JPH04351858A - Nickel hydrogen cell - Google Patents

Nickel hydrogen cell

Info

Publication number
JPH04351858A
JPH04351858A JP3126393A JP12639391A JPH04351858A JP H04351858 A JPH04351858 A JP H04351858A JP 3126393 A JP3126393 A JP 3126393A JP 12639391 A JP12639391 A JP 12639391A JP H04351858 A JPH04351858 A JP H04351858A
Authority
JP
Japan
Prior art keywords
storage alloy
hydrogen storage
hydrogen
heavy water
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3126393A
Other languages
Japanese (ja)
Inventor
Takao Ogura
孝夫 小倉
Yoichi Nomura
洋一 野村
Takeshi Tsuda
武 津田
Kotaro Kobayashi
康太郎 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP3126393A priority Critical patent/JPH04351858A/en
Publication of JPH04351858A publication Critical patent/JPH04351858A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To expedite capacity manifestation of a cell by activating hydrogen storage alloy at an early stage. CONSTITUTION:Heavy water is added to an electolyte of a nickel hydrogen cell, the hydrogen pole of which is formed out of hydrogen storage alloy. Since the equilibrium pressure of the heavy water is lower than a normal hydrogen, heavy water is absorbed in the hydrogen storage alloy. A crack or a destortion is generated in the hydrogen storage alloy, and normal hydrogen diffusion is facilitated, and the hydrogen storage alloy is thus activated at an early stage.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、水素極が水素吸蔵合金
で構成されたニッケル・水素電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nickel-metal hydride battery whose hydrogen electrode is made of a hydrogen storage alloy.

【0002】0002

【従来の技術】ニッケル・水素電池は、無公害,高容量
化が可能というメリットから、精力的に研究が進められ
ている。
[Prior Art] Nickel-metal hydride batteries are being actively researched because of their advantages of being non-polluting and capable of increasing capacity.

【0003】このニッケル・水素電池の水素極は、水素
吸蔵合金を粉末としてパンチングメタルやニッケルの発
泡メタルに塗布或いは充填することにより得られる。と
ころが、このようにして得られた水素極を電池内に組込
んでも、かなりの回数の充放電を繰り返さないと、目的
とする容量が出にくい。
The hydrogen electrode of this nickel-metal hydride battery is obtained by coating or filling a punched metal or nickel foam metal with a hydrogen storage alloy as a powder. However, even if the hydrogen electrode obtained in this way is incorporated into a battery, it is difficult to achieve the desired capacity unless charging and discharging are repeated a considerable number of times.

【0004】そのため、水素吸蔵合金を粉末化するにあ
たって、水素化による粉砕、即ち、水素吸蔵合金を高圧
(数MPa)下の水素雰囲気に晒すことにより水素を吸
蔵させ、該水素吸蔵合金を粉砕する方法を行う必要があ
る。
[0004] Therefore, when pulverizing a hydrogen storage alloy, hydrogen storage alloy is pulverized by hydrogenation, that is, hydrogen is stored by exposing the hydrogen storage alloy to a hydrogen atmosphere under high pressure (several MPa), and the hydrogen storage alloy is pulverized. Need to do it the way you want.

【0005】しかしながら、この方法は、得られた水素
吸蔵合金粉末が非常に活性であり、大気に触れると瞬間
的に酸化、条件によっては燃焼してしまい、危険である
と同時に大きな容量バラツキの要因となっている。
However, with this method, the obtained hydrogen storage alloy powder is very active, and when it comes into contact with the atmosphere, it oxidizes instantaneously and burns depending on the conditions, which is dangerous and at the same time causes large capacity variations. It becomes.

【0006】これを防ぐためには、水素吸蔵合金の粉砕
から電池組立てまで、全て脱酸素(約 0.2% 以下
)で行わなければならず、設備面からくるコスト増に大
きな問題点があった。
[0006] In order to prevent this, everything from crushing the hydrogen storage alloy to assembling the battery must be done with oxygen removed (approximately 0.2% or less), which poses a major problem in terms of equipment costs. .

