JPH04354523A - Gas separating membrane - Google Patents

Gas separating membrane

Info

Publication number
JPH04354523A
JPH04354523A JP13119491A JP13119491A JPH04354523A JP H04354523 A JPH04354523 A JP H04354523A JP 13119491 A JP13119491 A JP 13119491A JP 13119491 A JP13119491 A JP 13119491A JP H04354523 A JPH04354523 A JP H04354523A
Authority
JP
Japan
Prior art keywords
polymer
membrane
oxygen
grafting
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13119491A
Other languages
Japanese (ja)
Inventor
Michitaka Iwata
岩田 道隆
Kunihiko Okajima
邦彦 岡島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP13119491A priority Critical patent/JPH04354523A/en
Publication of JPH04354523A publication Critical patent/JPH04354523A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To allow the effective use of the above-mentioned membrane for sepn. of oxygen and nitrogen by forming the polyolefin high-polymer membrane formed by grafting an org. acid having double bonds on a porous membrane of regenerated cellulose and constituting the polyolefin high-polymer membrane of 50 to 200nm particle layers. CONSTITUTION:A cellulosic hydrophilic high-polymer material which has high mechanical strength and is less changed in properties in a specific temp. range is used as a porous or sheet-like base. The graft polymer film consisting of the uniform and specific polymers is securely formed on the cellulosic base by a coating or dipping method, etc., using a graft polymer soln. prepd. by grafting the org. acid having double bonds on a polylelfin high polymer and subjecting the reaction product to a microphase sepn. by addition of a hydrophilic solvent. This membrane can be formed as a thin film consisting of the particles having 50 to 200nm particle sizes and having excellent permeability if the grafting rate is 3 to 15wt.% from the relation between the grafting rate of the org. acid having the double bonds with the olefin high polymer and the particle system constituting the thin film.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、混合気体の分離濃縮を
目的とする気体分離膜に関するものであり、特に酸素と
窒素の混合気体中の酸素を選択的に分離する気体分離膜
に関するものである。
[Field of Industrial Application] The present invention relates to a gas separation membrane for the purpose of separating and concentrating a gas mixture, and in particular to a gas separation membrane that selectively separates oxygen in a gas mixture of oxygen and nitrogen. be.

【0002】0002

【従来の技術】近年、各種混合気体から特定気体の分離
、濃縮の技術開発が盛んに行なわれている。特に空気よ
り酸素濃度を高めた酸素富化空気は、医療用、燃焼促進
用、活性汚泥処理用等広範囲な用途が見込まれており、
高分子膜を利用した膜分離法は、省資源、省エネルギー
の点から強く望まれている。
2. Description of the Related Art In recent years, there has been active development of technology for separating and concentrating specific gases from various gas mixtures. In particular, oxygen-enriched air, which has a higher oxygen concentration than air, is expected to have a wide range of uses, including medical use, combustion promotion, and activated sludge treatment.
Membrane separation methods using polymer membranes are strongly desired from the viewpoint of resource and energy conservation.

