度と今
回の測定強度を比較する方法では、経時変化による変動
の影響を受けて窓材6の汚染を正しく判断することがで
きない場合が生じる。このようなことから、各校正試料
1H,1Lの基準強度IH0,IL0と、測定強度IH
1,IL1とを比較するよりも、各校正試料1H,1L
の前回の測定強度IH1,IL1と今回の測定強度IH
2,IL2とを比較するのが好ましい。
By the way, the X-ray intensity varies not only due to contamination of the window material 6 but also due to changes over time. Therefore, in the method of comparing the reference intensity and the currently measured intensity, it may not be possible to correctly determine the contamination of the window material 6 due to the influence of changes over time. For this reason, the reference intensities IH0 and IL0 of each calibration sample 1H and 1L, and the measurement intensity IH
1. Rather than comparing with IL1, each calibration sample 1H, 1L
The previous measured intensity IH1, IL1 and the current measured intensity IH
2, it is preferable to compare with IL2.

【0020】たとえば、今回の第1測定強度IH2を直
前回の第1測定強度IH1で除した値が第1の閾値A1
 よりも小さく、かつ、今回の第2測定値IL2を直前
回の第2測定強度IL1で除した値が第2の閾値B1 
よりも大きい場合には、窓材6に分析試料が付着してい
ると判断する。つまり、前述の(4),(5)式に代え
て、下記の(6),(7)式を満足する場合には、窓材
6が汚染されていると判断する。 IH2/IH1<A1   …(6) IL2/IL1>B1   …(7) A1 :1.0 よりも小さい値 B1 :1.0 よりも大きい値
For example, the value obtained by dividing the current first measurement intensity IH2 by the previous first measurement intensity IH1 is the first threshold value A1.
, and the value obtained by dividing the current second measurement value IL2 by the immediately preceding second measurement intensity IL1 is the second threshold B1.
If it is larger than , it is determined that the analysis sample is attached to the window material 6. That is, if the following equations (6) and (7) are satisfied instead of the above-mentioned equations (4) and (5), it is determined that the window material 6 is contaminated. IH2/IH1<A1...(6) IL2/IL1>B1...(7) A1: Value smaller than 1.0 B1: Value larger than 1.0

【0021】なお、分析装置が直前回の第1および第2
測定強度IH1,IL1を記憶していない場合は、下記
の(8),(9)式から直前回の第1および第2測定強
度IH1,IL1を求める。 IH1=(IH0−β)/αIL1=(IL0−β)/
αα,β:直前回のドリフト補正係数
[0021] It should be noted that the analyzer is the first and second
If the measured intensities IH1, IL1 are not stored, the immediately preceding first and second measured intensities IH1, IL1 are determined from equations (8) and (9) below. IH1=(IH0-β)/αIL1=(IL0-β)/
αα, β: Drift correction coefficient of the previous time

【0022】[0022]

【発明の効果】以上説明したように、この発明によれば
、X線強度が分析試料1よりも強い第1校正試料1Hと
、X線強度が分析試料1よりも低い第2校正試料1Lと
を用いて、後の第1測定値IH1が先の第1測定値IH
0よりも小さく、かつ、後の第2測定値IL1が先の第
2測定値IL0よりも大きくなったときに、窓材6が汚
れていると判定するので、微量の分析試料1による窓材
6の汚染を検出することができる。
As explained above, according to the present invention, the first calibration sample 1H has an X-ray intensity higher than that of the analysis sample 1, and the second calibration sample 1L has an X-ray intensity lower than that of the analysis sample 1. , the later first measured value IH1 is the earlier first measured value IH
Since it is determined that the window material 6 is dirty when the second measured value IL1 is smaller than 0 and the second measured value IL1 is larger than the second measured value IL0, it is determined that the window material 6 is dirty. 6 contamination can be detected.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】一般的な蛍光X線分析装置を示す概略構成図で
ある。
FIG. 1 is a schematic configuration diagram showing a general fluorescent X-ray analyzer.

【図2】(a)は窓材が分析試料で汚染されていない場
合の基準強度と測定強度との関係を示す特性図、(b)
は窓材が分析試料で汚染されている場合の基準強度と測
定強度との関係を示す特性図である。
[Figure 2] (a) is a characteristic diagram showing the relationship between standard strength and measured strength when the window material is not contaminated with analysis samples, (b)
is a characteristic diagram showing the relationship between the reference intensity and the measured intensity when the window material is contaminated with an analysis sample.

【符号の説明】[Explanation of symbols]

1…分析試料、1H…第1校正試料、1L…第2校正試
料、6…窓材、7…放射線源(X線管)、8…X線検出
器、B1…放射線(一次X線)、B2…蛍光X線、IH
0…先の第1測定値(第1基準強度)、IH1…後の第
1測定値(第1測定強度)、IL0…先の第2測定値(
第2基準強度)、IL1…後の第2測定値(第2測定強
度)。
1... Analysis sample, 1H... First calibration sample, 1L... Second calibration sample, 6... Window material, 7... Radiation source (X-ray tube), 8... X-ray detector, B1... Radiation (primary X-ray), B2...Fluorescent X-ray, IH
0...first measured value before (first reference intensity), IH1...first measured value after (first measured intensity), IL0...second measured value before (
second reference intensity), second measured value after IL1 (second measured intensity).

