JPH04353503A - Curable composition and production thereof - Google Patents

Curable composition and production thereof

Info

Publication number
JPH04353503A
JPH04353503A JP12971591A JP12971591A JPH04353503A JP H04353503 A JPH04353503 A JP H04353503A JP 12971591 A JP12971591 A JP 12971591A JP 12971591 A JP12971591 A JP 12971591A JP H04353503 A JPH04353503 A JP H04353503A
Authority
JP
Japan
Prior art keywords
meth
acrylate
viscosity
curable composition
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12971591A
Other languages
Japanese (ja)
Other versions
JP3107851B2 (en
Inventor
Hirobumi Yagi
八木 博文
Toshiro Sugimura
杉村 俊郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP03129715A priority Critical patent/JP3107851B2/en
Publication of JPH04353503A publication Critical patent/JPH04353503A/en
Application granted granted Critical
Publication of JP3107851B2 publication Critical patent/JP3107851B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Paints Or Removers (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PURPOSE:To provide the title low-viscosity composition for e.g. coatings of low shrinkability and good in adherability and heat resistance, comprising an inorganic substance and a (meth)acrylate prepared by reaction between (meth) acrylic acid, etc., and an alcohol in the presence of a copper compound. CONSTITUTION:(A) An inorganic substance (e.g. talc) is mixed with (B) a (meth) acrylate [e.g. trimethylolpropane tri(meth)acrylate] prepared by reaction between (1) (meth)acrylic acid and/or a (meth)acrylic ester and (2) an alcohol (e.g. trimethylolpropane) in the presence of p-toluenesulfonic acid as a catalyst and a copper compound such as cuprous oxide a polymerization inhibitor, into a slurry, thus obtaining the objective composition.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、塗料、インキ、接着剤
、ポリマーコンクリート等に使用され、特にレジストイ
ンキにおいて好適に使用される、紫外線や熱によって硬
化可能な硬化性組成物及びその製造方法に関するもので
ある。
[Industrial Application Field] The present invention relates to a curable composition that can be cured by ultraviolet rays or heat, and is used in paints, inks, adhesives, polymer concrete, etc., and is particularly suitable for use in resist inks, and a method for producing the same. It is related to.

【0002】0002

【従来の技術】一般に、硬化性組成物は、反応性プレポ
リマー、無機の充填剤や顔料等の無機物質、反応性希釈
剤、及び重合開始剤等から構成されている。
2. Description of the Related Art Generally, a curable composition is composed of a reactive prepolymer, an inorganic substance such as an inorganic filler or pigment, a reactive diluent, a polymerization initiator, and the like.

【0003】上記無機物質は低収縮性、密着性、耐熱性
、耐食性などの物性の向上や、コストの低下のために配
合されており、通常、できるだけ多く添加することが好
ましい。しかしながら、無機物質を多量添加すると硬化
性組成物の粘度上昇を招き、その取扱が非常に難しくな
る。そこで、従来、硬化性組成物の低粘度化のために、
樹脂(反応性プレポリマー、反応性希釈剤)の分子構造
や無機物質の形状、粒径及び粒度分布等が検討されてい
るものの、何れも満足の行く結果が得られるには至って
いない。
The above-mentioned inorganic substances are blended to improve physical properties such as low shrinkage, adhesion, heat resistance, and corrosion resistance, and to reduce costs, and it is usually preferable to add as much as possible. However, adding a large amount of inorganic material increases the viscosity of the curable composition, making it extremely difficult to handle. Therefore, conventionally, in order to lower the viscosity of curable compositions,
Although the molecular structure of resins (reactive prepolymers, reactive diluents), the shape of inorganic substances, particle size, particle size distribution, etc. have been investigated, satisfactory results have not yet been obtained.

【0004】そして、硬化性組成物の粘度は、上記反応
性希釈剤により、所定の用途に応じた最適粘度になるよ
うに調整される。通常、硬化性組成物の反応性希釈剤と
しては、(メタ)アクリレートが使用されている。
[0004]The viscosity of the curable composition is adjusted by the above-mentioned reactive diluent so that it has an optimum viscosity depending on the intended use. Usually, (meth)acrylate is used as a reactive diluent for curable compositions.

【0005】尚、硬化性組成物中の無機物質の量を多く
するためにも、反応性希釈剤としては低粘度のものまた
は希釈性の大きいものが望まれる。しかしながら、一般
に低粘度のものは官能基数が少なくて反応性に劣るため
、硬化性組成物の硬化速度を低下させてしまい、官能基
数が多く反応性の高いものは分子量が大きく粘度が高い
ため、希釈剤としての効果が小さくなる。従って、従来
では、上記官能基数が少ない低粘度のものと官能基数が
多く反応性の高いものとが併用されることにより、硬化
性組成物の粘度が調整されている。
[0005] In order to increase the amount of inorganic substances in the curable composition, it is desirable that the reactive diluent has a low viscosity or a high dilutability. However, in general, those with low viscosity have a small number of functional groups and are inferior in reactivity, which reduces the curing speed of the curable composition, while those with a large number of functional groups and high reactivity have a large molecular weight and high viscosity. It becomes less effective as a diluent. Therefore, conventionally, the viscosity of the curable composition has been adjusted by using a low-viscosity composition with a small number of functional groups and a high-reactivity composition with a large number of functional groups in combination.

【0006】[0006]

【発明が解決しようとする課題】そこで、反応性が高く
、低粘度または希釈性の高い(メタ)アクリレートが要
望されているものの、未だそのような(メタ)アクリレ
ートは得られていないのが現状である。
[Problem to be solved by the invention] Therefore, although there is a demand for (meth)acrylates with high reactivity, low viscosity, or high dilutability, such (meth)acrylates have not yet been obtained. It is.

