JPH06294494A - Structure for vacuum insulating wall - Google Patents

Structure for vacuum insulating wall

Info

Publication number
JPH06294494A
JPH06294494A JP5105042A JP10504293A JPH06294494A JP H06294494 A JPH06294494 A JP H06294494A JP 5105042 A JP5105042 A JP 5105042A JP 10504293 A JP10504293 A JP 10504293A JP H06294494 A JPH06294494 A JP H06294494A
Authority
JP
Japan
Prior art keywords
insulating wall
heat insulating
mat
organic binder
inorganic fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5105042A
Other languages
Japanese (ja)
Inventor
Tadao Yamaji
忠雄 山路
Hiroshi Yamazaki
洋 山崎
Shigeru Tanaka
茂 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP5105042A priority Critical patent/JPH06294494A/en
Publication of JPH06294494A publication Critical patent/JPH06294494A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide the structure of a vacuum insulating wall capable of quickly discharging the internal gas regardless of the heat insulating wall having a complex shape and capable of shortening the evacuation processing time without deforming the heat insulating wall. CONSTITUTION:A mat 2 made of inorganic fibers compressed and hardened by an organic binder is sealed in a heat insulating wall 1A, the organic binder is heated and converted into cracked gas, the interior of the vacuum insulating wall 1A is evacuated, a recessed groove 2A is provided on the surface of the mat 2 made of inorganic fibers, and hollow inorganic fine grains 5 are filled in the recessed groove 2A. The recessed groove 2 filled with the hollow inorganic fine grains 5 serves as an air passage to accelerate the evacuation processing, and the hollow inorganic fine grains 5 prevent the surface of the heat insulating wall 1A from being recessed and deformed by the atmospheric pressure.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は真空断熱壁の構造に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vacuum heat insulating wall structure.

【0002】[0002]

【従来の技術】従来熱処理用ベーキング炉などの高次の
断熱を行う断熱壁の構造として、内外壁よりなる断熱壁
内を密閉空間とし内部に無機繊維マットを収納しその後
真空排気して密封する断熱壁が知られている(例えば実
開昭62-54396号公報) 。この種断熱壁は内部の真空化さ
れた雰囲気と高密度充填された無機質発泡粉末の断熱効
果との相乗により高次の断熱効果が得られ、例えば厚さ
4〜5cm程度の厚さの壁体で常温と 300〜400 ℃の温度
差の断熱が可能とされている。
2. Description of the Related Art Conventionally, as a structure of a heat insulating wall for high-order heat insulation such as a baking furnace for heat treatment, the heat insulating wall composed of inner and outer walls is used as a hermetically sealed space, and an inorganic fiber mat is housed therein and then vacuum exhausted to hermetically seal it. A heat insulating wall is known (for example, Japanese Utility Model Laid-Open No. 62-54396). This kind of heat insulating wall can obtain a high-order heat insulating effect by the synergistic effect of the inside vacuum atmosphere and the heat insulating effect of the densely packed inorganic foamed powder. For example, a wall body having a thickness of about 4 to 5 cm. It is said that it is possible to insulate between room temperature and the temperature difference of 300-400 ℃.

【0003】ところで、上記断熱体は、断熱空間へのマ
ットを封入後断熱壁を真空排気した場合、繊維マットの
充填度のむら、あるいは繊維マットの有する圧縮変形性
により断熱壁が内外気圧差に起因して凹入変形すること
がある問題があった。このような問題に鑑み、断熱空間
内に密封される無機繊維マットとして有機バインダーを
含有させ、かつ真空に対する大気圧に耐圧する密度まで
圧縮することにより断熱壁の断熱空間にほヾ等しい厚さ
にまで圧縮し硬化させたものを用い、この断熱マットを
前記断熱空間内に挿入し、次いで前記断熱壁を前記有機
バインダの分解温度まで空気の存在下で加熱してガス化
し、このガスを吸引排出後、前記断熱空間内を真空排気
する方法を提案した(例えば特願平3-104735号) 。
By the way, in the above-mentioned heat insulator, when the mat is sealed in the heat insulating space and the heat insulating wall is evacuated, the heat insulating wall is caused by the unevenness of the filling degree of the fiber mat or the compressive deformability of the fiber mat, which causes the pressure difference between the inside and outside. Then, there is a problem that it may be depressed and deformed. In view of such a problem, an organic binder is contained as an inorganic fiber mat sealed in the heat insulation space, and compressed to a density that can withstand atmospheric pressure against vacuum, so that the heat insulation wall has a thickness almost equal to that of the heat insulation space. The heat-insulating mat that has been compressed and hardened is inserted into the heat-insulating space, and then the heat-insulating wall is gasified by heating in the presence of air to the decomposition temperature of the organic binder, and this gas is sucked and discharged. After that, a method of evacuating the heat insulating space was proposed (for example, Japanese Patent Application No. 3-104735).