【0003】酸素富化膜素材としては、工業的にはポリ
シロキサン系高分子、ポリカーボネイト、ポリビニルピ
リジン、ポリスルホン、メチルペンテン系高分子等の高
分子材料が用いられている。これらの素材は適当な溶媒
に溶解しキャスト法、水面展開法、コーティング法又は
溶融成型法等によって直接膜を形成し酸素富化膜とする
場合もあるが、一般的には同種の高分子材料から成る支
持体又は他の支持体上に薄膜を形成するのが普通で、場
合によっては支持体上にプラズマ重合法で、酸素富化ポ
リマーを形成させることもある。酸素富化膜として使用
する場合には、透過速度と酸素の分離係数がともに良好
なものが望まれている。支持体自体には、酸素濃縮性の
機能はなく、支持体上に形成させた酸素富化膜を透過し
てくる気体(酸素)の透過性を阻害しないように、多孔
性でしかも機械的強度の優れた材料が必要とされる。こ
の点で高分子材料としてはセルロース系材料が支持体と
しては最高である。この上に元来疎水性である酸素富化
膜を形成し、濃縮性、透過性を満足させる気体分離膜は
知られていない。一般に有機高分子材料は、分離係数が
大きくなるとともに酸素の透過速度が小さくなる傾向に
ある。この為、一般には出来るだけ厚さの薄い膜を形成
させる必要があるが、通常のコーティングやディッピン
グ法では困難を伴う場合が多い。
[0003] Polymer materials such as polysiloxane polymers, polycarbonates, polyvinylpyridine, polysulfones, and methylpentene polymers are used industrially as materials for oxygen enrichment membranes. These materials may be dissolved in a suitable solvent and directly formed into an oxygen-enriched film using a casting method, water surface spreading method, coating method, or melt molding method, but in general, polymeric materials of the same type are used. The oxygen-enriched polymer is typically formed on a support consisting of or other support, and in some cases, the oxygen-enriched polymer is formed on the support by plasma polymerization. When used as an oxygen enrichment membrane, a membrane with good permeation rate and oxygen separation coefficient is desired. The support itself does not have an oxygen concentrating function; it is porous and has mechanical strength so as not to impede the permeability of gas (oxygen) that passes through the oxygen-enriching membrane formed on the support. Superior materials are required. In this respect, among polymeric materials, cellulose-based materials are the best as supports. There is no known gas separation membrane that forms an oxygen-enriched membrane, which is hydrophobic in nature, on top of this, and satisfies concentrating properties and permeability. In general, as the separation coefficient of organic polymer materials increases, the oxygen permeation rate tends to decrease. For this reason, it is generally necessary to form a film as thin as possible, but it is often difficult to do so with ordinary coating or dipping methods.

【0004】0004

【発明が解決しようとする課題】有機高分子材料を高分
子膜として実用に供するためには、膜厚を出来るだけ薄
くすることにより、気体の透過速度の増大を図り、必要
膜面積の縮小を図る必要がある。別途形成させた薄膜の
破損を防ぐため多孔膜支持体上に担持させる方法、ある
いはポリマーの希薄溶液を多孔膜支持体上にコーティン
グもしくは含浸で薄膜を形成させる方法等が知られてい
る。しかしこれらの方法によって薄膜化しようとする場
合、前者の方法では、薄膜はできるが材料によっては直
接支持体に担持できない欠点があり、また後者の方法で
は、ポリマー溶液と支持体との親和性が良くないと、薄
膜が部分的に充分な結合状態を呈さなかったり、厚みが
不均一になる問題点がある。
[Problems to be Solved by the Invention] In order to put organic polymer materials into practical use as polymer membranes, it is necessary to increase the gas permeation rate and reduce the required membrane area by making the membrane thickness as thin as possible. It is necessary to aim for this. In order to prevent damage to a separately formed thin film, methods are known in which a thin film is supported on a porous membrane support, or a thin film is formed by coating or impregnating a dilute solution of a polymer onto a porous membrane support. However, when trying to make a thin film using these methods, the former method can produce a thin film, but depending on the material, it cannot be supported directly on the support, and the latter method has the disadvantage that the affinity between the polymer solution and the support is poor. If it is not good, the thin film may not exhibit sufficient bonding in some parts or the thickness may become uneven.

【0005】本発明は従来公知の気体分離膜の有する問
題点を解決して強靱でかつ気体透過速度の優れた気体分
離膜を提供することを目的とする。
An object of the present invention is to solve the problems of conventionally known gas separation membranes and to provide a gas separation membrane that is tough and has an excellent gas permeation rate.

【0006】[0006]

【課題を解決するための手段】本発明による気体分離膜
は、二重結合を有する有機酸をグラフトさせたポリオレ
フィン系高分子薄膜を再生セルロース多孔膜上に形成さ
せ、前記ポリオレフィン系高分子薄膜が50〜200n
m の粒子層で構成されていることを特徴とする。本発
明による気体分離膜では、支持体である再生セルロース
多孔膜とポリマーの親水性、用いる溶媒の親水化によっ
て薄膜が支持体に強固に結合している。
[Means for Solving the Problems] The gas separation membrane according to the present invention is provided by forming a polyolefin polymer thin film grafted with an organic acid having double bonds on a regenerated cellulose porous membrane. 50~200n
It is characterized by being composed of m particle layers. In the gas separation membrane according to the present invention, the thin film is firmly bonded to the support due to the hydrophilicity of the regenerated cellulose porous membrane as the support, the hydrophilicity of the polymer, and the hydrophilicity of the solvent used.