【0007】本発明は、上記に鑑みなされたものであり
、その目的は、希釈性の高い(メタ)アクリレートによ
り低粘度化を実現できる硬化性組成物及びその製造方法
を提供することにある。
The present invention has been made in view of the above, and its object is to provide a curable composition that can achieve low viscosity using (meth)acrylate with high dilutability, and a method for producing the same.

【0008】[0008]

【課題を解決するための手段】我われは、上記の課題を
解決すべく種々検討を行なった結果、硬化性組成物の粘
度が、それに含まれる反応性希釈剤の種類だけでなく、
その製造方法により大きく影響されることを見いだし、
本発明を完成させた。
[Means for Solving the Problems] As a result of various studies to solve the above problems, we have found that the viscosity of the curable composition depends not only on the type of reactive diluent contained therein, but also on the viscosity of the curable composition.
We found that it is greatly influenced by the manufacturing method,
The present invention has been completed.

【0009】即ち、本発明は、無機物質と(メタ)アク
リレートとを必須成分としてなる硬化性組成物を製造す
る方法において、該(メタ)アクリレートとして、(メ
タ)アクリル酸及び/又は(メタ)アクリル酸エステル
と、アルコールとを銅化合物の存在下に反応して得られ
る(メタ)アクリレートを用いることを要旨とする硬化
性組成物の製造方法であり、また、上記製造方法によっ
て得られる硬化性組成物である。
That is, the present invention provides a method for producing a curable composition comprising an inorganic substance and (meth)acrylate as essential components, in which (meth)acrylic acid and/or (meth)acrylate is used as the (meth)acrylate. A method for producing a curable composition, the gist of which is to use a (meth)acrylate obtained by reacting an acrylic acid ester and an alcohol in the presence of a copper compound, and the curable composition obtained by the above production method. It is a composition.

【0010】さらに詳しく説明すると、(メタ)アクリ
レートは、触媒及び重合禁止剤の存在下、アクリル酸ま
たはメタクリル酸(以後(メタ)アクリル酸と表示する
)とアルコールとの脱水エステル化、またはアクリル酸
エステルまたはメタクリル酸エステル(以後(メタ)ア
クリル酸エステルと表示する)とアルコールとのエステ
ル交換反応により製造される。必要により精製する場合
、蒸留によると本願の目的を達成できなくなる恐れがあ
るため、抽出または吸着によって精製することが好まし
い。
To explain in more detail, (meth)acrylate is produced by dehydrating esterification of acrylic acid or methacrylic acid (hereinafter referred to as (meth)acrylic acid) with alcohol in the presence of a catalyst and a polymerization inhibitor, or It is produced by transesterification reaction between ester or methacrylic ester (hereinafter referred to as (meth)acrylic ester) and alcohol. If purification is necessary, it is preferable to purify by extraction or adsorption, as distillation may not achieve the purpose of the present application.

【0011】エステル化触媒としては、通常用いられる
硫酸、スルホン酸類、りん酸、三フッ化ホウ素、カチオ
ン性イオン交換樹脂などが例示できる。
Examples of the esterification catalyst include commonly used sulfuric acid, sulfonic acids, phosphoric acid, boron trifluoride, and cationic ion exchange resins.

【0012】本発明の重合禁止剤としては銅化合物が用
いられる。この銅化合物としては、金属銅、銅の酸化物
、硫化物、水酸化物、アンモニア錯塩、硫酸塩、ハロゲ
ン化物、炭酸塩、リン酸塩、及びカルボン酸塩等であっ
て、例えば銅粉、酸化第一銅、酸化第二銅、硫化第一銅
、硫化第二銅、硫酸第一銅、硫酸第二銅、塩化第一銅、
塩化第二銅、臭化第一銅、臭化第二銅、水酸化第二銅、
塩基性塩化銅、塩基性炭酸銅、りん酸第二銅、シアン化
第一銅、チオシアン酸銅、酢酸銅、塩基性酢酸銅、蟻酸
銅、シュウ酸銅、クエン酸銅、酒石酸銅、アクリル酸銅
、メタクリル酸銅、ナフテン酸銅、フタル酸銅、塩化第
二銅アンモニウム、フタロシアニン銅、ジメチルジチオ
カルバミン酸銅、ジブチルジチオカルバミン酸銅などが
例示でき、これらは2種以上併用してもよい。また、ハ
イドロキノン、ハイドロキノンモノメチルエーテルなど
のフェノール系化合物、フェニレンジアミン、フェノチ
アジンなどのアミン系化合物、ニトロ系化合物、及びイ
オウ化合物などの通常用いられている重合禁止剤を併用
してもよい。
A copper compound is used as the polymerization inhibitor in the present invention. Examples of the copper compound include metallic copper, copper oxides, sulfides, hydroxides, ammonia complexes, sulfates, halides, carbonates, phosphates, and carboxylates, such as copper powder, Cuprous oxide, cupric oxide, cuprous sulfide, cupric sulfide, cuprous sulfate, cupric sulfate, cuprous chloride,
Cupric chloride, cuprous bromide, cupric bromide, cupric hydroxide,
Basic copper chloride, basic copper carbonate, cupric phosphate, cuprous cyanide, copper thiocyanate, copper acetate, basic copper acetate, copper formate, copper oxalate, copper citrate, copper tartrate, acrylic acid Examples include copper, copper methacrylate, copper naphthenate, copper phthalate, cupric ammonium chloride, copper phthalocyanine, copper dimethyldithiocarbamate, copper dibutyldithiocarbamate, and two or more of these may be used in combination. Further, commonly used polymerization inhibitors such as phenolic compounds such as hydroquinone and hydroquinone monomethyl ether, amine compounds such as phenylenediamine and phenothiazine, nitro compounds, and sulfur compounds may be used in combination.