【0004】[0004]

【従来技術の問題点】上記方法によって、断熱壁の真空
化に伴う凹入変形等の問題はほぼ解決されたのである
が、断熱壁内を真空化する際、ガス化した有機バインダ
の完全な吸引に時間がかかる問題が生じた。すなわち、
ガス化した有機バインダーの除去及び真空排気時のガス
の流動抵抗が大きくなり完全に吸引するには吸引時間と
吸引圧力を強化する必要があり、短時間での吸引真空化
処理ができない問題がある。このような問題点に鑑み、
前記した断熱マットに空気流通用の凹溝を形成すること
も提案されているが(例えば特開平3-181695号) 、溝に
沿った断熱壁の表面が大気圧のため凹入変形する欠点が
あった。
The above-mentioned method has almost solved the problems such as the concave deformation due to the vacuuming of the heat insulating wall, but when the inside of the heat insulating wall is evacuated, the gasified organic binder is completely removed. There was a problem that it took time to suck. That is,
Removal of gasified organic binder and increase in gas flow resistance during vacuum evacuation make it necessary to strengthen suction time and suction pressure for complete suction, and there is a problem that suction vacuum processing cannot be performed in a short time. . In view of such problems,
Although it has been proposed to form a groove for air circulation in the heat insulating mat (for example, JP-A-3-81695), there is a drawback that the surface of the heat insulating wall along the groove is dented and deformed due to atmospheric pressure. there were.

【0005】[0005]

【発明が解決しようとする課題】この発明は上記問題点
に鑑み、複雑な形状の断熱壁であっても内部のガス化し
た有機バインダを速やかに排出でき、しかも断熱壁の変
形を生ずることなく真空化処理時間の短縮化を図ること
のできる真空断熱壁の構造を得ることを目的としてなさ
れたものである。
In view of the above problems, the present invention can quickly discharge the gasified organic binder inside even if the heat insulating wall has a complicated shape, and the heat insulating wall is not deformed. The purpose of the structure is to obtain a structure of a vacuum heat insulating wall that can shorten the vacuuming time.

【0006】[0006]

【課題を解決するための手段】即ち、この発明の真空断
熱壁の真空化処理方法は、断熱壁内部に有機バインダー
で圧縮硬化してなる無機繊維よりなるマットを封入し、
加熱して前記有機バインダを分解ガス化すると共に前記
断熱壁内部を真空化してなる真空断熱壁において、前記
無機繊維よりなるマット表面に凹溝が設けられ該凹溝内
には中空無機微粒子が充填されてなることを特徴とする
ものである。
That is, the method of vacuumizing a vacuum heat insulating wall according to the present invention encloses a mat made of inorganic fibers obtained by compression curing with an organic binder inside the heat insulating wall,
In the vacuum heat insulating wall formed by heating to decompose and gasify the organic binder and to evacuate the inside of the heat insulating wall, concave grooves are provided on the mat surface made of the inorganic fibers, and hollow inorganic fine particles are filled in the concave grooves. It is characterized by being done.