【0007】すなわち、本発明の高分子多孔性支持体又
はシート状支持体上に酸素濃縮性及び透過性の優れた高
分子材料を担持させた気体分離体に於て、多孔性又はシ
ート状支持体として、機械的強度が高く、特定温度範囲
で物性変化の少ないセルロース系の親水性高分子材料を
用いた気体分離膜を提供するに当り、元来、疎水性であ
るポリオレフィン系高分子の適当な溶液中で、該ポリオ
レフィン系高分子に二重結合を有する有機酸をグラフト
し、親水性溶媒の添加によりミクロ相分離したグラフト
ポリマー溶液を用いコーティング又はディッピング法等
比較的簡易技術で、均一にしかも特定粒子径からなる該
グラフトポリマー膜を強固にセルロース系支持体上に形
成しそれによって酸素濃縮性、透過性ともに良好な分離
膜が提供される。
That is, in the gas separator of the present invention in which a polymeric material having excellent oxygen concentrating property and permeability is supported on a porous polymeric support or a sheet-like support, the porous or sheet-like support In order to provide a gas separation membrane using a cellulose-based hydrophilic polymer material that has high mechanical strength and little change in physical properties in a specific temperature range, it is necessary to use a polyolefin-based polymer that is naturally hydrophobic. An organic acid having a double bond is grafted onto the polyolefin polymer in a suitable solution, and the graft polymer solution is microphase-separated by adding a hydrophilic solvent, and then the grafted polymer is coated uniformly using a relatively simple technique such as coating or dipping. Furthermore, the graft polymer membrane having a specific particle size is firmly formed on a cellulose support, thereby providing a separation membrane with good oxygen concentrating properties and permeability.

【0008】オレフィン系高分子に二重結合を有する有
機酸のグラフト化率(元ポリマーに対するチャージ量)
と薄膜を構成している粒子径との関係から、グラフト化
率が3wt%以上であれば、透過性の優れた粒子径から
なる薄膜として形成され得る。グラフト化率は、好まし
くは3wt%〜15wt%、より好ましくは3wt%〜
10wt%が良い。3wt%以下では、粒子径が50n
m以下となって酸素と窒素の分離効率は大きくなるが、
酸素の透過速度が小さくなる。15wt%以上では、均
一溶液を得るために、大量の親水性溶媒が必要となるた
め、多孔性親水性支持体の多孔部に浸透し過ぎて、全体
の透過性を下げる傾向にあるか、又は逆に薄膜を構成す
る粒子径も大きくなる傾向を示し、酸素の透過速度は大
きくなるが、分離効率が小さくなる。
[0008] Grafting rate of an organic acid having a double bond to an olefinic polymer (amount of charge relative to the original polymer)
If the grafting rate is 3 wt % or more, it is possible to form a thin film having a particle size with excellent permeability, based on the relationship between the particle size and the particle size constituting the thin film. The grafting rate is preferably 3 wt% to 15 wt%, more preferably 3 wt% to
10wt% is good. At 3wt% or less, the particle size is 50n.
m or less, the separation efficiency of oxygen and nitrogen increases,
Oxygen permeation rate decreases. At 15 wt% or more, a large amount of hydrophilic solvent is required to obtain a homogeneous solution, which tends to penetrate too much into the pores of the porous hydrophilic support and reduce the overall permeability, or Conversely, the particle size constituting the thin film also tends to increase, and the oxygen permeation rate increases, but the separation efficiency decreases.