【0007】そこで提案されたのが、水素吸蔵合金を機
械的に数 100メッシュに粉砕した後、アルカリ処理
をする方法である。粉砕された水素吸蔵合金をアルカリ
処理すると、機械的に粉砕したときに生ずる表面の酸化
層を除去でき、同時にラネーニッケルに近い層が生成し
、活性化が比較的容易に進むことが確認された。
[0007] Therefore, a method was proposed in which a hydrogen storage alloy is mechanically pulverized to several hundred meshes and then treated with alkali. It was confirmed that when a pulverized hydrogen storage alloy is treated with an alkali, the oxidized layer on the surface that occurs when it is mechanically pulverized can be removed, and at the same time a layer similar to Raney nickel is formed, making activation relatively easy.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、このよ
うな従来の方法では、粉砕した水素吸蔵合金をアルカリ
処理すると、表面の酸化層ばかりでなく、水素吸蔵合金
の溶出し易い成分、例えば、ランタン,アルミニウム,
マンガン等が溶出し、水素吸蔵合金の水素吸蔵能力が低
下してしまうという問題点がある。アルカリ処理の条件
によっては、水素吸蔵合金の成分の溶出は最小限に押え
られるが、これでは水素吸蔵合金の活性化があまり容易
には進まない問題点がある。
[Problems to be Solved by the Invention] However, in such conventional methods, when a pulverized hydrogen storage alloy is treated with alkali, not only the oxidized layer on the surface but also the easily eluted components of the hydrogen storage alloy, such as lanthanum, aluminum,
There is a problem in that manganese and the like are eluted and the hydrogen storage capacity of the hydrogen storage alloy is reduced. Depending on the conditions of the alkali treatment, the elution of the components of the hydrogen storage alloy can be suppressed to a minimum, but this poses a problem in that activation of the hydrogen storage alloy does not proceed very easily.

【0009】本発明の目的は、電池に組み込まれた状態
で早期に水素吸蔵合金を活性化することができるニッケ
ル・水素電池を提供することにある。
[0009] An object of the present invention is to provide a nickel-metal hydride battery in which a hydrogen storage alloy can be activated at an early stage while being incorporated into the battery.

【0010】0010

【課題を解決するための手段】上記の目的を達成する本
発明の手段を説明すると、本発明は電池ケース内に電解
液と共に収容された水素極が水素吸蔵合金で構成されて
いるニッケル・水素電池において、前記電解液中に重水
を含むことを特徴とする。
[Means for Solving the Problems] To explain the means of the present invention to achieve the above object, the present invention provides a nickel-metal hydride battery in which a hydrogen electrode housed together with an electrolyte in a battery case is made of a hydrogen storage alloy. The battery is characterized in that the electrolyte contains heavy water.

【0011】[0011]

【作用】重水素は通常の水素に比べて、合金の種類によ
ってはその程度は異なるが、水素吸蔵の平衡圧が低いと
いうことが知られている。
[Operation] It is known that deuterium has a lower equilibrium pressure for hydrogen absorption than normal hydrogen, although the degree of this varies depending on the type of alloy.

【0012】電池の電解液に重水を添加すると、重水の
一部が充電時に分解し、重水素が選択的に水素吸蔵合金
中に吸蔵される。このため、通常の電解液の場合に比べ
て、部分的ではあるが、極めて早く、水素吸蔵合金の活
性化が起こる。水素吸蔵合金の活性化は、該水素吸蔵合
金の構成元素の原子間に歪み或いはクラックが入ること
である。これにより、通常の水素も、部分的に活性化し
たところから拡散していき、電極全体の活性化が速やか
に起こる。このため、充放電をあまり繰り返すことなく
、目標とする電池容量を発現させることができる。
[0012] When heavy water is added to the electrolyte of the battery, a portion of the heavy water decomposes during charging, and deuterium is selectively occluded in the hydrogen storage alloy. Therefore, the hydrogen storage alloy is activated extremely quickly, albeit only partially, compared to the case of a normal electrolyte. Activation of a hydrogen storage alloy is when distortion or cracks occur between the atoms of the constituent elements of the hydrogen storage alloy. As a result, ordinary hydrogen also diffuses from the partially activated area, and the entire electrode is quickly activated. Therefore, the target battery capacity can be achieved without repeating charging and discharging too many times.