【0007】[0007]

【作用】この発明において、断熱壁内に封入される無機
繊維マット表面には、凹溝が設けられているので真空化
する際に排気ガスの通り道となり、断熱壁内を真空化す
る際に排気ガスの流動抵抗が増大することなくスムーズ
に排出され効率の良い真空化が達成される。
In the present invention, since the concave surface is provided on the surface of the inorganic fiber mat enclosed in the heat insulating wall, it serves as a passage for exhaust gas when evacuating and exhausts when evacuating the heat insulating wall. The gas is smoothly discharged without increasing the flow resistance of the gas and an efficient vacuum is achieved.

【0008】またこの凹溝内に充填される無機微粒子は
殆ど弾性がなくまた大気圧程度の圧力では破壊もしない
ので大気圧による凹入変形も防止される。さらに無機微
粒子は密充填しても粒子間には空隙ができるしかも微粒
子の中空部分が空気の通り道ともなるので凹溝内の排気
空気の流通には支障がなく、400 ℃前後の加熱では何ら
の影響もない。従って加熱排気がスムーズに達成され
る。
Further, since the inorganic fine particles filled in the concave groove have almost no elasticity and do not break at a pressure of about atmospheric pressure, concave deformation due to atmospheric pressure is prevented. Furthermore, even if the inorganic particles are densely packed, there are voids between them and the hollow part of the particles also serves as a passageway for the air, so there is no hindrance to the flow of exhaust air in the groove, and heating at around 400 ° C does not cause any problems. There is no effect. Therefore, heating and exhausting can be achieved smoothly.

【0009】[0009]

【実施例】次に、この発明の実施例を説明する。図1は
この発明の実施例の要部断面図、図2は断熱マット2の
平面図、図3及び図4は断熱マット2の挿入状態を示す
断面図、図5は実施例の製造装置の断面図である。
Embodiments of the present invention will be described below. 1 is a sectional view of an essential part of an embodiment of the present invention, FIG. 2 is a plan view of a heat insulating mat 2, FIGS. 3 and 4 are sectional views showing an inserted state of the heat insulating mat 2, and FIG. 5 is a manufacturing apparatus of the embodiment. FIG.

【0010】幅1000mm、深さ600mm 、高さ1700mm、断熱
層厚W40mmの断熱容器1を成形し、次いで繊維径5μm
〜8μm のロックウールよりなる無加圧状態で分厚いマ
ット表裏面に、ガラス繊維マット重量 100部に対し10重
量部のフェノール樹脂(大日本インキ化学工業株式会社
社製商品名ブライオーフェン)をスプレー噴射して含浸
させ、これをプレス機で2kg/cm2 の圧力で加熱しつつ
加圧して表面に幅 1cm、深さ5mm の凹溝2Aを図2に示
すように形成しつつフェノール樹脂を硬化させて厚さ37
〜39mmの圧縮マット2を成形した。
A heat-insulating container 1 having a width of 1000 mm, a depth of 600 mm, a height of 1700 mm, and a heat-insulating layer thickness of W40 mm is molded, and then the fiber diameter is 5 μm.
Spraying spraying 10 parts by weight of phenolic resin (Braiofen manufactured by Dainippon Ink and Chemicals, Inc.) to 100 parts by weight of glass fiber mat on the thick and thin mats made of rock wool of ~ 8 μm without pressure. And impregnate it with a press machine while heating it at a pressure of 2 kg / cm 2 to pressurize it to form a groove 2A having a width of 1 cm and a depth of 5 mm as shown in FIG. Thickness 37
A ~ 39 mm compression mat 2 was molded.

【0011】次いで、上記凹溝2Aに最大粒径1.5mm 、
平均粒径 1mmの中空無機微粒子5(丸越工業株式会社
製: 商品名「セラミックコクーン」)を充填して図3あ
るいは図4に示すように断熱壁1A内に前記マットを挿
入し、断熱容器1の断熱壁1Aの開口を封じた。
Next, a maximum grain size of 1.5 mm is formed in the groove 2A,
Hollow inorganic fine particles 5 having an average particle diameter of 1 mm (Marukoshi Kogyo Co., Ltd .: trade name "Ceramic Cocoon") are filled and the mat is inserted into the heat insulating wall 1A as shown in FIG. 3 or FIG. The opening of the heat insulating wall 1A was closed.