【0009】またオレフィン系高分子の溶媒は親水性溶
媒にはまったく溶解しない。したがってオレフィン系高
分子を親水性材料である再生セルロース多孔膜上にコー
ティングする場合は、両者の親和性はもとより、用いら
れる溶媒を再生セルロース多孔膜との親和性が悪いため
、均一に、かつ強固に接合した状態でコーティングでき
ない問題がある。しかし本願発明のように、オレフィン
系高分子に二重結合を有する有機酸をグラフトさせるこ
とにより、オレフィン系高分子に再生セルロースとの親
和性を持たせることが可能となった。更に、これはコー
ティング、ディッピング溶液に親水性溶媒を用いること
により促進される。
Furthermore, olefinic polymer solvents do not dissolve at all in hydrophilic solvents. Therefore, when coating an olefin-based polymer on a regenerated cellulose porous membrane, which is a hydrophilic material, it is necessary to coat it uniformly and firmly, not only because of the affinity between the two, but also because the solvent used has a poor affinity with the regenerated cellulose porous membrane. There is a problem that coating cannot be performed while bonded to the surface. However, as in the present invention, by grafting an organic acid having a double bond onto an olefinic polymer, it has become possible to make the olefinic polymer have affinity with regenerated cellulose. Furthermore, this is facilitated by the use of hydrophilic solvents in the coating and dipping solutions.

【0010】本発明で用いる親水性多孔性支持体として
は、天然セルロース繊維を主体としてなる、いわゆる紙
や再生セルロース多孔膜を用いることができ、その際空
孔率や平均孔径が制御し易い再生セルロース多孔膜が好
適である。なお、再生セルロース多孔膜としては、高い
透過速度を保証するためにミクロ相分離法で作製され、
平均孔径が0.02μm〜10μm、空孔率が50〜8
0%のものが通常用いられる。また再生セルロース多孔
膜は機械的強度の点においても優れているため、モジュ
ール化する際の形状に応じて組み込む場合有効である。 一般には、多孔質化することにより、多孔膜の機械的強
度が低下するのが普通であるが、本発明に用いられる再
生セルロース多孔膜として、セルロース銅アンモニア溶
液のセルロースの分子量を高くすることにより、得られ
た多孔膜の機械的強度は高くすることができる。またミ
クロ相分離法で作製しているため多孔膜自体、セルロー
ス濃厚相の粒子で膜が構成されていて、その粒子同士が
強固に連結しているために機械的強度が優れている。
As the hydrophilic porous support used in the present invention, so-called paper or regenerated cellulose porous membrane, which is mainly composed of natural cellulose fibers, can be used. Cellulose porous membranes are preferred. In addition, the regenerated cellulose porous membrane is manufactured using a microphase separation method to ensure a high permeation rate.
Average pore diameter is 0.02 μm to 10 μm, porosity is 50 to 8
0% is usually used. Furthermore, since the regenerated cellulose porous membrane is excellent in terms of mechanical strength, it is effective when incorporated according to the shape when modularizing. Generally, the mechanical strength of a porous membrane decreases when it becomes porous, but in the regenerated cellulose porous membrane used in the present invention, by increasing the molecular weight of cellulose in the cellulose cupric ammonia solution. , the mechanical strength of the obtained porous membrane can be increased. In addition, since the porous membrane is manufactured using a microphase separation method, the membrane itself is composed of particles of a concentrated cellulose phase, and the particles are tightly connected to each other, resulting in excellent mechanical strength.

【0011】なお親水性多孔性支持体を、最終目的によ
っては多孔性ガラスビーズ、セラミック等を用いて形成
してもよい。
[0011] Depending on the final purpose, the hydrophilic porous support may be formed using porous glass beads, ceramics, or the like.

【0012】オレフィン系高分子材料としては、ポリエ
チレン、ポリプロピレン、ポリ−3−メチル−ブテン−
1、ポリ−4−メチルペンテン−1等が挙げられる。酸
素濃縮性の点では、ポリ−4−メチルペンテン−1が好
適である。また二重結合を有する有機酸としては、無水
マレイン酸、フマール酸、イタコン酸、クロトン酸、マ
レアミック酸等が挙げられる。
[0012] As the olefinic polymer material, polyethylene, polypropylene, poly-3-methyl-butene-
1, poly-4-methylpentene-1, and the like. Poly-4-methylpentene-1 is preferred in terms of oxygen concentrating properties. Further, examples of the organic acid having a double bond include maleic anhydride, fumaric acid, itaconic acid, crotonic acid, and maleamic acid.