【0013】銅化合物の好適な使用量は、(メタ)アク
リル酸または(メタ)アクリル酸エステルに対して0.
01〜5重量%、より好ましくは0.05〜0.5重量
%である。
A preferable amount of the copper compound to be used is 0.000 to (meth)acrylic acid or (meth)acrylic ester.
01 to 5% by weight, more preferably 0.05 to 0.5% by weight.

【0014】(メタ)アクリレートとしては、単官能お
よび多官能の(メタ)アクリレートが使用でき、単官能
(メタ)アクリレートとしてはベンジル(メタ)アクリ
レート、フェノキシエチル(メタ)アクリレート、エト
キシジエチレングリコール(メタ)アクリレート、テト
ラヒドロフルフリル(メタ)アクリレート、ジシクロペ
ンテニル(メタ)アクリレートなどが、また、多官能(
メタ)アクリレートとしてはエチレングリコールジ(メ
タ)アクリレート、ポリエチレングリコールジ(メタ)
アクリレート、ポリプロピレングリコールジ(メタ)ア
クリレート、ネオペンチルグリコールジ(メタ)アクリ
レート、1,6ヘキサンジオールジ(メタ)アクリレー
ト、トリメチロールプロパントリ(メタ)アクリレート
、トリス(2−ヒドロキシエチル)イソシアヌレートト
リ(メタ)アクリレート、ペンタエリスリトールトリ(
メタ)アクリレート、ペンタエリスリトールテトラ(メ
タ)アクリレート、ジペンタエリスリトールヘキサ(メ
タ)アクリレート、2,2−ビス[4−((メタ)アク
リロイロキシジエトキシ)フェニル]プロパンなどがあ
る。(メタ)アクリレートの使用量の好適な範囲は、硬
化性組成物に対し5〜95重量%である。
As the (meth)acrylate, monofunctional and polyfunctional (meth)acrylates can be used, and examples of the monofunctional (meth)acrylate include benzyl (meth)acrylate, phenoxyethyl (meth)acrylate, and ethoxydiethylene glycol (meth)acrylate. Acrylate, tetrahydrofurfuryl (meth)acrylate, dicyclopentenyl (meth)acrylate, etc.
As meth)acrylate, ethylene glycol di(meth)acrylate, polyethylene glycol di(meth)acrylate
Acrylate, polypropylene glycol di(meth)acrylate, neopentyl glycol di(meth)acrylate, 1,6 hexanediol di(meth)acrylate, trimethylolpropane tri(meth)acrylate, tris(2-hydroxyethyl)isocyanurate tri( meth) acrylate, pentaerythritol tri(
Examples include meth)acrylate, pentaerythritol tetra(meth)acrylate, dipentaerythritol hexa(meth)acrylate, and 2,2-bis[4-((meth)acryloyloxydiethoxy)phenyl]propane. The preferred range of the amount of (meth)acrylate used is 5 to 95% by weight based on the curable composition.

【0015】無機物質としては無機の充填剤、顔料など
が挙げられ、タルク、クレー、シリカ、炭酸カルシウム
、硫酸バリウム、硫酸カルシウム、マイカ、ガラスビー
ズ、セメント、アスベスト、カオリン、カーボンブラッ
クなど広く使用できる。また、その形状は(メタ)アク
リレートに分散できるものであればよく、粉体、繊維状
、などいずれの形状でもよい。無機物質の使用量は硬化
性組成物に対し5〜90重量%の範囲が好適である。
Examples of inorganic substances include inorganic fillers and pigments, which can be widely used such as talc, clay, silica, calcium carbonate, barium sulfate, calcium sulfate, mica, glass beads, cement, asbestos, kaolin, and carbon black. . Further, the shape thereof may be any shape as long as it can be dispersed in (meth)acrylate, and it may be in any shape such as powder or fiber. The amount of the inorganic substance used is preferably in the range of 5 to 90% by weight based on the curable composition.

【0016】また、その他必要により、各種ポリマー、
プレポリマー、オリゴマー、重合開始剤、安定剤、界面
活性剤、レベリング剤、帯電防止剤、顔料、染料とうを
硬化性組成物に添加することができ、その使用量の好適
な範囲は硬化性組成物に対し90重量%以下である。
[0016] In addition, various polymers,
Prepolymers, oligomers, polymerization initiators, stabilizers, surfactants, leveling agents, antistatic agents, pigments, and dyestuffs can be added to the curable composition, and a suitable range of their usage is determined according to the curable composition. It is 90% by weight or less based on the weight of the product.

【0017】[0017]

【実施例】以下、本発明をより具体的に説明するために
、実施例および比較例を挙げて詳細に説明するが、本発
明はこれら実施例に限定されるものではない。
[Examples] In order to explain the present invention more specifically, the present invention will be explained in detail by giving Examples and Comparative Examples, but the present invention is not limited to these Examples.

【0018】『実施例1』かきまぜ機、冷却管付き水分
離機、温度計、空気吹き込み管を付した1リットル四つ
口フラスコに、トリメチロールプロパン201.3gと
アクリル酸389.1g、溶媒としてトルエン265.
5g、触媒としてp−トルエンスルホン酸36.2g、
重合禁止剤として酸化第一銅0.4gを量りとり、空気
吹き込み下、圧力230Torrで生成水/トルエンを
留出し、分離後のトルエンを還流し、8時間反応させた
。この時の反応温度は70〜85℃であった。
``Example 1'' In a 1 liter four-necked flask equipped with a stirrer, a water separator with a cooling tube, a thermometer, and an air blowing tube, 201.3 g of trimethylolpropane and 389.1 g of acrylic acid were added as a solvent. Toluene 265.
5g, p-toluenesulfonic acid 36.2g as a catalyst,
0.4 g of cuprous oxide as a polymerization inhibitor was weighed out, and the produced water/toluene was distilled off at a pressure of 230 Torr under air blowing. The separated toluene was refluxed and reacted for 8 hours. The reaction temperature at this time was 70 to 85°C.

