JPH04351883A - Manufacture of dispersion type electroluminescence element - Google Patents

Manufacture of dispersion type electroluminescence element

Info

Publication number
JPH04351883A
JPH04351883A JP3123702A JP12370291A JPH04351883A JP H04351883 A JPH04351883 A JP H04351883A JP 3123702 A JP3123702 A JP 3123702A JP 12370291 A JP12370291 A JP 12370291A JP H04351883 A JPH04351883 A JP H04351883A
Authority
JP
Japan
Prior art keywords
insulating layer
drying
dispersion type
manufacturing
electroluminescence element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3123702A
Other languages
Japanese (ja)
Inventor
Masato Hayashi
正人 林
Shirou Kabashima
樺嶋 史朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Semiconductor Manufacturing Co Ltd
Kansai Nippon Electric Co Ltd
Original Assignee
Renesas Semiconductor Manufacturing Co Ltd
Kansai Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Semiconductor Manufacturing Co Ltd, Kansai Nippon Electric Co Ltd filed Critical Renesas Semiconductor Manufacturing Co Ltd
Priority to JP3123702A priority Critical patent/JPH04351883A/en
Publication of JPH04351883A publication Critical patent/JPH04351883A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

PURPOSE:To increase a light lead-through efficiency for a dispersion type electroluminescence element by increasing a glossiness (a reflection factor) of an insulation layer. CONSTITUTION:In an insulation layer applying process for a dispersion type electroluminescence element, drying to an insulation layer 24 is set to be low- temperature delayed drying at 30 deg.C-50 deg.C, so the irregularity in the surface of applied ink is let to flow to be smooth. The glossiness at the surface of the insulation layer is thus increased to increase a reflection factor, thereby a light lead-through efficiency for the dispersion type electroluminescence element is increased.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は分散型EL素子の製造方
法に関し、特に絶縁層の塗布乾燥方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a distributed EL device, and more particularly to a method for coating and drying an insulating layer.

【0002】0002

【従来の技術】従来の分散型EL素子の製造方法につい
て説明する。アルミ箔などからなる背面電極上に、シア
ノエチルセルロースなどの有機バインダをジメチルホル
ムアミドなどの有機溶剤に溶解したものの中にチタン酸
バリウムなどの高誘電体粉末を分散させた絶縁層インク
を塗布,乾燥して形成した絶縁層,硫化亜鉛などを母体
とし銅などで付活した蛍光体をシアルエチルセルロース
などの有機バインダ中に分散させたなる発光層,ITO
などからなる透明電極を順次積層した後、上下よりナイ
ロン(デュポン社商標)などの吸湿フィルムで覆い、全
体を三フッ化ポリエチレンなど極めて透湿性の少ない防
湿保護フィルムで密閉封止して分散型EL素子を作製す
る。この分散型EL素子は厚みが薄く、可撓性があり取
り扱い易いこと,比較的低コストで製造できることなど
から、最近ラップトップタイプのワードプロセッサやパ
ーソナルコンピュータの液晶表示装置のバックライトと
して普及がめざましい。
2. Description of the Related Art A conventional method for manufacturing a distributed EL element will be described. An insulating layer ink made by dispersing a high dielectric powder such as barium titanate in an organic binder such as cyanoethyl cellulose dissolved in an organic solvent such as dimethyl formamide is applied onto a back electrode made of aluminum foil, etc., and then dried. an insulating layer formed using zinc sulfide, a light-emitting layer consisting of a phosphor made of zinc sulfide as a matrix and activated with copper etc. dispersed in an organic binder such as sial ethyl cellulose, and an ITO layer.
After sequentially laminating transparent electrodes made of materials such as the Fabricate the element. These distributed EL elements are thin, flexible, easy to handle, and can be manufactured at relatively low cost, so they have recently become rapidly popular as backlights for laptop-type word processors and liquid crystal display devices for personal computers.