【0012】この断熱容器1を図5に示すように加熱炉
3に断熱容器1を入れ、断熱壁1Aに設けた開口にバル
ブ4を接続し断熱容器を300 ℃に加熱しつつ空気吸引ポ
ンプ(図外)で吸引を行い、吸引を行った。内部の有機
バインダのガスが十分許容できる低濃度の範囲となるま
での時間を計数したところ約35分で良いことが判明し
た。
As shown in FIG. 5, the heat insulating container 1 is placed in a heating furnace 3 and the valve 4 is connected to an opening provided in a heat insulating wall 1A to heat the heat insulating container to 300 ° C. and an air suction pump ( Suction was performed by (not shown) and suction was performed. When the time required for the gas of the organic binder inside to reach a sufficiently low concentration range was counted, it was found to be about 35 minutes.

【0013】比較例として、凹溝の無い繊維マットを使
用した場合と凹溝2Aはあるが内部に中空無機微粒子を
充填しない繊維マットを使用した場合とについて加熱真
空化作業を行い、実施例と同一レベルガス濃度となるま
でのガス吸引時間を測定したところ前者は平均して1.5
時間、後者は真空排気中に断熱容器外壁が既に凹溝に沿
って変形を始め凹溝をほヾ埋めてしまう状態となり約50
分を要した。また真空化処理した断熱容器の変形を観察
したが、凹溝2Aはあるが内部に中空無機微粒子を充填
しなかった比較例は凹溝に沿った凹入変形が生じていた
が、本発明の実施例はそのような凹入変形は全く見られ
なかった。
As a comparative example, a heating and vacuuming operation was carried out for the case of using a fiber mat having no groove and the case of using a fiber mat having grooves 2A but having no hollow inorganic fine particles filled therein. When the gas suction time until the same level of gas concentration was measured, the former averaged 1.5
In the latter case, the outer wall of the heat-insulating container has already begun to deform along the groove during vacuum evacuation and the groove is almost completely filled.
It took a minute. Further, the deformation of the heat-insulated container subjected to the vacuum treatment was observed. In the comparative example in which the hollow inorganic fine particles were not filled inside although there was the concave groove 2A, the concave deformation along the concave groove occurred. In the example, no such indentation deformation was observed.

【0014】[0014]

【発明の効果】以上説明したように、この発明の方法に
よれば内部のガス化した有機バインダの排出が凹溝によ
って促進されるのでガスの吸引効率も良くなり、従来に
比しガス吸引処理時間が著しく短縮でき真空断熱容器の
製造効率を高めることができるのである。また、凹溝に
沿った断熱容器外壁の凹入変形もなく十分な強度も維持
することができる。
As explained above, according to the method of the present invention, since the discharge of the gasified organic binder inside is promoted by the concave groove, the gas suction efficiency is improved, and the gas suction treatment is performed as compared with the conventional method. The time can be remarkably shortened and the production efficiency of the vacuum insulated container can be improved. In addition, sufficient strength can be maintained without denting deformation of the outer wall of the heat insulating container along the groove.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例の要部断面図である。FIG. 1 is a sectional view of an essential part of an embodiment of the present invention.

【図2】断熱マット2の平面図である。FIG. 2 is a plan view of a heat insulating mat 2.

【図3】断熱マット2の挿入状態を示す断面図である。FIG. 3 is a cross-sectional view showing an inserted state of a heat insulating mat 2.

【図4】断熱マット2の挿入状態を示す断面図である。FIG. 4 is a cross-sectional view showing an inserted state of the heat insulating mat 2.

【図5】実施例の製造装置の断面図である。FIG. 5 is a cross-sectional view of the manufacturing apparatus according to the embodiment.