【0019】次に、上記反応液を分液漏斗に移し、トル
エン623.5gを追加した後、水500g、次に4%
NaOH水1100g、更に水500gで洗浄した。そ
の後、トルエン層を強酸性イオン交換樹脂(ダウエック
ス  HCR−W2H)に通した後、重合禁止剤として
ハイドロキノンモノメチルエーテルを100ppmに調
整し、減圧下にトルエンを除去して収量417.8gで
粘度84cps/25℃の淡黄色透明液状のトリメチロ
ールプロパントリアクリレート(以下、TMPTAと称
する)を得た(収率94%)。尚、得られたTMPTA
中のCu分は0.1ppm以下であった。
Next, the above reaction solution was transferred to a separating funnel, and 623.5 g of toluene was added, followed by 500 g of water and then 4%
It was washed with 1100 g of NaOH water and further with 500 g of water. After that, the toluene layer was passed through a strongly acidic ion exchange resin (Dowex HCR-W2H), and hydroquinone monomethyl ether was adjusted to 100 ppm as a polymerization inhibitor, and the toluene was removed under reduced pressure to produce a yield of 417.8 g and a viscosity of 84 cps. A pale yellow transparent liquid trimethylolpropane triacrylate (hereinafter referred to as TMPTA) was obtained at 25° C. (yield: 94%). In addition, the obtained TMPTA
The Cu content therein was 0.1 ppm or less.

【0020】この後、得られたTMPTA80.0gと
無機物質としてのタルク20.0gとを混合し、ホモデ
ィスパーを用いて5000rpmで5分間撹拌した。そ
して、25℃の恒温槽中で1時間静置した後に、上記T
MPTAとタルクから成るスラリー状の組成物の粘度を
測定したところ、900cps/25℃であった。
[0020] Thereafter, 80.0 g of the obtained TMPTA and 20.0 g of talc as an inorganic substance were mixed and stirred for 5 minutes at 5000 rpm using a homodisper. Then, after leaving it for 1 hour in a constant temperature bath at 25°C, the above T
The viscosity of the slurry composition consisting of MPTA and talc was measured and was found to be 900 cps/25°C.

【0021】『実施例2〜10』重合禁止剤として下表
1に示した銅化合物を用いた以外、他の条件は全て同じ
にして実施例1と同様の操作を行った。これにより、得
られたTMPTAの物性(粘度及び残存重合禁止剤含率
)と、このTMPTAとタルクとから成るスラリー状の
組成物の粘度とを表1に示した。
Examples 2 to 10 The same operations as in Example 1 were carried out under the same conditions except that the copper compounds shown in Table 1 below were used as polymerization inhibitors. Table 1 shows the physical properties (viscosity and residual polymerization inhibitor content) of the TMPTA thus obtained and the viscosity of the slurry composition composed of TMPTA and talc.

【0022】『比較例1〜3』重合禁止剤として下表1
に示した物質を用いた以外、他の条件は全て同じにして
実施例1と同様の操作を行った。これにより、得られた
TMPTAの物性(粘度及び残存重合禁止剤含率)と、
このTMPTAとタルクとから成るスラリー状の組成物
の粘度とを表1に示した。
"Comparative Examples 1 to 3" Table 1 below as a polymerization inhibitor
The same operation as in Example 1 was carried out with all other conditions being the same except for using the substances shown in . As a result, the physical properties (viscosity and residual polymerization inhibitor content) of the obtained TMPTA,
Table 1 shows the viscosity of this slurry composition consisting of TMPTA and talc.

【0023】[0023]

【表1】[Table 1]

【0024】『実施例11〜13』実施例11ではメタ
クリル酸402.9gとトリメチロールプロパン174
.5gとを、実施例12ではアクリル酸345.9gと
1,6ヘキサンジオール236.4gを、実施例13で
はアクリル酸233.5gとエトキシジエチレングリコ
ール362.2gとを仕込み、他の条件は全て同じにし
て実施例1と同様の操作を行った。尚、得られた(メタ
)アクリレート中のCu分は0.1ppm以下であった
[Examples 11 to 13] In Example 11, 402.9 g of methacrylic acid and 174 g of trimethylolpropane were used.
.. In Example 12, 345.9 g of acrylic acid and 236.4 g of 1,6 hexanediol were charged, and in Example 13, 233.5 g of acrylic acid and 362.2 g of ethoxydiethylene glycol were charged, all other conditions being the same. The same operation as in Example 1 was performed. Note that the Cu content in the obtained (meth)acrylate was 0.1 ppm or less.

【0025】また、得られた(メタ)アクリレートの粘
度と、この(メタ)アクリレートとタルクとから成るス
ラリー状の組成物の粘度とを表2に示した。
Further, Table 2 shows the viscosity of the obtained (meth)acrylate and the viscosity of the slurry composition composed of this (meth)acrylate and talc.

【0026】『比較例4〜6』重合禁止剤としてハイド
ロキノン0.4gを用い、それ以外の条件は全て同じに
して比較例4は実施例11と、比較例5は実施例12と
、比較例6は実施例13と同様の操作を行った。尚、得
られた(メタ)アクリレート中のハイドロキノン分は1
ppm以下であった。
Comparative Examples 4 to 6 Using 0.4 g of hydroquinone as a polymerization inhibitor and keeping all other conditions the same, Comparative Example 4 was the same as Example 11, Comparative Example 5 was the same as Example 12, and Comparative Example 5 was the same as Example 12. In Example 6, the same operation as in Example 13 was performed. In addition, the hydroquinone content in the obtained (meth)acrylate is 1
It was less than ppm.

【0027】また、得られた(メタ)アクリレートの粘
度と、この(メタ)アクリレートとタルクとから成るス
ラリー状の組成物の粘度とを表2に示した。
Further, Table 2 shows the viscosity of the obtained (meth)acrylate and the viscosity of the slurry composition composed of this (meth)acrylate and talc.

【0028】『実施例14』先ず、アクリル酸メチル4
64.7g、トリメチロールプロパン201.3g、触
媒として硫酸7.3g、重合禁止剤として酸化第一銅0
.4gを仕込み、エステル交換法により反応を行った。 尚、上記反応における生成メタノールは、アクリル酸メ
チルとの共沸により除去した。
"Example 14" First, methyl acrylate 4
64.7g, 201.3g of trimethylolpropane, 7.3g of sulfuric acid as a catalyst, 0 cuprous oxide as a polymerization inhibitor
.. 4 g was charged and the reaction was carried out by transesterification. Note that the methanol produced in the above reaction was removed by azeotropy with methyl acrylate.

【0029】次に、減圧下に過剰のアクリル酸メチルを
除去した後、トルエン890gで希釈し、さらに実施例
1と同様の精製操作を行ってTMPTAを得た。尚、得
られたTMPTA中のCu分は0.1ppm以下であっ
た。
Next, after removing excess methyl acrylate under reduced pressure, the mixture was diluted with 890 g of toluene, and the same purification operation as in Example 1 was performed to obtain TMPTA. Note that the Cu content in the obtained TMPTA was 0.1 ppm or less.

【0030】この後、実施例1と同様の操作を行い、T
MPTAとタルクとから成るスラリー状の組成物の粘度
を測定した。その結果をTMPTAの粘度と共に表2に
示した。
After that, the same operation as in Example 1 was carried out, and T
The viscosity of a slurry composition consisting of MPTA and talc was measured. The results are shown in Table 2 along with the viscosity of TMPTA.

【0031】『比較例7』重合禁止剤としてハイドロキ
ノン0.4gを用いた以外、他の条件は全て同じにして
実施例14と同様の操作を行った。尚、得られたTMP
TA中のハイドロキノン分は1ppm以下であった。
Comparative Example 7 The same operation as in Example 14 was carried out under the same conditions except that 0.4 g of hydroquinone was used as a polymerization inhibitor. Furthermore, the obtained TMP
The hydroquinone content in TA was 1 ppm or less.

【0032】また、得られたTMPTAの粘度と、この
TMPTAとタルクとから成るスラリー状の組成物の粘
度とを表2に示した。
Further, Table 2 shows the viscosity of the obtained TMPTA and the viscosity of the slurry composition composed of this TMPTA and talc.

【0033】『実施例15』無機物質としてタルクの代
わりに炭酸カルシウムを用いた以外、他の条件は全て同
じにして実施例1と同様の操作を行った。また、TMP
TAと炭酸カルシウムとから成るスラリー状の組成物の
粘度を表2に示した。
``Example 15'' The same operation as in Example 1 was carried out under all other conditions, except that calcium carbonate was used instead of talc as the inorganic substance. Also, TMP
Table 2 shows the viscosity of the slurry composition composed of TA and calcium carbonate.

【0034】『比較例8』重合禁止剤としてハイドロキ
ノン0.4gを用いた以外、他の条件は全て同じにして
実施例15と同様の操作を行った。尚、得られたTMP
TA中のハイドロキノン分は1ppm以下であった。
Comparative Example 8 The same operation as in Example 15 was carried out under the same conditions except that 0.4 g of hydroquinone was used as the polymerization inhibitor. Furthermore, the obtained TMP
The hydroquinone content in TA was 1 ppm or less.

【0035】また、得られたTMPTAの粘度と、この
TMPTAと炭酸カルシウムとから成るスラリー状の組
成物の粘度とを表2に示した。
Further, Table 2 shows the viscosity of the obtained TMPTA and the viscosity of the slurry composition composed of this TMPTA and calcium carbonate.

【0036】[0036]

【表2】[Table 2]

【0037】上記の実施例1〜15及び比較例1〜8か
ら分かるように、脱水エステル化、またはエステル交換
反応の重合禁止剤として銅化合物を用いた場合と、銅化
合物以外のものを用いた場合とを比較しても、得られた
(メタ)アクリレート自体、外観、物性面での違いは何
ら確認されない(共に淡黄色透明の液体であり、略同じ
粘度を示し、さらに(メタ)アクリレート中の残存重合
禁止剤含率は1ppm以下である)。しかしながら、得
られた(メタ)アクリレートと無機物質とから成るスラ
リー状の組成物の粘度を比較すれば明らかなように、銅
化合物を用いて製造した(メタ)アクリレートの方が高
い希釈性を示している。これより、重合禁止剤として銅
化合物を用いた脱水エステル化、またはエステル交換反
応により製造された(メタ)アクリレートは、無機物質
に対する優れた希釈性を有することがわかる。
As can be seen from the above Examples 1 to 15 and Comparative Examples 1 to 8, there were cases in which a copper compound was used as a polymerization inhibitor for dehydration esterification or transesterification, and cases in which something other than a copper compound was used. Even when compared with the (meth)acrylate obtained, no differences were observed in terms of the obtained (meth)acrylate itself, appearance, or physical properties. The residual polymerization inhibitor content is 1 ppm or less). However, as is clear from a comparison of the viscosities of the slurry-like compositions made of the obtained (meth)acrylate and inorganic substance, the (meth)acrylate produced using a copper compound exhibits higher dilutability. ing. This shows that (meth)acrylate produced by dehydration esterification or transesterification using a copper compound as a polymerization inhibitor has excellent dilutability with respect to inorganic substances.