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  液体からなる分析試料の下方に、放射
線源およびX線検出器を窓材を介挿して配置し、上記放
射線源から上記窓材を通して上記分析試料に放射線を照
射し、この放射線を受けた分析試料からのX線強度を上
記X線検出器で検出することにより分析試料の元素分析
を行う蛍光X線分析装置における窓材の汚染検出方法で
あって、検出すべき元素の蛍光X線またはそれに近似し
たエネルギのX線強度が分析試料よりも大きい第1校正
試料と、検出すべき元素の蛍光X線またはそれに近似し
たエネルギのX線強度が分析試料よりも小さい第2校正
試料とを用意し、予め、上記第1および第2校正試料に
ついてX線強度を測定して、先の第1および第2測定値
を求め、後に、上記第1および第2校正試料についてX
線強度を測定して、後の第1および第2測定値を求め、
上記後の第1測定値が先の第1測定値よりも小さく、か
つ、上記後の第2測定値が先の第2測定値よりも大きく
なったとき上記窓材が汚れていると判定する蛍光X線分
析装置における窓材の汚染検出方法。
1. A radiation source and an X-ray detector are placed below an analysis sample made of a liquid with a window material interposed therebetween, and radiation is irradiated from the radiation source to the analysis sample through the window material. A method for detecting contamination on a window material in an X-ray fluorescence analyzer, which performs elemental analysis of an analysis sample by detecting the X-ray intensity from the sample to be detected using the X-ray detector. A first calibration sample in which the X-ray intensity of X-rays or energy similar to it is higher than that of the analysis sample, and a second calibration sample in which the intensity of fluorescent X-rays of the element to be detected or X-rays with energy similar to it is lower than that of the analysis sample. , and measure the X-ray intensity of the first and second calibration samples in advance to obtain the first and second measurement values, and then measure the X-ray intensity of the first and second calibration samples.
measuring the line intensity to obtain subsequent first and second measurements;
When the first measured value after the above is smaller than the first measured value and the second measured value after the above is larger than the second measured value, it is determined that the window material is dirty. A method for detecting contamination of window materials in a fluorescent X-ray analyzer.
JP15777991A 1991-05-31 1991-05-31 Method for detecting contamination of window material in X-ray fluorescence analyzer Expired - Fee Related JP2615279B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15777991A JP2615279B2 (en) 1991-05-31 1991-05-31 Method for detecting contamination of window material in X-ray fluorescence analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15777991A JP2615279B2 (en) 1991-05-31 1991-05-31 Method for detecting contamination of window material in X-ray fluorescence analyzer

Publications (2)

Publication Number Publication Date
JPH04355355A true JPH04355355A (en) 1992-12-09
JP2615279B2 JP2615279B2 (en) 1997-05-28

Family

ID=15657115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15777991A Expired - Fee Related JP2615279B2 (en) 1991-05-31 1991-05-31 Method for detecting contamination of window material in X-ray fluorescence analyzer

Country Status (1)

Country Link
JP (1) JP2615279B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010204087A (en) * 2009-02-05 2010-09-16 Rigaku Corp Drift correction sample for fluorescent x-ray analysis, fluorescent x-ray analysis method using the same, and method of manufacturing the same
WO2022003850A1 (en) * 2020-07-01 2022-01-06 株式会社島津製作所 X-ray analysis apparatus

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5524521B2 (en) * 2009-06-30 2014-06-18 株式会社堀場製作所 X-ray fluorescence analyzer
JP5782154B2 (en) * 2014-04-10 2015-09-24 株式会社堀場製作所 X-ray fluorescence analyzer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010204087A (en) * 2009-02-05 2010-09-16 Rigaku Corp Drift correction sample for fluorescent x-ray analysis, fluorescent x-ray analysis method using the same, and method of manufacturing the same
WO2022003850A1 (en) * 2020-07-01 2022-01-06 株式会社島津製作所 X-ray analysis apparatus
TWI787821B (en) * 2020-07-01 2022-12-21 日商島津製作所股份有限公司 X-ray analysis device

Also Published As

Publication number Publication date
JP2615279B2 (en) 1997-05-28

Similar Documents

Publication Publication Date Title
JP2006242964A (en) Method for analyzing fluorescent x-ray based solution
JPH05240808A (en) Method for determining fluorescent x rays
US6668038B2 (en) X-ray fluorescence spectrometer
US6041096A (en) Method and apparatus for total reflection X-ray fluorescence spectroscopy
JPH0759594A (en) Measuring humor sample
US7539282B2 (en) XRF analyzer
JPH06174665A (en) Element analysis method
US4016419A (en) Non-dispersive X-ray fluorescence analyzer
Svoboda et al. Capillary isotachophoresis with ultraviolet detection some quantitative aspects
KR0127497B1 (en) Contaminating element analyzing method and apparatus of the same
JPH04355355A (en) Method of detecting pollution of window material for fluorescence x-ray analysis
US3479506A (en) Apparatus for a linear analysis of surfaces of a structurally heterogeneous substance comprising phases giving different responses to the incidence of an electron beam
JPH0228819B2 (en) METSUKIEKIBUNSEKISOCHI
JP7412794B2 (en) Fluorescent X-ray analyzer
JP2613511B2 (en) X-ray fluorescence analyzer
JPS6362694B2 (en)
USH922H (en) Method for analyzing materials using x-ray fluorescence
JP2685722B2 (en) X-ray analysis method
SU1375953A1 (en) Method of checking surface of roughness
JP3949850B2 (en) X-ray fluorescence analyzer
JP3195046B2 (en) Total reflection state detection method and trace element measuring device
JPH02242140A (en) Breakdown spectral analysis method and apparatus
JP2005024299A (en) Window material for x-ray analytical equipment
SU1040389A1 (en) Substance chemical composition determination method
JPH01253635A (en) Method and apparatus for fluorescence analysis

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees