JPH0435080A - Burried semiconductor laser - Google Patents

Burried semiconductor laser

Info

Publication number
JPH0435080A
JPH0435080A JP14223390A JP14223390A JPH0435080A JP H0435080 A JPH0435080 A JP H0435080A JP 14223390 A JP14223390 A JP 14223390A JP 14223390 A JP14223390 A JP 14223390A JP H0435080 A JPH0435080 A JP H0435080A
Authority
JP
Japan
Prior art keywords
layer
plane
burried
gaas substrate
lattice
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14223390A
Other languages
Japanese (ja)
Inventor
Akiko Gomyo
明子 五明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP14223390A priority Critical patent/JPH0435080A/en
Publication of JPH0435080A publication Critical patent/JPH0435080A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent deterioration of element and to improve characteristics and reliability of element by forming a high resistance GaInP, having impurity concentration of 1X10<17>cm<-3> or above and commensurates in lattice with GaAs, in contact with mesa stripe side face including a double-hetero structure. CONSTITUTION:When carbon or iron is doped with concentration of 1X10<17>cm<-3> or above, superlattice structure is randomized and the value of Eg is maximized. Consequently, undoped growth takes place on a GaAs substrate to commensurate the lattices. It has same composition as GaInP. A mesa stripe side face having double-hetero (DH) structure is then burried into a high resistance crystal having impurity concentration of 1X10<17>cm<-3> or above. Consequently, a structure burried with a DH active layer having Eg, higher by upto 90mev, can be obtained. Since the burried layer in commensurates in lattice with GaAs substrate, no defect is introduced from the interface thus protecting the characteristics and reliability of laser element against detectioration.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、可視光半導体レーザに関し、特に横モード制
御の埋め込み型半導体レーザに関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a visible light semiconductor laser, and more particularly to a buried semiconductor laser with transverse mode control.

(従来の技術) GaAs基板に格子整合したA、QGaInP系半導体
レーザは、波長580〜690 n11の可視光域で発
振するものであり、その重要性は近年特に増している。
(Prior Art) An A, Q GaInP semiconductor laser lattice-matched to a GaAs substrate oscillates in the visible light range of wavelengths 580 to 690 n11, and its importance has increased particularly in recent years.

第3図に示したレーザ構造の模式図を用いて、従来技術
について説明する。n−GaAs基板101上に、H(
A、Il O,6Gao、+ )6.5 I n6,5
 Pクラッド層102、アンドープ(AJI O,I7
G ao、ai) o、s I n o、5 P活性層
203、p  (A、Il O,6Gao、4) (+
、91 n、o、sPクラッド層104、p −G a
 A s層105からなるメサストライプの外側が鉄ド
ープ絶縁性Ga。、r I no、i P2O3により
埋め込まれた埋め込み型を有している。埋め込み層20
8は活性層103よりもバンドギャップエネルギー(E
g)か十分大きく、また、高抵抗であるので、埋め込み
層208には注入キャリアや光の閉じ込め効果がある。
The prior art will be explained using the schematic diagram of the laser structure shown in FIG. On the n-GaAs substrate 101, H(
A, Il O,6Gao, + )6.5 I n6,5
P cladding layer 102, undoped (AJI O, I7
Gao, ai) o, s I n o, 5 P active layer 203, p (A, Il O, 6 Gao, 4) (+
, 91 n, o, sP cladding layer 104, p - Ga
The outer side of the mesa stripe made of As layer 105 is iron-doped insulating Ga. , r I no, i has an embedded type embedded by P2O3. Buried layer 20
8 has a bandgap energy (E
g) is sufficiently large and has a high resistance, so the buried layer 208 has the effect of confining injected carriers and light.

また、A、0を含む4元混晶A、QGaTnPで埋め込
んだ場合と比べ、第3図の埋め込み層208は3元であ
るから、第3図の層構造では熱抵抗が低減されるし、ま
たAjを含まないからAfJに基づく素子劣化を避ける
ことができる(特願昭61−19832号)。
In addition, compared to the case where the buried layer 208 in FIG. 3 is ternary, compared to the case where it is buried with a quaternary mixed crystal A or QGaTnP containing A and 0, the layer structure of FIG. 3 reduces the thermal resistance. Furthermore, since it does not contain Aj, element deterioration due to AfJ can be avoided (Japanese Patent Application No. 19832/1983).

(発明が解決しようとする課題) 上に述べた従来の半導体レーザでは、埋め込み層208
か基板1.01と格子整合していないから、埋め込み界
面に格子欠陥などの欠陥を導入しやすく、この欠陥は半
導体レーザの素子特性および素子信頼性を損なうもので
あった。また、活性層と埋め込み層とのエネルギーギャ
ップ差が大きいと、それに件って、屈折率差も大きくな
りストライプ幅が3〜10μm程度と広い場合高次横モ
ードがたち易い。このことを防ぐべく屈折率差を小さく
するために活性層と埋め込み層の組成差を小さくしよう
とすると、製作上組成制御の困難が生ずる。
(Problem to be Solved by the Invention) In the conventional semiconductor laser described above, the buried layer 208
Since it is not lattice matched with the substrate 1.01, defects such as lattice defects are likely to be introduced into the buried interface, and these defects impair the device characteristics and device reliability of the semiconductor laser. Further, if the energy gap difference between the active layer and the buried layer is large, the refractive index difference will also be large, and if the stripe width is as wide as about 3 to 10 μm, higher-order transverse modes are likely to occur. If an attempt is made to reduce the compositional difference between the active layer and the buried layer in order to reduce the refractive index difference in order to prevent this, it will be difficult to control the composition in manufacturing.

本発明の目的は、埋め込みへテロ構造が本来もつ機能を
損わずに、従来の半導体レーザと同様に熱抵抗を低減き
゛、Ajに基づく劣化を回避できるとともに、埋め込み
界面に欠陥がなく、素子特性および信頼性に優れた半導
体レーザの提供にある。
The purpose of the present invention is to reduce the thermal resistance in the same manner as conventional semiconductor lasers without impairing the inherent functions of the buried heterostructure, to avoid deterioration due to Aj, and to avoid defects at the buried interface so that the device Our goal is to provide semiconductor lasers with excellent characteristics and reliability.

また、本発明は活性層と埋め込み層の相対屈折率差を1
0−2〜10づの小さな値に制御性よく設定でき、基本
横モードの維持が容易な半導体レーザの提供をも目的と
する。
Furthermore, the present invention reduces the relative refractive index difference between the active layer and the buried layer to 1
Another object of the present invention is to provide a semiconductor laser that can be set to a small value of 0-2 to 10 with good controllability and that can easily maintain the fundamental transverse mode.

(課題を解決するための手段) 上に述べた従来の技術に残された課題を解決するために
本発明が提供する手段は、(001)面若しくは(00
1)面に等価な面、または(001,)面から10°以
内の角度だけ傾いた面若しくは該傾いた面に等価な面を
主面としたGaAs基板にほぼ格子整合するGaInP
を活性層とし、この活性層よりもエネルギーギャップの
大きなAlGaInP又はAJTnPをクラッド層とす
るダブルヘテロ構造が前記GaAs基板の主面上にスト
ライプ状に形成されており、前記ダブルヘテロ構造を含
むストライプ状のメサ側面に接して、前記GaAs基板
とほぼ格子整合し、不純物濃度が1×1017(2)−
3以上である高抵抗G a I n P層か形成されて
いることを特徴とする埋め込み型半導体レーザである。
(Means for Solving the Problems) The present invention provides means for solving the problems remaining in the conventional techniques described above.
1) GaInP that is approximately lattice-matched to a GaAs substrate whose main surface is a plane equivalent to the (001,) plane, a plane tilted by an angle of within 10° from the (001,) plane, or a plane equivalent to the tilted plane.
A double heterostructure having an active layer and a cladding layer of AlGaInP or AJTnP having a larger energy gap than the active layer is formed in a stripe shape on the main surface of the GaAs substrate, and a stripe shape including the double heterostructure is formed on the main surface of the GaAs substrate. It is in contact with the mesa side surface of the GaAs substrate, is almost lattice matched with the GaAs substrate, and has an impurity concentration of 1×1017(2)-
This is a buried semiconductor laser characterized in that a high resistance G a I n P layer having a resistance of 3 or more is formed.

(作用) G a T n Pは1組成が一定であっても、成長条
件により異なるEg値をもつ(第2図)。このようにG
aInPのEg値が成長条件により異なるのは、成長温
度、成長時のV族原料に対する■族原料の比、V/II
I比などの成長条件に依存して混晶中結晶の原子配列状
態が異なることによる。つまり、■族原子(Ga、In
)か副格子上でランダムに配列している場合と、■族原
子が副格子上(11,1)面或いは(111)面(等価
な面を含む)でGa面とIn面か交互に並ぶ超格子配列
をもつ場合とでEgが異なる。ランダム状態で最大のE
gをもち、規則性をもつ超格子配列状態で、ランダムよ
りも約901+leV迄Egが小さくなる。
(Function) Even if the composition of G a T n P is constant, it has different Eg values depending on the growth conditions (FIG. 2). G like this
The Eg value of aInP differs depending on the growth conditions, including the growth temperature, the ratio of Group II raw material to Group V raw material during growth, and V/II.
This is because the atomic arrangement state of the crystal in the mixed crystal differs depending on the growth conditions such as the I ratio. In other words, group ■ atoms (Ga, In
) or are arranged randomly on the sublattice, and group (III) atoms are arranged alternately on the (11,1) plane or (111) plane (including equivalent planes) on the sublattice, either on the Ga plane or the In plane. Eg is different depending on the case with a superlattice arrangement. Maximum E in random state
In a superlattice arrangement state with regularity, Eg becomes smaller by about 901+leV than in the random case.