【符号の説明】[Explanation of symbols]

1…断熱容器 1A…断熱壁 2…有機バインダで圧縮硬化した断熱マット 2A…凹溝 3…加熱炉 4…バルブ 5…中空無機微粒子 DESCRIPTION OF SYMBOLS 1 ... Insulation container 1A ... Insulation wall 2 ... Insulation mat compressed and hardened by an organic binder 2A ... Recessed groove 3 ... Heating furnace 4 ... Valve 5 ... Hollow inorganic fine particles

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 断熱壁内部に有機バインダーで圧縮硬化
してなる無機繊維よりなるマットを封入し、加熱して前
記有機バインダを分解ガス化すると共に前記断熱壁内部
を真空化してなる真空断熱壁において、前記無機繊維よ
りなるマット表面に凹溝が設けられ該凹溝内には中空無
機微粒子が充填されてなることを特徴とする真空断熱壁
の構造。
1. A vacuum heat insulating wall obtained by enclosing a mat made of inorganic fibers formed by compression and hardening with an organic binder inside the heat insulating wall, heating and decomposing and gasifying the organic binder, and vacuumizing the inside of the heat insulating wall. 2. The structure of the vacuum heat insulating wall according to, wherein a concave groove is provided on the surface of the mat made of the inorganic fiber, and hollow inorganic fine particles are filled in the concave groove.
JP5105042A 1993-04-06 1993-04-06 Structure for vacuum insulating wall Pending JPH06294494A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5105042A JPH06294494A (en) 1993-04-06 1993-04-06 Structure for vacuum insulating wall

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5105042A JPH06294494A (en) 1993-04-06 1993-04-06 Structure for vacuum insulating wall

Publications (1)

Publication Number Publication Date
JPH06294494A true JPH06294494A (en) 1994-10-21

Family

ID=14396954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5105042A Pending JPH06294494A (en) 1993-04-06 1993-04-06 Structure for vacuum insulating wall

Country Status (1)

Country Link
JP (1) JPH06294494A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006316988A (en) * 2005-04-15 2006-11-24 Asahi Fiber Glass Co Ltd Core material for vacuum heat insulating material, its manufacturing method and vacuum heat insulating material
JP2010261501A (en) * 2009-05-07 2010-11-18 Panasonic Corp Vacuum heat insulating box

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006316988A (en) * 2005-04-15 2006-11-24 Asahi Fiber Glass Co Ltd Core material for vacuum heat insulating material, its manufacturing method and vacuum heat insulating material
JP2010261501A (en) * 2009-05-07 2010-11-18 Panasonic Corp Vacuum heat insulating box

Similar Documents

Publication Publication Date Title
WO1996001346A1 (en) Vacuum insulation panel and method for manufacturing
JPH05245860A (en) Manufacture and molding device of blower blade made of composite material
US2824364A (en) Method of assembling and evacuating an insulated vacuum panel
JPH06294494A (en) Structure for vacuum insulating wall
JP2914412B2 (en) Manufacturing method of vacuum insulation wall
JP4330775B2 (en) Carbon parts
CN108917280A (en) The preparation method of vacuum heat-insulating plate and melamine foamed plastic
JP2914415B2 (en) Manufacturing method of vacuum insulation wall
JPH08145280A (en) Manufacture of vacuum heat insulation wall
JPH07151297A (en) Vacuum insulating structure body
JP3167243B2 (en) Vacuum treatment method for vacuum insulation wall
JPS5977195A (en) Manufacture of element evacuated for heat insulation
JP2001108186A (en) Vacuum heat insulating body
JP2703483B2 (en) Insulated container for high temperature battery
JPH04351396A (en) Manufacture of vacuum heat insulating wall
JPH1064488A (en) Baking method for insulation container
JP2000343536A (en) Method for forming outer skin for aseismic base isolation device
JPH06313496A (en) Structure for vacuum heat insulating wall
JP2768573B2 (en) Vacuum insulation for high temperature
JPH06281090A (en) Structure of vacuum heat-insulating wall
WO1992008561A1 (en) Making of pressure-molded product from aluminum powder
JPH04337196A (en) Manufacture of vacuum heat-insulation wall
JP2003065489A (en) Vacuum heat insulating material and method of manufacturing the same
JPH0243938A (en) Generation of vacuum
JPS55109558A (en) Impregnating process method