【0003】0003

【発明が解決しようとする課題】ところで上記の製造方
法では、絶縁層用インクを塗布後、100℃,1時間程
度の熱風乾燥を行うので、有機溶剤が急速に蒸発して乾
燥が終了する。このため絶縁層の表面には塗布直後に生
成した凹凸部がそのまま残存して固化し、表面の反射率
が低下する。このような分散型EL素子を発光させると
、絶縁層の反射率が低いので、素子外部への光の取出し
効率が低く、十分な輝度が得られないという問題点があ
った。
However, in the above manufacturing method, after applying the ink for the insulating layer, hot air drying is performed at 100° C. for about 1 hour, so the organic solvent quickly evaporates and the drying is completed. Therefore, the uneven portions generated immediately after coating remain on the surface of the insulating layer and solidify, reducing the reflectance of the surface. When such a distributed EL element emits light, the insulating layer has a low reflectance, so there is a problem in that the efficiency of extracting light to the outside of the element is low and sufficient brightness cannot be obtained.

【0004】0004

【課題を解決するための手段】上記課題を解決するため
に、本発明は背面電極上に絶縁層用インクを塗布後、本
乾燥の前に低温(例えば30℃  〜50℃)で遅延乾
燥することにより、有機溶剤が急速に蒸発することを抑
制し、塗布直後の表面に生成していた凹凸部を時間の経
過と共に流動して減少させることにより、絶縁層表面を
平滑にすることを特徴とする。
[Means for Solving the Problems] In order to solve the above problems, the present invention performs delayed drying at a low temperature (for example, 30°C to 50°C) after applying an ink for an insulating layer on a back electrode and before main drying. This suppresses the rapid evaporation of the organic solvent and smoothes the surface of the insulating layer by fluidizing and reducing the unevenness that has formed on the surface immediately after application over time. do.

【0005】[0005]

【作用】上記の方法によれば、絶縁層を塗布形成する際
、塗布後低温で徐々に乾燥させたから、有機溶剤の急速
な蒸発を抑制することができ、その間塗布表面の凹凸部
が流動して徐々に減少し平滑になる結果、絶縁層表面の
反射率が向上して分散型EL素子の光の取出し効率が向
上する。
[Function] According to the above method, when forming an insulating layer by coating, it is gradually dried at a low temperature after coating, so rapid evaporation of the organic solvent can be suppressed, and during this time, the irregularities on the coated surface will not flow. As a result, the reflectance of the surface of the insulating layer is improved and the light extraction efficiency of the dispersion type EL element is improved.

【0006】[0006]

【実施例】以下、本発明に係る分散型EL素子の製造方
法について図1および図2を参照して説明する。
EXAMPLES A method of manufacturing a distributed EL device according to the present invention will be described below with reference to FIGS. 1 and 2.

【0007】図2は本発明の一実施例である分散型EL
素子の構造を示す要部断面図である。図2において、3
はシアノエチルセルロースなどの有機バインダに蛍光体
(例えば硫化亜鉛を銅で付活したもの)を分散させた発
光層,4はシアノエチルセルロースなどの有機バインダ
にチタン酸バリウムなどの高誘電体粉末を分散させた絶
縁層で、また透明電極は例えばポリエステルフィルムの
透明電極基板1の上にITOなどの透明電極層2を蒸着
などの方法で形成したものであり、背面電極基板5は例
えばアルミ箔で、この上に絶縁層4を形成する。6はナ
イロンなどの吸湿フィルム、7は例えば三フッ化ポリエ
チレンからなる封止用の防湿保護フィルムである。リー
ドは図示せず。上記構成の分散型EL素子8の製造方法
において、従来と最も異なり、かつ特徴的な本発明の製
造方法は、絶縁層の形成方法であり、特に塗布直後の乾
燥方法である。
FIG. 2 shows a distributed EL according to an embodiment of the present invention.
FIG. 2 is a cross-sectional view of main parts showing the structure of the element. In Figure 2, 3
4 is a light-emitting layer in which a phosphor (for example, zinc sulfide activated with copper) is dispersed in an organic binder such as cyanoethyl cellulose, and 4 is a light emitting layer in which a high dielectric powder such as barium titanate is dispersed in an organic binder such as cyanoethyl cellulose. The transparent electrode is formed by forming a transparent electrode layer 2 such as ITO on a transparent electrode substrate 1 made of polyester film by a method such as vapor deposition, and the back electrode substrate 5 is made of aluminum foil, for example. An insulating layer 4 is formed thereon. 6 is a moisture-absorbing film made of nylon or the like, and 7 is a moisture-proof protective film for sealing made of polyethylene trifluoride, for example. Leads not shown. In the manufacturing method of the dispersion type EL element 8 having the above structure, the manufacturing method of the present invention that is most different from the conventional method and is characteristic is the method of forming an insulating layer, and especially the drying method immediately after coating.

【0008】次に、図1を参照しながら本発明による絶
縁層の塗布乾燥方法について説明する。
Next, a method for coating and drying an insulating layer according to the present invention will be explained with reference to FIG.

【0009】図1は本発明の絶縁層の塗布乾燥工程に対
応する絶縁層の要部拡大断面図である。図1(a)は塗
布時,図1(b)は低温遅延乾燥時,図1(c)は本乾
燥時の絶縁層の様子を示す。この実施例では塗布方法と
してドクターブレード法を使用している。21はドクタ
ーブレード,22は絶縁層用インク,23はアルミ箔,
24は絶縁層を示す。アルミ箔23とドクターブレード
21間のギャップは270μm程度である。
FIG. 1 is an enlarged sectional view of a main part of an insulating layer corresponding to the insulating layer coating and drying process of the present invention. FIG. 1(a) shows the state of the insulating layer during coating, FIG. 1(b) shows the state of the insulating layer during low-temperature delayed drying, and FIG. 1(c) shows the state of the insulating layer during main drying. In this example, a doctor blade method is used as the coating method. 21 is a doctor blade, 22 is an insulating layer ink, 23 is an aluminum foil,
24 indicates an insulating layer. The gap between the aluminum foil 23 and the doctor blade 21 is about 270 μm.

【0010】まず、アルミ箔23の上に、有機溶剤であ
るジメチルホルムアミドにシアノエチルプルランなどの
有機バインダを溶解したものの中にチタン酸バリウムな
どの高誘電体粉末を所定の割合で分散した絶縁層用イン
ク22をドクターブレード法で印刷し、絶縁層24を形
成する。矢印はドクターブレードの移動方向を示す。塗
布直後の絶縁層表面は図1(a)に示すように凹凸部が
生成している。次に30℃〜50℃に設定した乾燥オー
ブン中で低温遅延乾燥を行う。この低温乾燥では有機溶
剤の蒸発が徐々に行われるので、絶縁層24の流動によ
る平滑化が進み凹凸部がなくなる(図1(b))。大部
分の有機溶剤が蒸発するまで低温乾燥を続ける。
First, on the aluminum foil 23, an insulating layer is prepared by dispersing a high dielectric powder such as barium titanate at a predetermined ratio in a solution of an organic binder such as cyanoethyl pullulan in an organic solvent dimethylformamide. The ink 22 is printed using a doctor blade method to form an insulating layer 24. The arrow indicates the direction of movement of the doctor blade. Immediately after coating, the surface of the insulating layer has irregularities as shown in FIG. 1(a). Next, low temperature delayed drying is performed in a drying oven set at 30°C to 50°C. In this low-temperature drying, the organic solvent is gradually evaporated, so that the insulating layer 24 is smoothed by flowing, and uneven portions are eliminated (FIG. 1(b)). Continue low temperature drying until most of the organic solvent has evaporated.

【0011】次に100℃に設定した乾燥オーブン中で
本乾燥を行う。本乾燥工程では絶縁層24の流動はほと
んど起きず、わずかに残留しているジメチルホルムアミ
ドや水分がほぼ完全に蒸発して絶縁層が収縮固化し最終
的に40μm〜50μmの絶縁層が形成される(図1(
c))。
Next, main drying is performed in a drying oven set at 100°C. In the main drying process, almost no flow of the insulating layer 24 occurs, and the slight remaining dimethylformamide and water almost completely evaporate, the insulating layer shrinks and solidifies, and an insulating layer of 40 μm to 50 μm is finally formed. (Figure 1 (
c)).

【0012】次の工程から素子完成までの工程は従来の
方法と同様なので説明を省略する。
The steps from the next step to the completion of the device are the same as those of the conventional method, so their explanation will be omitted.

【0013】表1に本発明の低温遅延乾燥により作製し
た分散型EL素子と低温乾燥を行わない従来素子につい
て、発光効率と絶縁層の光沢度の測定結果を比較して示
す。
Table 1 shows a comparison of the measurement results of the luminous efficiency and the glossiness of the insulating layer for the dispersion type EL device produced by the low temperature delayed drying method of the present invention and the conventional device without low temperature drying.

【0014】[0014]

【表1】[Table 1]

【0015】[0015]

【0016】光沢度はJIS規格の60°光沢度である
。光沢度をもって絶縁層の表面反射率を評価する場合の
バロメータとすることができる。発光効率は400Hz
で、輝度100cd/平方メートルの場合の値である。 表1から明らかなように、本発明は従来法より光沢度が
大きく、かつ発光効率が優れている。このことは低温乾
燥によって絶縁層表面の反射率が向上し、光の取出し効
率が向上したことを示す。また、低温で徐々に乾燥した
ので、有機バインダ中や蛍光体との境界などで空隙が発
生しにくくなり、効率向上した可能性もある。ここで、
乾燥温度を30℃より低くすると、乾燥時間が著しく長
くなり、製造の能率が低下する。また、50℃より高く
なると乾燥が早くなり表面の凹凸が残存し、本発明の効
果が減る。なお、上記実施例では絶縁層の印刷法をドク
ターブレード法としたが、スクリーン印刷など他の方法
の場合でも本発明は適用できる。また、上記実施例では
、低温遅延乾燥の後に高温の本乾燥を行ったが、本乾燥
を行わず低温遅延乾燥だけとしてもよい。
[0016] The glossiness is 60° glossiness according to the JIS standard. The glossiness can be used as a barometer when evaluating the surface reflectance of the insulating layer. Luminous efficiency is 400Hz
This is the value when the brightness is 100 cd/square meter. As is clear from Table 1, the present invention has higher gloss and superior luminous efficiency than the conventional method. This indicates that low-temperature drying improved the reflectance of the insulating layer surface and improved the light extraction efficiency. In addition, because it was gradually dried at a low temperature, voids were less likely to occur in the organic binder or at the boundary with the phosphor, which may have improved efficiency. here,
When the drying temperature is lower than 30° C., the drying time becomes significantly longer and the efficiency of production decreases. Furthermore, if the temperature is higher than 50°C, drying will be rapid and surface irregularities will remain, reducing the effect of the present invention. In the above embodiments, the insulating layer was printed using a doctor blade method, but the present invention is also applicable to other methods such as screen printing. Further, in the above embodiment, high temperature main drying was performed after low temperature delayed drying, but only low temperature delayed drying may be performed without performing main drying.

【0017】[0017]

【発明の効果】本発明の製造方法によれば、絶縁層を塗
布後低温で徐々に乾燥させたから、有機溶剤の急激な蒸
発が抑制されて徐々に蒸発するので、その間塗布面の凹
凸部が流動して平滑化し、絶縁層表面の反射率が向上し
て光の取出し効率が向上した高性能の分散型EL素子を
提供できる効果がある。なお、本発明による分散型EL
素子は、低消費電力での使用が望ましいラップトップタ
イプのワードプロセッサやパーソナルコンピュータに搭
載される液晶表示装置のバックライトに好適である。
Effects of the Invention According to the manufacturing method of the present invention, since the insulating layer is gradually dried at a low temperature after being applied, rapid evaporation of the organic solvent is suppressed and the organic solvent evaporates gradually. It has the effect of providing a high-performance dispersion type EL element that flows and becomes smooth, improves the reflectance of the surface of the insulating layer, and improves the light extraction efficiency. Note that the distributed EL according to the present invention
The device is suitable for backlighting of liquid crystal display devices installed in laptop-type word processors and personal computers, which are desirably used with low power consumption.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】  本発明の絶縁層塗布乾燥工程および対応す
る絶縁層の表面状態を説明するための要部拡大断面図
FIG. 1: An enlarged cross-sectional view of essential parts for explaining the insulating layer coating and drying process of the present invention and the corresponding surface state of the insulating layer.


図2】  本発明に係る分散型EL素子の構造を示す要
部断面図
[
FIG. 2 A cross-sectional view of main parts showing the structure of the distributed EL element according to the present invention

【符号の説明】[Explanation of symbols]

1  透明電極基板 2  透明電極層 3  発光層 4,24  絶縁層 5  背面電極基板 6  吸湿フィルム 7  防湿保護フィルム 8  分散型EL素子 21  ドクターブレード 22  絶縁層用インク 23  アルミ箔 1 Transparent electrode substrate 2 Transparent electrode layer 3. Luminescent layer 4, 24 Insulating layer 5 Back electrode substrate 6 Moisture absorbing film 7 Moisture-proof protective film 8 Distributed EL element 21 Doctor Blade 22 Ink for insulation layer 23 Aluminum foil

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】背面電極上に絶縁層,発光層を塗布形成す
る工程と、発光層上に透明電極を積層形成すると共に、
背面電極および透明電極からリードを導出する工程と、
前記リードを導出した積層体を防湿フィルムで密閉封止
する工程からなる分散型EL素子の製造方法において、
絶縁層塗布直後に低温遅延乾燥工程を設けることを特徴
とする分散型EL素子の製造方法。
1. A step of coating an insulating layer and a light emitting layer on a back electrode, laminating a transparent electrode on the light emitting layer, and comprising:
a step of leading out leads from the back electrode and the transparent electrode;
In a method for manufacturing a distributed EL element, the method includes the step of hermetically sealing the laminate from which the leads have been led out with a moisture-proof film,
A method for manufacturing a dispersed EL element, characterized in that a low temperature delayed drying step is provided immediately after coating an insulating layer.
【請求項2】前記低温遅延乾燥を30℃〜50℃の温度
で行うことを特徴とする請求項1記載の分散型EL素子
の製造方法。
2. The method for manufacturing a distributed EL device according to claim 1, wherein the low-temperature delayed drying is performed at a temperature of 30° C. to 50° C.
【請求項3】前記低温遅延乾燥の後に、本乾燥工程を設
けることを特徴とする請求項1または請求項2記載の分
散型EL素子の製造方法。
3. The method for manufacturing a distributed EL device according to claim 1, wherein a main drying step is provided after the low temperature delayed drying.
JP3123702A 1991-05-28 1991-05-28 Manufacture of dispersion type electroluminescence element Pending JPH04351883A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3123702A JPH04351883A (en) 1991-05-28 1991-05-28 Manufacture of dispersion type electroluminescence element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3123702A JPH04351883A (en) 1991-05-28 1991-05-28 Manufacture of dispersion type electroluminescence element

Publications (1)

Publication Number Publication Date
JPH04351883A true JPH04351883A (en) 1992-12-07

Family

ID=14867232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3123702A Pending JPH04351883A (en) 1991-05-28 1991-05-28 Manufacture of dispersion type electroluminescence element

Country Status (1)

Country Link
JP (1) JPH04351883A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002280173A (en) * 2001-03-21 2002-09-27 Tdk Corp Manufacturing method for composite substrate, and composite substrate and el element provided thereby

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002280173A (en) * 2001-03-21 2002-09-27 Tdk Corp Manufacturing method for composite substrate, and composite substrate and el element provided thereby
JP4669621B2 (en) * 2001-03-21 2011-04-13 アイファイヤー アイピー コーポレイション Manufacturing method of composite substrate, composite substrate obtained by this manufacturing method, EL element

Similar Documents

Publication Publication Date Title
JP2017224620A (en) Electroluminescent device and method for manufacturing the same
US5770920A (en) Electroluminescent lamp having a terpolymer binder
KR970077765A (en) Method and fabrication of alternating current powder electroluminescent device
WO2010082428A1 (en) Transparent electrode, method for producing same, and organic electroluminescent element
CN104701463B (en) Organic electroluminescent apparatus
EP3078244A1 (en) Electroluminescent device and manufacturing method thereof
JPH04351883A (en) Manufacture of dispersion type electroluminescence element
JPH0750632B2 (en) Thin film EL device
CN101163356B (en) Method of improving insulation performance of medium layer in electroluminescence display device
JP2001014952A (en) Transparent conductive film and electroluminescence panel
KR20040013503A (en) Electroluminescence device with high luminescence
JP3277965B2 (en) Electroluminescence panel
JP2001052875A (en) Electroluminescence
JPH08288066A (en) Dispersed powder type electroluminescent element
JPH0547474A (en) Electroluminescence element
KR100928959B1 (en) Polymer organic light emitting film wallpaper
JP3146059B2 (en) Transparent conductive film
JPH04351884A (en) Manufacture of dispersion type electroluminescence element
JPH07122367A (en) Dispersion type field emission element
JPH0992470A (en) Transparent conductive film for electroluminescent lamp electrode
KR960033172A (en) Phosphor resistant to moisture and its manufacturing method, organic dispersed electroluminescent device using same and manufacturing method thereof
KR200388575Y1 (en) Electroluminescence device with high luminescence
JPS6224960Y2 (en)
JP2749008B2 (en) Method for manufacturing electroluminescent device
JPH05251181A (en) Manufacture of dispersion type el element