【0038】ここで、光硬化性組成物に用いられる反応
性プレポリマーの一合成法を以下の合成例1に示す。
[0038] Here, one method for synthesizing the reactive prepolymer used in the photocurable composition is shown in Synthesis Example 1 below.

【0039】『合成例1』エポキシ当量180〜200
のピスフェノールA型のエポキシ樹脂(ARALDIT
E  GY250  CIBA−GEIGY社)173
g、アクリル酸70g、ジエチルアミノエチルメタクリ
レート1.2gを撹拌器、温度計を備えたフラスコに仕
込み、80〜100℃で反応させ、酸価が1.9となっ
たときに冷却して、淡黄色透明の液体(15000ps
/25℃)を得た。
"Synthesis Example 1" Epoxy equivalent weight 180-200
Pisphenol A type epoxy resin (ARALDIT
EGY250 CIBA-GEIGY) 173
g, 70 g of acrylic acid, and 1.2 g of diethylaminoethyl methacrylate were placed in a flask equipped with a stirrer and a thermometer, and reacted at 80 to 100°C. When the acid value reached 1.9, the mixture was cooled and a light yellow color was obtained. Transparent liquid (15000ps
/25°C) was obtained.

【0040】『実施例16』及び『比較例9〜11』下
表3に示す配合比率に従って三本ロールで混練りし、2
50〜300ps/25℃のレジストインキを得た。 尚、実施例16では実施例1で得られたTMPTAが、
比較例9〜11では比較例1で得られたTMPTAが、
また比較例9ではさらに比較例5で得られたHDDAが
用いられる。そして、このインキを回路パターンを形成
したガラス−エポキシプリント基板にスクリーン印刷法
にて略20μmの膜厚で塗布した。この後、ネガマスク
を当てて、80W/cmの高圧水銀灯を照射し、塗膜の
表面硬度が3H以上(JIS  D−0202)になる
まで硬化させ、得られた塗膜について以下に示す各種の
性能試験を行った。これらの結果を同表に示す。
``Example 16'' and ``Comparative Examples 9 to 11'' were kneaded with three rolls according to the compounding ratio shown in Table 3 below.
A resist ink of 50 to 300 ps/25° C. was obtained. In addition, in Example 16, TMPTA obtained in Example 1 was
In Comparative Examples 9 to 11, TMPTA obtained in Comparative Example 1 was
Moreover, in Comparative Example 9, HDDA obtained in Comparative Example 5 is further used. Then, this ink was applied to a glass-epoxy printed board on which a circuit pattern was formed to a thickness of about 20 μm by screen printing. After that, a negative mask was applied and a high pressure mercury lamp of 80 W/cm was applied to cure the coating film until the surface hardness reached 3H or higher (JIS D-0202). We conducted a test. These results are shown in the same table.

【0041】『比較例12』下表3に示す配合比率に従
って三本ロールで混練りし、500ps/25℃のレジ
ストインキを得た。このインキを上記実施例16と同様
にして回路パターンを形成したガラス−エポキシプリン
ト基板に塗布した。尚、このときの膜厚は略30μmと
なった。この後、実施例16と同様にして各種の性能試
験を行った。
"Comparative Example 12" A resist ink of 500 ps/25° C. was obtained by kneading with three rolls according to the compounding ratio shown in Table 3 below. This ink was applied to a glass-epoxy printed board on which a circuit pattern was formed in the same manner as in Example 16 above. Note that the film thickness at this time was approximately 30 μm. Thereafter, various performance tests were conducted in the same manner as in Example 16.

【0042】これらの結果を同表に示す。[0042] These results are shown in the same table.

【0043】[0043]

【表3】[Table 3]

【0044】尚、同表中に示される各種の性能試験は、
次の試験方法に準じて行った。
[0044] The various performance tests shown in the table are as follows:
The test was conducted according to the following test method.

【0045】『硬化性』80W/cmの高圧水銀灯を、
10m/minの速度で移動するベルトコンベアの上方
10cmの位置に据え付け、このベルトコンベアに向か
って紫外線を照射させる。上記ベルトコンベア上に各レ
ジストインキを印刷した基板を載置し、紫外線照射位置
を通過させ、塗膜の表面硬度を測定する。このとき、塗
膜の表面硬度が3H以下であれば、表面硬度が3H以上
になるまで何度も上記基板を紫外線照射位置に通す。試
験結果は、表面硬度が3H以上になるまでの最低通過回
数で示した。
"Curing" 80W/cm high pressure mercury lamp,
It is installed at a position 10 cm above a belt conveyor that moves at a speed of 10 m/min, and ultraviolet rays are irradiated toward this belt conveyor. A substrate printed with each resist ink is placed on the belt conveyor, passed through an ultraviolet irradiation position, and the surface hardness of the coating film is measured. At this time, if the surface hardness of the coating film is 3H or less, the substrate is passed through the ultraviolet irradiation position many times until the surface hardness becomes 3H or more. The test results were expressed as the minimum number of passes until the surface hardness reached 3H or higher.