【0013】[0013]

【実施例】ポリ−4−メチルペンテン−1のシクロヘキ
サン溶液にマレイン酸を溶解したトルエン又はキシレン
溶液及び過酸化ベンゾイルのトルエン溶液を加えリフラ
ックス状態で反応させた。この様に調製した1wt%ポ
リ−4−メチルペンテン−1−マレイン酸/シクロヘキ
サン/エタノール溶液を60℃近辺に保ち、やや透明性
を失わせた溶液を得た。その溶液に、平均孔径35nm
、空孔率51.2%、内径 345.5μm、膜厚30
.2μmの再生セルロース中空糸を浸漬して、中空糸の
外壁面にコーティングした。グラフト反応に於いて、ポ
リ−4−メチルペンテン−1に対して使用した無水マレ
イン酸の量をグラフト率と見なし、これらの溶液を用い
て、セルロース多孔性中空糸にコーティングし、所定の
コーティング回数で得た中空糸を10本束ねてモジュー
ル化し、空気を前フルターする事なく透過させた。表1
にはその結果及び電子顕微鏡により観察したグラフトポ
リマーの粒子径及び外観観察結果を示す。表1より無水
マレインのグラフト率が0wt%の中空糸は、4回コー
ティングしても酸素濃縮性は得られず、酸素を濃縮する
膜をセルロース上に形成させるには7回以上コーティン
グが必要である。しかしその場合の酸素透過速度は非常
に小さくなる。これは、電子顕微鏡観察からも明らかな
ように、セルロース上に形成したグラフトポリマーがい
わゆる dense膜となってしまっているためである
。またコーティング斑が非常に多発し、実用性に供する
ことができない。さらにモジュール性能での耐久性も悪
く、数回気体透過性試験を実施すると酸素濃縮性能が低
下し、その反面気体透過性能が高くなり、空気を透過さ
せた場合は殆ど空気が透過した。これは再生セルロース
多孔膜とポリ−4−メチルペンテン−1との接着性(結
合状態)が悪いためである。
EXAMPLE A toluene or xylene solution in which maleic acid was dissolved and a toluene solution of benzoyl peroxide were added to a cyclohexane solution of poly-4-methylpentene-1 and reacted in a reflux state. The 1 wt % poly-4-methylpentene-1-maleic acid/cyclohexane/ethanol solution prepared in this way was kept at around 60° C. to obtain a solution with a slight loss of transparency. In the solution, an average pore size of 35 nm was added.
, porosity 51.2%, inner diameter 345.5 μm, film thickness 30
.. A 2 μm regenerated cellulose hollow fiber was immersed to coat the outer wall surface of the hollow fiber. In the grafting reaction, the amount of maleic anhydride used relative to poly-4-methylpentene-1 is regarded as the grafting ratio, and these solutions are used to coat cellulose porous hollow fibers for a predetermined number of coatings. Ten hollow fibers obtained in step 1 were bundled to form a module, and air was allowed to permeate without pre-filtering. Table 1
shows the results and the particle diameter and appearance observation results of the graft polymer observed using an electron microscope. Table 1 shows that hollow fibers with anhydrous maleic grafting ratio of 0 wt% do not achieve oxygen concentrating properties even after being coated four times, and seven or more coatings are required to form a membrane that concentrates oxygen on cellulose. be. However, the oxygen permeation rate in that case becomes extremely low. This is because, as is clear from electron microscopy, the graft polymer formed on cellulose forms a so-called dense film. In addition, coating spots occur very frequently, making it impossible to put it to practical use. Furthermore, the durability of the module performance was poor, and when the gas permeability test was conducted several times, the oxygen concentrating performance decreased, but on the other hand, the gas permeation performance increased, and when air was allowed to pass through it, almost all of the air passed through it. This is due to poor adhesion (bond state) between the regenerated cellulose porous membrane and poly-4-methylpentene-1.

【0014】[0014]

【表1】[Table 1]

【0015】本発明のコーティング後の中空糸は酸素濃
縮性および酸素透過性に優れ、かつコーティング斑や気
体透過性試験での耐久性に何等問題ない結果を得た。図
1には、本方法で得たグラフトポリマーと元ポリマーの
赤外吸収スペクトルを示す。1700cm−1に−CO
OHに特徴的なピークがグラフトポリマーに観察される
The coated hollow fibers of the present invention had excellent oxygen concentrating properties and oxygen permeability, and showed no problems with coating unevenness or durability in gas permeability tests. FIG. 1 shows the infrared absorption spectra of the graft polymer and the original polymer obtained by this method. -CO at 1700 cm-1
A characteristic peak of OH is observed in the grafted polymer.

【0016】[0016]

【発明の効果】本発明に係る分離膜は、オレフィン系高
分子に二重結合を有する有機酸をグラフトさせることに
より、再生セルロース多孔膜上に薄膜が形成でき、その
結果得られた分離膜の薄膜は粒子から構成されており、
その粒子径をコントロールすることにより選択透過性が
優れた気体分離膜が得られ、実用性に優れた酸素富化膜
として酸素と窒素の分離などに有効に使用することがで
きる。
Effects of the Invention In the separation membrane of the present invention, a thin film can be formed on a regenerated cellulose porous membrane by grafting an organic acid having a double bond to an olefinic polymer, and the resulting separation membrane Thin films are composed of particles,
By controlling the particle size, a gas separation membrane with excellent permselectivity can be obtained, and it can be effectively used as a highly practical oxygen-enriching membrane for the separation of oxygen and nitrogen.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本方法で得たグラフトポリマーと元ポリマーの
赤外吸収スペクトルを示す。図1中(a)は元ポリマー
、(b)は3wt%グラフトポリマー、(c)は6wt
%グラフトポリマー、(d)は10wt%グラフトポリ
マーの赤外吸収スペクトルを示す。
FIG. 1 shows infrared absorption spectra of the graft polymer obtained by this method and the original polymer. In Figure 1, (a) is the original polymer, (b) is the 3wt% graft polymer, and (c) is the 6wt%
% grafted polymer, (d) shows the infrared absorption spectrum of 10 wt% grafted polymer.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  二重結合を有する有機酸をグラフトさ
せたポリオレフィン系高分子薄膜を再生セルロース多孔
膜上に形成させ、前記ポリオレフィン系高分子薄膜が5
0〜200nm の粒子層で構成されていることを特徴
とする気体分離膜。
1. A polyolefin polymer thin film grafted with an organic acid having double bonds is formed on a regenerated cellulose porous membrane, and the polyolefin polymer thin film is
A gas separation membrane comprising a particle layer of 0 to 200 nm.
JP13119491A 1991-06-03 1991-06-03 Gas separating membrane Pending JPH04354523A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13119491A JPH04354523A (en) 1991-06-03 1991-06-03 Gas separating membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13119491A JPH04354523A (en) 1991-06-03 1991-06-03 Gas separating membrane

Publications (1)

Publication Number Publication Date
JPH04354523A true JPH04354523A (en) 1992-12-08

Family

ID=15052226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13119491A Pending JPH04354523A (en) 1991-06-03 1991-06-03 Gas separating membrane

Country Status (1)

Country Link
JP (1) JPH04354523A (en)

Similar Documents

Publication Publication Date Title
KR940006394B1 (en) Composite membrane and their manufacture and use
US20050087491A1 (en) Hybrid membrane, method for producing the same and use of said membrane
US4933082A (en) Gas-permeable laminate
US20130109262A1 (en) Coated porous materials
Chung A review of microporous composite polymeric membrane technology for air-separation
KR20160026070A (en) Manufacturing method of gas separator membrane
Chung et al. Fabrication of composite hollow fibers for air separation
JPH051048B2 (en)
JPH04354523A (en) Gas separating membrane
JPH0260370B2 (en)
JPS61271003A (en) Hydrophilic compound porous membrane and its preparation
JP2726471B2 (en) Anisotropic hollow fiber composite membrane
US5614309A (en) Coated polypropylene or polyethylene useful for membranes
JPS59199001A (en) Composite membrane for gas separation and its manufacture
JP2002126479A (en) Porous membrane, gas separating membrane and method of manufacturing for the same
US5320754A (en) Pan composite membranes
Li et al. Water-casting ultrathin-film composite membranes for air separation
JPS59115738A (en) Selective gas-permeable membrane and its manufacture
JPS61291018A (en) Gas permeable laminated body
JPH0479686B2 (en)
JPS61107923A (en) Manufacture of gas selective permeable composite membrane
JPH0451217B2 (en)
JPS59127603A (en) Gas permselective membrane and preparation thereof
JPS61149210A (en) Preparation of gas permselective composite membrane
JPH0521615B2 (en)

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20001205