【0013】[0013]

【実施例】アーク溶解炉で作製した水素吸蔵合金MmN
i2.5 Co2.0 Al0.3 Mm0.2 (但
し、Mm;ミッシュメタル)を 200から 400メ
ッシュに粉砕し、ポリビニルアルコール水溶液を加え、
スラリー状とした後、ニッケルの発泡メタルに充填した
。これをナイロンセパレータを介して、公知の方法で作
製した焼結式ニッケル極と組合せて巻回し、AA形の電
池缶に挿入した。電解液は30%水酸化カリウム水溶液
 1.6 ml とし、これに対する重水の添加比率は
、それぞれ、aが無添加、bが1%添加、cが 2.5
%添加、dが10%添加である。また、設計上の電池容
量は、約700 mAh とした。
[Example] Hydrogen storage alloy MmN produced in an arc melting furnace
i2.5 Co2.0 Al0.3 Mm0.2 (Mm; Mischmetal) was ground to 200 to 400 mesh, a polyvinyl alcohol aqueous solution was added,
After making it into a slurry, it was filled into nickel foam metal. This was combined with a sintered nickel electrode prepared by a known method via a nylon separator, wound, and inserted into an AA type battery can. The electrolytic solution was 1.6 ml of 30% potassium hydroxide aqueous solution, and the addition ratio of heavy water to this was: a: no addition, b: 1% addition, and c: 2.5
% addition, d is 10% addition. Furthermore, the designed battery capacity was approximately 700 mAh.

【0014】その結果を図1に示した。図において、a
は前述したように無添加であり、これは従来品である。 b,c,dは前述したように重水を1%, 2.5%,
10%それぞれ添加した本発明品である。
The results are shown in FIG. In the figure, a
As mentioned above, there are no additives, and this is a conventional product. As mentioned above, b, c, and d contain heavy water at 1%, 2.5%,
These are the products of the present invention in which 10% of each of these substances was added.

【0015】従来品aでは、設計容量を発現するまでに
約30回充放電を繰り返さなければならなかった。これ
に対し、重水を1%添加した本発明品bでは、約20回
の充放電で設計容量を発現した。重水を 2.5%,1
0%添加した本発明品c,dでは、約5回の充放電で設
計容量を発現し、著しい効果が見られた。
[0015] Conventional product a had to be repeatedly charged and discharged about 30 times before the designed capacity was achieved. On the other hand, product b of the present invention with 1% heavy water added developed its designed capacity after about 20 charging and discharging cycles. Heavy water 2.5%, 1
Products c and d of the present invention with 0% addition achieved the designed capacity after about 5 charging and discharging cycles, and a remarkable effect was observed.

【0016】[0016]

【発明の効果】以上説明したように、本発明に係るニッ
ケル・水素電池は、電解液中に重水を添加しているので
、水素吸蔵合金を早期に活性化することができる。
[Effects of the Invention] As explained above, in the nickel-hydrogen battery according to the present invention, since heavy water is added to the electrolyte, the hydrogen storage alloy can be activated at an early stage.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】充放電を繰返した時の、重水を添加しない従来
品のニッケル・水素電池と、重水を添加した本発明品の
ニッケル・水素電池との初期の電池容量の特性図である
FIG. 1 is a characteristic diagram of the initial battery capacity of a conventional nickel-metal hydride battery to which heavy water is not added and a nickel-metal hydride battery of the present invention to which heavy water is added, when charging and discharging are repeated.

【符号の説明】[Explanation of symbols]

a…重水が無添加の従来品のニッケル・水素電池、b…
重水を1%添加した本発明品のニッケル・水素電池、c
…重水を 2.5%添加した本発明品のニッケル・水素
電池、d…重水を10%添加した本発明品のニッケル・
水素電池。
a... Conventional nickel-metal hydride battery with no added heavy water, b...
Nickel-hydrogen battery of the present invention with 1% heavy water added, c
...nickel-metal hydride battery of the present invention with 2.5% heavy water added, d...nickel-metal hydride battery of the present invention with 10% heavy water added.
Hydrogen battery.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  電池ケース内に電解液と共に収容され
た水素極が水素吸蔵合金で構成されているニッケル・水
素電池において、前記電解液中に重水を含むことを特徴
とするニッケル・水素電池。
1. A nickel-metal hydride battery in which a hydrogen electrode housed together with an electrolyte in a battery case is made of a hydrogen storage alloy, wherein the electrolyte contains heavy water.
JP3126393A 1991-05-30 1991-05-30 Nickel hydrogen cell Withdrawn JPH04351858A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3126393A JPH04351858A (en) 1991-05-30 1991-05-30 Nickel hydrogen cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3126393A JPH04351858A (en) 1991-05-30 1991-05-30 Nickel hydrogen cell

Publications (1)

Publication Number Publication Date
JPH04351858A true JPH04351858A (en) 1992-12-07

Family

ID=14934032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3126393A Withdrawn JPH04351858A (en) 1991-05-30 1991-05-30 Nickel hydrogen cell

Country Status (1)

Country Link
JP (1) JPH04351858A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112952210A (en) * 2021-04-01 2021-06-11 华富(江苏)电源新技术有限公司 Heavy water-based lead-acid storage battery, colloid electrolyte thereof and preparation method of colloid electrolyte

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112952210A (en) * 2021-04-01 2021-06-11 华富(江苏)电源新技术有限公司 Heavy water-based lead-acid storage battery, colloid electrolyte thereof and preparation method of colloid electrolyte

Similar Documents

Publication Publication Date Title
US5518509A (en) Method for producing a hydrogen absorbing alloy electrode
JP4121711B2 (en) Hydrogen storage metal-containing material and method for producing the same
JPH04351858A (en) Nickel hydrogen cell
US5857139A (en) Process for preparing an electrode for secondary battery employing hydrogen-storage alloy
JP3373989B2 (en) Hydrogen storage alloy powder and manufacturing method
JPH04328256A (en) Hydrogen storage alloy for nickel-hydrogen battery and manufacture thereof
JP2629807B2 (en) Hydrogen storage alloy electrode and its manufacturing method
JP2001266865A (en) Manufacturing method of hydrogen storage alloy electrode
JPH07153460A (en) Manufacture of metal hydride electrode
EP0765705A1 (en) Manufacturing method for a hydrogen storage alloy powder for batteries
JPH04318106A (en) Production of hydrogen storage alloy powder
JPH09213317A (en) Manufacture of hydrogen storage alloy electrode
JPH09302436A (en) Magnesium type hydrogen storage material and its production
JP3043128B2 (en) Metal-hydrogen alkaline storage battery
JPH01204371A (en) Manufacture of alkaline secondary battery
JPH06248302A (en) Method for activating hydrogen storage alloy
JPH01132049A (en) Hydrogen storage electrode
JPH02306541A (en) Manufacture of hydrogen storage alloy electrode for alkaline storage battery
JPH02256161A (en) Manufacture of alkaline battery and its negative electrode
JP3235228B2 (en) Hydrogen storage alloy electrode and method for producing the same
JPS61140075A (en) Manufacture of alkaline battery
JP2679441B2 (en) Nickel-metal hydride battery
JP3322449B2 (en) Method for producing metal hydride electrode
JPH0426057A (en) Sealed-type alkaline battery
JPH10134807A (en) Manufacture of hydrogen storage alloy powder

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980806