【0046】『耐はんだ性』塗膜硬化後の基板を260
℃の溶融はんだに30秒間浸積した場合の塗膜の状態に
ついて以下のように判断した(JIS  C−6481
)。
"Solder resistance" After the coating film is cured, the substrate is
The condition of the coating film when immersed in molten solder at ℃ for 30 seconds was judged as follows (JIS C-6481
).

【0047】○:塗膜の外観異常なし        
  ×:ふくれ、溶融、剥離がみられる 『プレッシャークッカーテスト(PCT)』塗膜硬化後
の基板を121℃、98%HRのオートクレーブ中にて
24hr処理した後の塗膜の密着性について判断した。 尚、密着性の判断は、以下に示す密着性テストに従う。
○: No abnormality in appearance of coating film
x: "Pressure Cooker Test (PCT)" in which blistering, melting, and peeling were observed. After the coating film had been cured, the substrate was treated in an autoclave at 121° C. and 98% HR for 24 hours. The adhesion of the coating film was judged. Note that adhesion is determined according to the adhesion test shown below.

【0048】密着性テスト(JIS−0202):1m
m間隔の碁盤目セロハン粘着テープ剥離試験において、
セロハン粘着テープ剥離後の塗膜残存面積の割合により
以下のように表す。
[0048] Adhesion test (JIS-0202): 1m
In a cellophane adhesive tape peel test with a grid pattern of m intervals,
It is expressed as follows based on the ratio of the area of the coating film remaining after the cellophane adhesive tape is peeled off.

【0049】○:100/100    △:10〜9
9/100    ×:0〜9/100 『耐溶剤性』塗膜硬化後の基板を25℃のトリクロロエ
チレンに1hr浸積した場合の塗膜の密着性について判
断した。尚、密着性の判断は、上記に示した密着性テス
トに従う。
○: 100/100 △: 10-9
9/100 ×: 0 to 9/100 "Solvent Resistance" The adhesion of the coating film was judged when the substrate after the coating film had been cured was immersed in trichlorethylene at 25° C. for 1 hour. The adhesion is determined according to the adhesion test described above.

【0050】上記比較例9は、反応性プレポリマー(合
成例1の樹脂)および無機物質であるタルクの配合割合
と、レジストインキの粘度とを実施例16と同様にする
ために、TMPTAよりも粘度の低いHDDAを用いた
例である。上記では、TMPTAよりも反応性が乏しい
HDDAが反応性希釈剤として用いられているため、レ
ジストインキの硬化速度が遅く、また耐はんだ性にも乏
しいものとなっている。
[0050] In Comparative Example 9, in order to make the compounding ratio of the reactive prepolymer (resin of Synthesis Example 1) and talc, which is an inorganic substance, and the viscosity of the resist ink similar to those in Example 16, TMPTA was used. This is an example using HDDA with low viscosity. In the above example, since HDDA, which is less reactive than TMPTA, is used as a reactive diluent, the curing speed of the resist ink is slow and the solder resistance is also poor.

【0051】上記比較例10は、レジストインキの粘度
を実施例16と同様にするために、無機物質であるタル
クの添加量を少なくした例である。上記では、無機物質
の量が少ないために硬化時の収縮率が大きくなり、充分
な密着性が得られていないものと思われる。
Comparative Example 10 is an example in which the amount of talc, which is an inorganic substance, added was reduced in order to make the viscosity of the resist ink similar to that of Example 16. In the above case, since the amount of the inorganic substance is small, the shrinkage rate during curing becomes large, and it seems that sufficient adhesion is not obtained.

【0052】上記比較例11は、レジストインキの粘度
を実施例16と同様にするために、反応性プレポリマー
(合成例1の樹脂)の添加量を少なくした例である。上
記では、反応性の樹脂分が少ないため、レジストインキ
の硬化速度が遅く、密着性にも乏しいものとなっている
Comparative Example 11 is an example in which the amount of the reactive prepolymer (resin of Synthesis Example 1) was reduced in order to make the viscosity of the resist ink similar to that of Example 16. In the above method, since the reactive resin content is small, the curing speed of the resist ink is slow and the adhesion is poor.

【0053】上記比較例12は、実施例16と同組成に
したために、レジストインキの粘度が実施例よりも高く
なってしまっている。
In Comparative Example 12, since the composition was the same as in Example 16, the viscosity of the resist ink was higher than in the Example.

【0054】[0054]

【発明の効果】本発明の製造方法により、無機物質に対
する希釈性の高い(メタ)アクリレートが得られるので
、硬化性組成物の低粘度化を実現できる。換言すれば、
従来同様の組成であれば、硬化性組成物の粘度を下げる
ことができ、また、従来と同様の粘度であれば、硬化性
組成物中の無機物質や反応性プレポリマーの量を多くし
たり、より反応性の高い(メタ)アクリレートを用いる
ことができるということである。
According to the production method of the present invention, a (meth)acrylate having high dilutability with respect to inorganic substances can be obtained, so that it is possible to reduce the viscosity of a curable composition. In other words,
If the composition is the same as before, the viscosity of the curable composition can be lowered, and if the viscosity is the same as before, it is possible to increase the amount of inorganic substances or reactive prepolymers in the curable composition. This means that more reactive (meth)acrylates can be used.

【0055】従って、本発明の製造方法により得られる
硬化性組成物は、従来同様の性能を有しなから(従来同
様の組成であれば同様の性能を示す)低粘度となるため
、例えば塗料として用いられる場合、大変作業性がよい
ものとなる。
[0055] Therefore, the curable composition obtained by the production method of the present invention does not have the same performance as the conventional one (the same composition as the conventional one shows the same performance), but has a low viscosity, so it can be used, for example, in paints. When used as such, it has very good workability.