この超格子配列状態は、炭素、鉄などの不純物をlXl
0”’(1)1以上の濃度にドーピングした場合、ラン
ダム化され、Eg値は最高値になる(第2図)。
This superlattice arrangement state allows impurities such as carbon and iron to be
When doped to a concentration of 0'''(1)1 or more, randomization occurs and the Eg value becomes the highest (Figure 2).

そこで、アンド−1でGaAs基板に格子整合する様に
成長され、GaInPと同一の組成であって、不純物濃
度か1×1017CI11−3以上である高抵抗の結晶
でもって、ダブルヘテロ(DH)構造をもつメサストラ
イプ側面を埋め込むことにより、DH活性層のEgより
も最高90 mevまで高いEgの層でDH活性層を埋
め込んだ構造を得ることができる。本発明の構造では、
埋め込み層がGaAs基板と格子整合しており、しがも
AfJを含まない層であるから、埋込み界面等から欠陥
が導入されることがなく、レーザ素子特性および信頼性
の劣化を低減できた。
Therefore, a double hetero (DH) structure is formed using a high-resistance crystal that is grown to be lattice-matched to the GaAs substrate with AND-1, has the same composition as GaInP, and has an impurity concentration of 1×1017 CI11-3 or more. By embedding the side surface of the mesa stripe having a 0.25 mV, it is possible to obtain a structure in which the DH active layer is buried in a layer with an Eg higher than the Eg of the DH active layer by up to 90 mev. In the structure of the present invention,
Since the buried layer is lattice-matched to the GaAs substrate and does not contain AfJ, defects are not introduced from the buried interface, etc., and deterioration of laser device characteristics and reliability can be reduced.

(実施例) 以下、第1図に示した実施例により、本発明を説明する
(Example) The present invention will be described below with reference to an example shown in FIG.

第1図は、実施例を共振器端面側から見た側面図である
。ストライプは紙面に垂直な方向に伸びている。この実
施例の製作においては、まずnGaAsM板101上に
n−(A、Q。
FIG. 1 is a side view of the embodiment viewed from the resonator end face side. The stripes run perpendicular to the page. In manufacturing this example, first, n-(A, Q) is formed on the nGaAsM plate 101.

Gao、+ ) o、s T no、s Pクラッド層
102、アンドープ(AfJo、+tGao、ai) 
o、s I no、P活性層103、P  (A、OO
,6G ao、4 ) o、5Ino、sPクラッド層
104、p−GaAs層105を順次にエビタクシャル
成長する。成長は。
Gao, +) o, s T no, s P cladding layer 102, undoped (AfJo, +tGao, ai)
o, s I no, P active layer 103, P (A, OO
, 6Gao, 4) o, 5Ino, the sP cladding layer 104, and the p-GaAs layer 105 are sequentially grown epitaxially. As for growth.

ここでは量産性、再現性に優れたMOCVD法によった
。エビタクシャル層表面にSL、2を付着させ、フォト
リングラフィ法により、ストライプ状にSin、を残ず
。GaAs層に対しては硫酸/過酸化水素水/水の混液
をエツチング液として、AJGaTnP層に対しては稀
塩酸をエツチング液として、SiO□で被われていない
部分のエビタクシャル層をエツチングで除去し、メサ状
のストライプを形成する。続いて再びMOCVD法によ
り、不純物濃度1×1018CII13鉄ドープのGa
o、s I no、s P 108を成長させる。第2
図から、Gao、s I no、s Pのエネルギーギ
ャップEgは1.91eVであり、活性層のアンドープ
Gao、s  i no、s Pの1.83eVと較べ
て0.09eV大きいので、閉じ込めには十分な大きさ
のEgO差である。このとき、SiO□の表面には、G
 a a、 5Ino、sPは成長ぜず、SiO□のな
い部分に鉄ドープ絶縁性Gao、s I no、s P
 108が成長してメサ状ストライプが埋め込まれて埋
め込みへテロ構造が形成される。この後SiO□を沸酸
により除去し、T i / P t / A uのp電
極106およびA u / G eのn電極107を形
成して、素子とする。
Here, the MOCVD method, which is excellent in mass production and reproducibility, was used. SL, 2 was adhered to the surface of the epitaxial layer, and no Sin was left in a stripe pattern by photophosphorography. For the GaAs layer, use a mixture of sulfuric acid/hydrogen peroxide/water as an etching solution, and for the AJGaTnP layer, use dilute hydrochloric acid as the etching solution to remove the portion of the epitaxial layer that is not covered with SiO□. , forming mesa-like stripes. Subsequently, Ga doped with impurity concentration 1×1018 CII13 iron was formed again by MOCVD method.
Grow o, s I no, s P 108. Second
From the figure, the energy gap Eg of Gao, s I no, and s P is 1.91 eV, which is 0.09 eV larger than the 1.83 eV of undoped Gao, s I no, and s P in the active layer. This is a sufficiently large EgO difference. At this time, on the surface of SiO□, G
a a, 5Ino, sP does not grow, and iron-doped insulating Gao, sIno, sP does not grow in the area where there is no SiO□.
108 is grown to embed the mesa-like stripes to form a buried heterostructure. Thereafter, SiO□ is removed with hydrochloric acid to form a p-electrode 106 of T i /P t /A u and an n-electrode 107 of A u /G e to form a device.

本実施例は、GaAs基板との格子不整合度の大きいG
ao、7I no、i Pで埋め込んだ半導体レーザあ
るいはA、0を含んだ半導体層で埋め込んだ半導体レー
ザと比較すると素子特性および信頼性において優れてい
る。
This example uses G, which has a large lattice mismatch with the GaAs substrate.
Compared to a semiconductor laser embedded with ao, 7I no, i P or a semiconductor laser embedded with a semiconductor layer containing A, 0, the device characteristics and reliability are excellent.

なお、本実施例は、絶縁層で埋め込んだが、Pn反転層
で埋め込んでも同様の効果が得られる。
In this embodiment, the insulating layer is used for burying, but the same effect can be obtained even if the Pn inversion layer is used for burying.

また、メサストライプ側面にI X 10 l7an−
’以上の不純物濃度をもつ高抵抗層を接触させ、その後
にさらにEgの高いA、0GaInP層で埋め込んでも
同様の効果が得られる。
In addition, I X 10 l7an- on the side of the mesa stripe
A similar effect can be obtained by contacting a high resistance layer having an impurity concentration of 1 or more and then embedding an A, 0 GaInP layer with a high Eg.

(発明の効果) このように本発明の構成をとることにより、素子劣化を
免かれ、ひいては素子特性および信頼性を従来の半導体
レーザに較べて著しく改善させることができた。
(Effects of the Invention) By employing the configuration of the present invention as described above, element deterioration can be avoided, and the element characteristics and reliability can be significantly improved compared to conventional semiconductor lasers.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を共振器端面側から見た側面
図、第2図はアンドープGa。 Tno、sPのバンドギャップエネルギー(Eg)の成
長温度、および成長時の原料のV族に対する■族の比、
ならびに不純O1濃度I X 1017■−3以上ドー
ピングしなGao、s I na、s PのEgの関係
を示す図、第3図は従来の半導体レーザを示す側面図で
ある。 図中101はn−GaAs基板、102はn(Aj O
,6Gao、+ ) o、T no、s Pクラッド層
、103はアンドープGao、s I no、s P活
性層、104はp  (A、OO,6Gao、< ) 
o51 no、sPクラッド層、105はp−GaAs
キャップ層、106はP電極、107はn電極、108
は絶縁性Gao、s I no、s P、109は絶縁
性(A、llO,6G ao、+ ) o、s I n
o、s P、203はアンドープ(A、llo、+yG
ao、ai) o、s T no、s P活性層、20
8は絶縁性Gao7I no、3Pをそれぞれ示す。
FIG. 1 is a side view of an embodiment of the present invention viewed from the resonator end face side, and FIG. 2 is a diagram showing undoped Ga. Tno, the growth temperature of the band gap energy (Eg) of sP, and the ratio of group ■ to group V of the raw material during growth,
3 is a side view of a conventional semiconductor laser. FIG. 3 is a side view of a conventional semiconductor laser. In the figure, 101 is an n-GaAs substrate, 102 is an n(Aj O
, 6Gao, +) o, T no, s P cladding layer, 103 is undoped Gao, s I no, s P active layer, 104 is p (A, OO, 6Gao, < )
o51 no, sP cladding layer, 105 is p-GaAs
Cap layer, 106 is P electrode, 107 is N electrode, 108
is insulating Gao, s I no, s P, 109 is insulating (A, llO, 6G ao, +) o, s I n
o, s P, 203 is undoped (A, llo, +yG
ao, ai) o, s T no, s P active layer, 20
8 indicates insulating Gao7I no and 3P, respectively.

Claims (1)

【特許請求の範囲】[Claims] (001)面若しくは(001)面に等価な面、または
(001)面から10゜以内の角度だけ傾いた面若しく
は該傾いた面に等価な面を主面としたGaAs基板にほ
ぼ格子整合するGaInPを活性層とし、この活性層よ
りもエネルギーギャップの大きなAlGaInP又はA
lInPをクラッド層とするダブルヘテロ構造が前記G
aAs基板の主面上にストライプ状に形成されており、
前記ダブルヘテロ構造を含むストライプ状のメサ側面に
接して、前記GaAs基板とほぼ格子整合し、不純物濃
度が1×10^1^7cm^−^3以上である高抵抗G
aInP層が形成されていることを特徴とする埋め込み
型半導体レーザ。
Approximately lattice-matched to a GaAs substrate whose main surface is a (001) plane, a plane equivalent to the (001) plane, a plane tilted by an angle of within 10 degrees from the (001) plane, or a plane equivalent to the tilted plane. GaInP is used as an active layer, and AlGaInP or A has a larger energy gap than this active layer.
The double heterostructure with lInP as the cladding layer is the G
It is formed in a stripe shape on the main surface of the aAs substrate,
In contact with the side surface of the striped mesa including the double heterostructure, a high-resistance G layer is substantially lattice-matched with the GaAs substrate and has an impurity concentration of 1 x 10^1^7 cm^-^3 or more.
A buried semiconductor laser characterized in that an aInP layer is formed.
JP14223390A 1990-05-31 1990-05-31 Burried semiconductor laser Pending JPH0435080A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14223390A JPH0435080A (en) 1990-05-31 1990-05-31 Burried semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14223390A JPH0435080A (en) 1990-05-31 1990-05-31 Burried semiconductor laser

Publications (1)

Publication Number Publication Date
JPH0435080A true JPH0435080A (en) 1992-02-05

Family

ID=15310523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14223390A Pending JPH0435080A (en) 1990-05-31 1990-05-31 Burried semiconductor laser

Country Status (1)

Country Link
JP (1) JPH0435080A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5949808A (en) * 1995-07-21 1999-09-07 Matsushita Electric Industrial Co., Ltd. Semiconductor laser and method for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5949808A (en) * 1995-07-21 1999-09-07 Matsushita Electric Industrial Co., Ltd. Semiconductor laser and method for producing the same
US6108361A (en) * 1995-07-21 2000-08-22 Matsushita Electric Industrial Co., Ltd. Semiconductor laser and method for producing the same

Similar Documents

Publication Publication Date Title
EP0476689B1 (en) Semiconductor laser and manufacturing method of the same
US4839307A (en) Method of manufacturing a stripe-shaped heterojunction laser with unique current confinement
JP3060973B2 (en) Manufacturing method of gallium nitride based semiconductor laser using selective growth method and gallium nitride based semiconductor laser
JPH09129974A (en) Semiconductor laser device
JP3982985B2 (en) Manufacturing method of semiconductor laser device
JPH0435080A (en) Burried semiconductor laser
JPH07162093A (en) Semiconductor laser and its manufacture
JPH05211372A (en) Manufacture of semiconductor laser
JP3521792B2 (en) Manufacturing method of semiconductor laser
JPH06104534A (en) Semiconductor laser element
JPS62179192A (en) Semiconductor light emitting device
JPH0373584A (en) Semiconductor laser device
JPH06164064A (en) Visible-light semiconductor laser
JPH0567839A (en) Semiconductor laser device
JPH06268322A (en) Semiconductor laser and fabrication thereof
JP2699662B2 (en) Semiconductor laser and manufacturing method thereof
JP2000124553A (en) Semiconductor laser device and manufacture thereof
JPH0558594B2 (en)
JP3189900B2 (en) Semiconductor laser device
JPS61171185A (en) Semiconductor laser device
JP3005998B2 (en) Manufacturing method of semiconductor laser
JPH07221386A (en) Manufacture of semiconductor laser
JPH07193319A (en) Semiconductor laser element
JP2002217496A (en) Semiconductor laser and its manufacturing method
JPH04372189A (en) Manufacture of semiconductor laser