JPH04351396A - Manufacture of vacuum heat insulating wall - Google Patents

Manufacture of vacuum heat insulating wall

Info

Publication number
JPH04351396A
JPH04351396A JP3104736A JP10473691A JPH04351396A JP H04351396 A JPH04351396 A JP H04351396A JP 3104736 A JP3104736 A JP 3104736A JP 10473691 A JP10473691 A JP 10473691A JP H04351396 A JPH04351396 A JP H04351396A
Authority
JP
Japan
Prior art keywords
heat insulating
insulating wall
inorganic
insulation
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3104736A
Other languages
Japanese (ja)
Inventor
Tadao Yamaji
山路 忠雄
Masayoshi Aoki
青木 政義
Hiroshi Yamazaki
洋 山崎
Shigeru Tanaka
茂 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP3104736A priority Critical patent/JPH04351396A/en
Publication of JPH04351396A publication Critical patent/JPH04351396A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/04Arrangements using dry fillers, e.g. using slag wool which is added to the object to be insulated by pouring, spreading, spraying or the like

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Insulation (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Abstract

PURPOSE:To offer the manufacturing method of the heat insulating wall which is able to insulate heat to a high degree and also can be manufactured easily. CONSTITUTION:The inorganic binder, in which radiation preventive is distributed uniformly, is included in the heat insulating inorganic fiber 2, which is in a non-pressurized swelled state. The inorganic fiber mat 2A, which has been dried and hardened by being compressed by the pressure equal to the atmospheric pressure with respect to the vacuum until the thickness is nearly equal to the clearance of the heat insulating space of the heat insulating wall, is inserted into the heat insulating space 1. Then, the inside of the heat insulating space 1 is evacuated to the vacuum. By this constitution, it is possible to give the pressure resistivity of the heat insulating wall by the compressed inorganic heat insulating mat 2A, and also to perform the evacuation easily, and further, to improve the heat insulating effect.

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】この発明は真空断熱体の製造方法
に関する。 【0002】 【従来の技術】従来熱処理用ベーキング炉などの高次の
断熱を行う断熱壁の構造として、内外壁よりなる断熱壁
内を密閉空間とし内部に無機質発泡粉末を高密充填しさ
らに真空化してなる断熱壁が知られている(例えば特公
昭60−8399号公報) 。この種断熱壁は内部の真
空化された雰囲気と高密充填された無機質発泡粉末の断
熱効果との相乗により高次の断熱効果が得られ、例えば
厚さ4〜5cm程度の厚さの壁体で常温と 300〜4
00 ℃の温度差の断熱が可能とされている。 【0003】 【従来技術の問題点】しかしながら、上記断熱体は、断
熱空間への粉末の高密充填が非常に面倒で、複雑に入り
込む形状の断熱壁の場合上記困難性はさらに顕著となり
、また高密充填が出来たとしても、真空排気の際粉末の
吸引がどうしても生じ、これを極力少なくするため複雑
なフィルターが必要となるなど種々の問題があった。 【0004】また、このような問題を解消するため、断
熱空間内に無機繊維よりなるマットを収納しその後真空
排気して密封すること(例えば実開昭62−54396
号公報) 、あるいは輻射防止材等を混入した無機繊維
マットを収納しその後真空排気して密封すること(例え
ば特開昭59−78991号公報) 等が提案されてい
るが、前者の場合はマットを封入後断熱壁を真空排気し
た場合、繊維マットの充填度のむら、あるいは繊維マッ
トの有する圧縮変形性により断熱壁が凹入変形すること
があるといった問題があり、後者の場合は繊維間に輻射
防止材等が強固に固定されていないので長期間のうちに
上記粉末状の輻射防止材等が落下堆積しこれらの偏在が
生じ断熱効果の分布むらができる問題があった。 【0005】 【発明が解決しようとする課題】この発明は上記問題点
に鑑み、高次の断熱が可能でありしかも製造が容易な断
熱体の製造方法を提供することを目的としてなされたも
のである。 【0006】 【課題を解決するための手段】即ち、この発明の真空断
熱体の製造方法は、無加圧膨潤状態の断熱用無機繊維に
、輻射防止材を均一分散させた無機バインダーを含有さ
せ、該含浸断熱用無機繊維を真空に対する大気圧に等し
い圧力で圧縮することにより断熱壁の断熱空間にほヾ等
しい厚さにまで圧縮し硬化乾燥させた無機繊維断熱マッ
トを前記断熱空間内に挿入し、前記断熱空間内を真空排
気することを特徴とするものである。 【0007】 【作用】この発明において対象となる断熱壁は表裏面が
メンブレンとされ、その間が断熱用密閉空間とされた構
造をなす。そして、断熱のための主構成として上記断熱
壁内にガラス繊維、ロックウール等の無機繊維よりなる
断熱材を充填すると共に内部を真空化した構成とされる
が、上記無機繊維よりなる断熱材は充填に先立ち、輻射
防止材を均一分散させた無機バインダー、例えばコロイ
ダルシリカ、アルミナゾル、セメント、ベントナイト、
フライアッシュ等を含浸させた上で断熱空間に丁度収納
できる厚さにまで、真空と大気圧との差にほヾ等しい圧
力で圧縮し硬化乾燥したものが使用される。従って断熱
空間への収納はあたかも板状体を挿入することとなって
挿入が非常に容易となる。 【0008】しかる後に断熱壁内部を密閉し真空化すれ
ば、大気圧によるメンブレンの凹入変形は圧縮されて挿
入された無機繊維の形状安定性で支えられる。同時に真
空引き作業も内部無機繊維が硬化固定された状態である
ので吸引排出の恐れはなく容易にかつ短時間に排気可能
となる。 【0009】なお上記において、輻射防止材としてはア
ルミニウム箔、銅箔等の熱反射材、カーボンブラック等
の熱吸収材、あるいはTiO2、Fe3O4 等の金属
酸化物、炭化物、窒化物、磁鉄鉱などの熱散乱材が使用
される。さらに、無機繊維としては断熱効率の面より繊
維径が4〜15μm 、好適には8μm のものが使用
される。 【0010】 【実施例】次にこの発明の実施例を説明する。図1〜図
4はこの発明の実施工程を示す斜視図及び断面図である
。 【0011】実施例1 コロイダルシリカ 100重量部に対しルチルサンド(
TiO2)を50重量部添加し均一混合後、水を重量比
でコロイダルシリカ1に対し10加えて希釈液をつくり
、繊維径5μm 〜8μm のガラス繊維よりなる無加
圧状態で分厚いガラス繊維マット2に含浸させた。 【0012】次に、含浸ガラス繊維マット2をプレス機
で1kg/cm2 の圧力で厚さ3cmとなるまで図1
に点線で示すように加圧し型に嵌めたままの状態で硬化
乾燥させた。次に、厚さ0.5 mmのステンレスメン
ブレンを内外壁1A、1Bとし、断熱空間の厚さを30
mmとした断熱壁1(図2)を有する容器の断熱壁1内
に、上端に設けた開口部3より含浸圧縮マット2Aを挿
入し、内部に密充填の状態とした後開口部3を溶接によ
り密閉した。  次に、この断熱壁1を有する容器を図
3に示すようにベーキング炉4へ入れ約250 ℃で1
.5 時間加熱し不要なガスを排出した後真空ポンプ8
を作動し断熱壁1内部の真空引きを行い、終了後吸引口
を密閉し図4に示す断熱壁1を有する容器を得た。 【0013】実施例2 実施例1で使用したガラス繊維マットに替えて平均繊維
径5μm のロックウールを使用した他は実施例1と同
様に断熱壁1を有する容器を製造した。 【0014】実施例3 実施例1で得た含浸ガラスマット2を複数枚、間にアル
ミニウム箔をサンドイッチ状挟んで重ね、プレス機で1
kg/cm2 の圧力で圧縮した他は実施例1と同様に
断熱壁1を有する容器を製造した。 【0015】上記実施例1〜3の断熱壁について外観を
観察したところ表面の凹入変形は全く生じていなかった
。また、断熱試験を上記実施例1〜8の断熱壁について
外観を観察したところ表面の凹入変形は全く生じていな
かった。また、ASTMC518−85に準拠して熱伝
導率を測定したところ表のような結果となった。 【0016】                          
           表             
     熱伝導率          排気時間  
      変形量      実施例1     0
.0025           3.0 〃    
        0%        〃  2   
  0.0032           3.2 〃 
           0〃        〃  3
     0.0018           2.8
 〃            0〃      比較例
1     0.0083           45
  〃            10〃       
 〃  2     0.0028         
  2.4 〃            20〃  【
0016】表において、比較例1は従来の無機質発泡粉
末の充填断熱品、比較例2は無機バインダー及びルチル
サンド等の熱散乱材、輻射材を使用しないロックウール
充填の断熱壁のものである。また排気時間は0.05T
orrまでに要した排気時間を、また変形量は0.05
Torrまで真空化した時点での断熱壁中央部分の凹入
変形量をもとの厚さに対する100 分率で示したもの
である。表より明らかなように、熱伝導率、排気所要時
間、及び変形防止効果の点で従来例に比し優れることが
判明した。 【0017】 【発明の効果】以上説明したように、この発明によれば
、断熱壁内への断熱材の充填が非常に容易となり、また
充填される断熱材は一旦大気圧で圧縮されたものを使用
するから、断熱壁内部で充分な耐圧力を発揮し、薄いメ
ンブレンよりなる断熱壁でも凹入変形してしまうのが防
止できる。また、内部の真空度も容易に達成でき、ガラ
ス繊維の断熱性と相俟って薄い断熱壁でも充分な断熱性
を発揮し、断熱容器のコンパクト化にも寄与し得るなど
種々の効果を有する。
Description: FIELD OF INDUSTRIAL APPLICATION This invention relates to a method for manufacturing a vacuum heat insulator. [0002] Conventionally, as a structure of an insulating wall that provides high-level insulation in baking ovens for heat treatment, etc., the inside of the insulating wall consisting of the inner and outer walls is made into a sealed space, and the inside is densely filled with inorganic foam powder, and then the inside is evacuated. A heat insulating wall is known (for example, Japanese Patent Publication No. 60-8399). This type of insulation wall has a high-order insulation effect due to the synergistic effect of the internal vacuum atmosphere and the insulation effect of the densely packed inorganic foam powder, and for example, a wall with a thickness of about 4 to 5 cm Room temperature and 300~4
It is said that it is possible to insulate a temperature difference of 0.00°C. [Problems with the prior art] However, with the above-mentioned heat insulator, it is very troublesome to densely fill the powder into the heat-insulating space, and this difficulty becomes even more pronounced when the heat-insulating wall has a complicated shape. Even if filling was possible, there were various problems such as powder being inevitably sucked during vacuum evacuation and complicated filters being required to minimize this. [0004] In order to solve this problem, a mat made of inorganic fibers is housed in a heat insulating space, and then the mat is evacuated and sealed (for example, as described in Japanese Utility Model Application No. 62-54396).
(Japanese Patent Application Laid-open No. 78991/1982), or storing an inorganic fiber mat mixed with a radiation prevention material, etc., and then vacuuming and sealing it (for example, Japanese Patent Application Laid-open No. 78991/1989). However, in the former case, the mat When the insulation wall is evacuated after being filled with fiber mat, there is a problem that the insulation wall may be deformed in a concave manner due to the uneven filling degree of the fiber mat or the compressive deformability of the fiber mat.In the latter case, radiation between the fibers may cause Since the preventive material and the like are not firmly fixed, there is a problem in that the powdered radiation preventive material and the like fall and accumulate over a long period of time, resulting in uneven distribution of the heat insulating effect. SUMMARY OF THE INVENTION In view of the above-mentioned problems, the present invention has been made for the purpose of providing a method for manufacturing a heat insulating body that is capable of high-level heat insulation and is easy to manufacture. be. [Means for Solving the Problems] That is, the method for manufacturing a vacuum heat insulating body of the present invention includes adding an inorganic binder in which a radiation preventing material is uniformly dispersed to heat insulating inorganic fibers in a non-pressure swollen state. , the impregnated insulation inorganic fibers are compressed at a pressure equal to the atmospheric pressure relative to the vacuum to a thickness approximately equal to the insulation space of the insulation wall, and an inorganic fiber insulation mat that is hardened and dried is inserted into the insulation space. The apparatus is characterized in that the inside of the adiabatic space is evacuated. [Operation] The heat insulating wall that is the object of this invention has a structure in which the front and back surfaces are membranes, and the space between them is a closed space for heat insulation. The main structure for insulation is that the insulation wall is filled with an insulation material made of inorganic fibers such as glass fiber or rock wool, and the inside is evacuated. Prior to filling, an inorganic binder with a radiation prevention material uniformly dispersed therein, such as colloidal silica, alumina sol, cement, bentonite, etc.
The material used is impregnated with fly ash, etc., compressed at a pressure approximately equal to the difference between vacuum and atmospheric pressure, and hardened and dried to a thickness that can be stored in an insulated space. Therefore, storing it in the heat insulating space is like inserting a plate-like body, which makes insertion very easy. [0008] After that, if the inside of the heat insulating wall is sealed and evacuated, the concave deformation of the membrane due to atmospheric pressure is supported by the shape stability of the compressed and inserted inorganic fibers. At the same time, since the internal inorganic fibers are in a hardened and fixed state during the evacuation operation, there is no fear of suction and evacuation, and the evacuation can be performed easily and in a short time. In the above, radiation prevention materials include heat reflective materials such as aluminum foil and copper foil, heat absorbing materials such as carbon black, or heat absorbing materials such as metal oxides such as TiO2 and Fe3O4, carbides, nitrides, and magnetite. Scatter material is used. Furthermore, from the viewpoint of heat insulation efficiency, inorganic fibers having a fiber diameter of 4 to 15 μm, preferably 8 μm are used. [Example] Next, an example of the present invention will be described. 1 to 4 are a perspective view and a sectional view showing steps for implementing the present invention. Example 1 Rutile sand (
After adding 50 parts by weight of TiO2 and mixing uniformly, water was added at a weight ratio of 1 to 10 parts of colloidal silica to make a diluted solution, and a thick glass fiber mat 2 made of glass fibers with a fiber diameter of 5 μm to 8 μm was produced in a non-pressurized state. impregnated with. Next, the impregnated glass fiber mat 2 is pressed in a press at a pressure of 1 kg/cm2 until it reaches a thickness of 3 cm (Fig. 1).
Pressure was applied as shown by the dotted line, and the material was cured and dried while still in the mold. Next, stainless steel membranes with a thickness of 0.5 mm were used as the inner and outer walls 1A and 1B, and the thickness of the insulation space was set to 30 mm.
Insert the impregnated compressed mat 2A through the opening 3 provided at the upper end into the insulation wall 1 of the container, which has the insulation wall 1 (FIG. 2) with a diameter of It was sealed tightly. Next, the container having this insulating wall 1 is placed in a baking oven 4 as shown in FIG.
.. After heating for 5 hours and discharging unnecessary gas, vacuum pump 8
was operated to evacuate the inside of the heat insulating wall 1, and after the vacuum was completed, the suction port was sealed to obtain a container having the heat insulating wall 1 shown in FIG. Example 2 A container having a heat insulating wall 1 was produced in the same manner as in Example 1, except that rock wool having an average fiber diameter of 5 μm was used in place of the glass fiber mat used in Example 1. Example 3 A plurality of impregnated glass mats 2 obtained in Example 1 were layered with aluminum foil sandwiched between them, and pressed together using a press.
A container having a heat insulating wall 1 was manufactured in the same manner as in Example 1 except that it was compressed at a pressure of kg/cm2. When the external appearance of the heat insulating walls of Examples 1 to 3 was observed, no concave deformation occurred on the surface. Further, when the external appearance of the heat insulating walls of Examples 1 to 8 was observed during the heat insulation test, no concave deformation of the surface was observed. Further, when the thermal conductivity was measured according to ASTM C518-85, the results shown in the table were obtained. [0016]
table
Thermal conductivity Pumping time
Deformation amount Example 1 0
.. 0025 3.0 〃
0% 〃 2
0.0032 3.2 〃
0〃〃3
0.0018 2.8
〃 0〃 Comparative example 1 0.0083 45
〃 10〃
〃 2 0.0028
2.4 〃 20〃 [
In the table, Comparative Example 1 is a conventional insulating wall filled with inorganic foam powder, and Comparative Example 2 is a heat insulating wall filled with rock wool that does not use an inorganic binder, a heat scattering material such as rutile sand, or a radiant material. Also, the exhaust time is 0.05T
The exhaust time required to orr and the amount of deformation are 0.05
The amount of concave deformation of the central portion of the heat insulating wall when the vacuum is evacuated to Torr is expressed as a percentage of the original thickness. As is clear from the table, it was found to be superior to the conventional example in terms of thermal conductivity, evacuation time, and deformation prevention effect. [0017] As explained above, according to the present invention, it is very easy to fill the insulating material into the insulating wall, and the insulating material to be filled is once compressed at atmospheric pressure. Since it is used, sufficient pressure resistance can be exerted inside the heat insulating wall, and even a heat insulating wall made of a thin membrane can be prevented from being deformed. In addition, it has various effects such as the degree of vacuum inside can be easily achieved, and together with the insulation properties of glass fibers, even thin insulation walls can provide sufficient insulation properties, which can contribute to making insulation containers more compact. .

【図面の簡単な説明】[Brief explanation of drawings]

【図1】この発明の実施例の無機繊維マットの斜視図で
ある。
FIG. 1 is a perspective view of an inorganic fiber mat according to an embodiment of the present invention.

【図2】この発明の実施例の断熱壁を有する容器の断面
図である。
FIG. 2 is a cross-sectional view of a container with an insulating wall according to an embodiment of the invention.

【図3】この発明の実施例の容器のベーキングの状態を
示す断面図である
FIG. 3 is a sectional view showing the baking state of the container according to the embodiment of the present invention.

【図4】この発明の方法で得た断熱容器の断面図である
FIG. 4 is a sectional view of a heat-insulating container obtained by the method of the present invention.

【符号の説明】[Explanation of symbols]

1      断熱壁 2      ガラス繊維マット 2A      圧縮マット 3      開口部 4      ベーキング炉 5      吸引口 6      排気口 7      弁 8      真空ポンプ 1 Insulated wall 2 Glass fiber mat 2A Compressed mat 3 Opening 4 Baking oven 5 Suction port 6 Exhaust port 7 Valve 8 Vacuum pump

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  無加圧膨潤状態の断熱用無機繊維に、
輻射防止材を均一分散させた無機バインダーを含有させ
、該含浸断熱用無機繊維を真空に対する大気圧に等しい
圧力で圧縮することにより断熱壁の断熱空間にほヾ等し
い厚さにまで圧縮し硬化乾燥させた無機繊維断熱マット
を前記断熱空間内に挿入し、前記断熱空間内を真空排気
することを特徴とする真空断熱壁の製造方法。
[Claim 1] A heat insulating inorganic fiber in a non-pressure swollen state,
An inorganic binder with a radiation prevention material uniformly dispersed therein is contained, and the impregnated inorganic fibers are compressed at a pressure equal to atmospheric pressure relative to a vacuum to a thickness approximately equal to the insulation space of the insulation wall, and then hardened and dried. A method for manufacturing a vacuum heat insulating wall, comprising inserting the inorganic fiber heat insulating mat into the heat insulating space, and evacuating the inside of the heat insulating space.
JP3104736A 1991-04-09 1991-04-09 Manufacture of vacuum heat insulating wall Pending JPH04351396A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3104736A JPH04351396A (en) 1991-04-09 1991-04-09 Manufacture of vacuum heat insulating wall

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3104736A JPH04351396A (en) 1991-04-09 1991-04-09 Manufacture of vacuum heat insulating wall

Publications (1)

Publication Number Publication Date
JPH04351396A true JPH04351396A (en) 1992-12-07

Family

ID=14388785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3104736A Pending JPH04351396A (en) 1991-04-09 1991-04-09 Manufacture of vacuum heat insulating wall

Country Status (1)

Country Link
JP (1) JPH04351396A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002525543A (en) * 1998-09-30 2002-08-13 キャボット コーポレイション Vacuum insulation panel and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002525543A (en) * 1998-09-30 2002-08-13 キャボット コーポレイション Vacuum insulation panel and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US5826780A (en) Vacuum insulation panel and method for manufacturing
KR101015356B1 (en) Method for the production of a vacuum insulation element wrapped in a film, filled with powder
JP2000097390A (en) Heat insulating panel and manufacture thereof
JPH07280170A (en) Packing structure of packing material for vacuum heat insulating body
US4269323A (en) Heat insulated tank
EP2180110A1 (en) Thermally insulated building brick
JPH04351396A (en) Manufacture of vacuum heat insulating wall
JP2914412B2 (en) Manufacturing method of vacuum insulation wall
JPH09133289A (en) Manufacture of vacuum heat insulation body
JPS6014695A (en) Vacuum heat-insulating material
JPH06129591A (en) Manufacture of vacuum heat-insulating wall
JP2703483B2 (en) Insulated container for high temperature battery
JPH04224397A (en) Manufacture of powder vacuum heat insulating body
JP2768573B2 (en) Vacuum insulation for high temperature
JP2001108186A (en) Vacuum heat insulating body
KR101414515B1 (en) Vacuum Thermal Insulator Made of a Formed Glass Wool Material and its Fabrication Method
JPS61241595A (en) Vacuum heat-insulating structure body
JPH04337196A (en) Manufacture of vacuum heat-insulation wall
JPH06281090A (en) Structure of vacuum heat-insulating wall
JPH1064488A (en) Baking method for insulation container
JPH04312291A (en) Heat insulating member for vacuum heat insulating wall
JPH06294494A (en) Structure for vacuum insulating wall
JP2005207556A (en) Fairing body for heat insulating material and its manufacturing method
CN214064237U (en) Integrated vacuum heat insulation plate
JPH08145280A (en) Manufacture of vacuum heat insulation wall