【0056】また、本発明の製造方法により得られる硬
化性組成物は、従来と同じ粘度であれば、無機物質の量
を多くすることができるので、低収縮性、密着性、耐熱
性、耐食性などの物性の向上、並びにコストの低減を実
現できる。
Furthermore, the curable composition obtained by the production method of the present invention has low shrinkage, adhesion, heat resistance, and corrosion resistance, since the amount of inorganic material can be increased as long as the viscosity is the same as that of the conventional one. It is possible to improve physical properties such as, and reduce costs.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】無機物質と、(メタ)アクリレートとを必
須成分としてなる硬化性組成物を製造する方法において
、該(メタ)アクリレートとして、(メタ)アクリル酸
及び/または(メタ)アクリル酸エステルと、アルコー
ルとを銅化合物の存在下に反応して得られる(メタ)ア
クリレートを用いることを特徴とする硬化性組成物の製
造方法。
Claim 1: A method for producing a curable composition comprising an inorganic substance and (meth)acrylate as essential components, wherein the (meth)acrylate is (meth)acrylic acid and/or (meth)acrylic ester. and alcohol in the presence of a copper compound.
【請求項2】(メタ)アクリレートが多官能(メタ)ア
クリレートであることを特徴とする請求項1に記載の硬
化性組成物の製造方法。
2. The method for producing a curable composition according to claim 1, wherein the (meth)acrylate is a polyfunctional (meth)acrylate.
【請求項3】銅化合物が金属銅、銅の酸化物、硫化物、
水酸化物、アンモニア錯塩、硫酸塩、ハロゲン化物、炭
酸塩、リン酸塩、及びカルボン酸塩からなる群から選ば
れる少なくとも1種であることを特徴とする請求項1ま
たは請求項2に記載の硬化性組成物の製造方法。
3. The copper compound is metallic copper, copper oxide, sulfide,
3. The compound according to claim 1 or 2, characterized in that it is at least one member selected from the group consisting of hydroxides, ammonia complexes, sulfates, halides, carbonates, phosphates, and carboxylates. Method for producing curable composition.
【請求項4】請求項1の製造方法によって得られる硬化
性組成物。
4. A curable composition obtained by the production method according to claim 1.
JP03129715A 1991-05-31 1991-05-31 Method for producing (meth) acrylate Expired - Fee Related JP3107851B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03129715A JP3107851B2 (en) 1991-05-31 1991-05-31 Method for producing (meth) acrylate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03129715A JP3107851B2 (en) 1991-05-31 1991-05-31 Method for producing (meth) acrylate

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP11205291A Division JP2000103815A (en) 1999-07-19 1999-07-19 Trimethylolpropane tri(meth)acrylate and preparation thereof

Publications (2)

Publication Number Publication Date
JPH04353503A true JPH04353503A (en) 1992-12-08
JP3107851B2 JP3107851B2 (en) 2000-11-13

Family

ID=15016421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03129715A Expired - Fee Related JP3107851B2 (en) 1991-05-31 1991-05-31 Method for producing (meth) acrylate

Country Status (1)

Country Link
JP (1) JP3107851B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08245901A (en) * 1995-01-26 1996-09-24 Daimler Benz Ag Pigment with color relating to visual angle, its production and its use for coating material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08245901A (en) * 1995-01-26 1996-09-24 Daimler Benz Ag Pigment with color relating to visual angle, its production and its use for coating material

Also Published As

Publication number Publication date
JP3107851B2 (en) 2000-11-13

Similar Documents

Publication Publication Date Title
CN106010144B (en) A kind of UV-LED solidification optical fiber coated with resins and its preparation method and application
TWI301484B (en) (meth) acryloyl group-containing compound, method for producing the same and photo-curable compositions comprising the same
GB1565710A (en) Heatactivatable compositions containing an ethylenically unsaturated compound and a polythiol
CA1183639A (en) Water-dispersible energy curable heterocyclic group- containing polyesters
JPH0297513A (en) Unsaturated polycarboxylic acid resin, resin composition and solder resist resin composition containing same
JP5881317B2 (en) Process for producing unsaturated quaternary ammonium salt compound, and antistatic agent and antistatic composition comprising the same
JP2008045104A (en) Active energy ray-curable coating resin composition
US4144283A (en) Curable coating compositions
JPH0532746A (en) Resin composition, solder resist resin composition and their hardened material
EP0180466B1 (en) Photopolymerizable composition for use as an etching-resist ink
CA2465397C (en) Resin composition
JPH04353503A (en) Curable composition and production thereof
JP5199750B2 (en) Active energy ray-curable resin composition
JP6828467B2 (en) Active energy ray polymerization initiator, active energy ray curable composition, cured product and benzoin thioether compound
CN104995267A (en) Ink composition for inkjet printing
KR20130006460A (en) Epoxy acrylate, acrylic composition, cured substance, and manufacturing method therefor
JP2000103815A (en) Trimethylolpropane tri(meth)acrylate and preparation thereof
JP6900684B2 (en) Sulfur atom-containing compounds, active energy ray polymerization initiators, active energy ray-curable compositions, cured products and benzointhioether compounds
JP2008201955A (en) Thermosetting resin composition containing polyfunctional (meth)acrylate
JP2528349B2 (en) Solder-resist ink composition
JPS5930809A (en) Photo-setting material
KR100245930B1 (en) The composition of photosensitive solder resist ink with good thermal shock and gold plating for print circuit board
JPS61197614A (en) Curable resin composition
JP2962805B2 (en) Curable resin composition
JP4694165B2 (en) Low environmental impact photopolymerizable compound

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090908

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090908

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100908

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees