JPH0434987A - Semiconductor laser and manufacture thereof - Google Patents

Semiconductor laser and manufacture thereof

Info

Publication number
JPH0434987A
JPH0434987A JP14069490A JP14069490A JPH0434987A JP H0434987 A JPH0434987 A JP H0434987A JP 14069490 A JP14069490 A JP 14069490A JP 14069490 A JP14069490 A JP 14069490A JP H0434987 A JPH0434987 A JP H0434987A
Authority
JP
Japan
Prior art keywords
conductivity type
cladding layer
electrode
layer
active layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14069490A
Other languages
Japanese (ja)
Inventor
Susumu Asata
麻多 進
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP14069490A priority Critical patent/JPH0434987A/en
Publication of JPH0434987A publication Critical patent/JPH0434987A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To facilitate an injection of a current, to make it possible to make low an oscillation threshold current value and to manufacture a semiconductor laser, which is suitable as a parallel integrated light source for optical information processing use, by a method wherein a laser main body part, which is provided with a first conductivity type clad layer, an active layer and a second conductivity type clad layer, an electrode part and an electrode mounting pattern part are provided on an semi- insulating semiconductor substrate and the pattern part is provided with a vacancy for isolating the second conductivity type clad layer from the first semiconductivity type clad layer by the side of the active layer. CONSTITUTION:A second conductivity type clad layer 13 on an active layer 12 is pushed out in the horizontal direction and an electrode mounting pattern part 15 having a pore 14 is provided by the side of the layer 12, whereby problems, such as the difficulty of the formation of electrodes, an increase in a contact resistance to the electrodes and the like, can be improved. Moreover, as the sectional area of a current path can effectively be made large, the resistance of the parts of the clad layers can also be reduced. Moreover, as a current is made to flow in parallel to a film, the problem of the discontinuity of a heteroband can also be avoided.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は′光伝送や光情報処理に用いられる半導体レー
ザに関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a semiconductor laser used for optical transmission and optical information processing.

(従来の技術) 半導体レーザは光通信や光情報処理のキーとなる光源で
あり、特に最近、半導体基板に垂直な方向に発振する面
発光半導体レーザがコンピュータ間のデータ伝送や光コ
ンピユーテイングに欠かせないキーデバイスとして研究
が盛んになされている。これは、光が空間を無配線でデ
ータ転送できることから、半導体レーザが単体素子以外
にも並列集積された場合の空間的並列処理の能力の高さ
が期待されているためである。
(Prior art) Semiconductor lasers are key light sources for optical communication and optical information processing.In particular, recently, surface-emitting semiconductor lasers that oscillate in a direction perpendicular to semiconductor substrates have been used for data transmission between computers and optical computing. It is being actively researched as an indispensable key device. This is because light can transfer data through space without wires, so it is expected that semiconductor lasers will have a high spatial parallel processing ability when integrated in parallel in addition to single elements.

(発明が解決しようとする課題) このような並列集積に適した半導体レーザに対して、従
来素子の電極パターンの形成が課題となっていた。例え
ば、従来の面発光半導体レーザとしては、エレクトロニ
クス・レターズ(ElectronicsLetter
s)の25巻(1989年)の1377〜1378頁に
内容が記載されているように、素子への電流供給は単に
テスト用のワイヤでなされているのみであった。この面
発光半導体レーザは、円筒状の垂直共振器構造をもち、
その共振器内において活性層は反射鏡となる上下の半導
体多層膜に挟まれており、電流はこの半導体多層膜を垂
直方向に通過し活性層に注入される構造と、なっている
。この場合、半導体多層膜のへテロ界面のバンド不連続
性により、電流が流れ難いことが従来問題となっていた
(Problems to be Solved by the Invention) For semiconductor lasers suitable for such parallel integration, formation of electrode patterns of conventional elements has been a problem. For example, as a conventional surface emitting semiconductor laser, Electronics Letters
As described in Vol. 25 (1989), pp. 1377-1378 of ``S), current was supplied to the device only by a test wire. This surface-emitting semiconductor laser has a cylindrical vertical cavity structure.
In the resonator, the active layer is sandwiched between upper and lower semiconductor multilayer films that serve as reflecting mirrors, and current passes vertically through the semiconductor multilayer films and is injected into the active layer. In this case, a conventional problem has been that it is difficult for current to flow due to band discontinuity at the hetero interface of the semiconductor multilayer film.

本発明の目的は、電極パターン形成の上記従来の困難を
改善した並列集積可能半導体レーザを提供することであ
る。
SUMMARY OF THE INVENTION An object of the present invention is to provide a parallel-integrable semiconductor laser that overcomes the above-mentioned conventional difficulties in electrode pattern formation.

(課題を解決するための手段) 本発明の半導体レーザは半絶縁半導体基板上に、第1導
電型のクラッド層、活性層、第2導電型のクラッド層を
備えるレーザ本体部と、電極部と、電極取付はパターン
部を有し、かつ該電極取付はパターン部において第2導
電型のクラッド層を第1導電型のクラッド層と隔絶する
ための空孔を活性層脇に有することを特徴とする。
(Means for Solving the Problems) A semiconductor laser of the present invention includes a laser main body portion including a cladding layer of a first conductivity type, an active layer, and a cladding layer of a second conductivity type, and an electrode portion on a semi-insulating semiconductor substrate. , the electrode mounting has a pattern portion, and the electrode mounting has a hole beside the active layer in the pattern portion for isolating the cladding layer of the second conductivity type from the cladding layer of the first conductivity type. do.

本発明の半導体レーザの製造方法は半絶縁半導体基板上
に第1導電型のクラッド層、活性層、第2導電型のクラ
ッド層を順に積層成長する工程と、レーザ本体部と電極
部とそれらを結ぶ幅の狭い電極取付はパターン部を有す
るマスクパターンを前記第2導電型クラッド層上に設け
、斜め入射イオンビームエツチング法ないしは結晶方位
を反映する化学エツチング法の少なくともいずれかの方
法により、断面形状を逆メサ状にエツチングし、前記電
極取付はパターン部において第2導電型クラッド層を第
1導電型クラッド層と隔絶するための空孔を活性層脇に
設ける工程を備えることを特徴とする。
The method for manufacturing a semiconductor laser of the present invention includes the steps of sequentially growing a first conductivity type cladding layer, an active layer, and a second conductivity type cladding layer on a semi-insulating semiconductor substrate, and forming a laser main body portion, an electrode portion, and the like. To attach the electrode with a narrow width, a mask pattern having a pattern portion is provided on the second conductivity type cladding layer, and the cross-sectional shape is etched by at least one of the oblique incident ion beam etching method and the chemical etching method that reflects the crystal orientation. is etched into an inverted mesa shape, and the electrode mounting includes a step of providing a hole beside the active layer to isolate the second conductivity type cladding layer from the first conductivity type cladding layer in the pattern portion.

(作用) 半導体レーザの共振器サイズを小さくしていくと、電極
形成部分のサイズも小さくなり、電極パターンの形成、
および電極の接触抵抗も高くなる。また、半導体多層膜
を反射膜に用いる面発光半導体レーザの場合、ペテロバ
ンド不連続による電荷空乏と蓄積が電流の膜垂直方向へ
の導電性を阻害する。これに対し、第1図は本発明の一
実施例の斜視図で、この第1図のように、活性層12上
のクラッド層13を水平方向にせり出し活性層脇に空孔
14を持った電極取付はパターン部15を設けてやれば
、電極形成の困難、電極との接触抵抗増大等の問題を改
善でき、7更に電流経路の断面積が実効的に大きくでき
るのでクラッド層部分の抵抗も低減できる。また膜平行
に電流を流せることによりペテロバンド不連続の問題も
回避できる。
(Function) As the resonator size of the semiconductor laser is made smaller, the size of the electrode forming part also becomes smaller, making it easier to form the electrode pattern.
And the contact resistance of the electrode also increases. Further, in the case of a surface emitting semiconductor laser that uses a semiconductor multilayer film as a reflective film, charge depletion and accumulation due to Peter band discontinuity inhibit the conductivity of current in the direction perpendicular to the film. On the other hand, FIG. 1 is a perspective view of an embodiment of the present invention.As shown in FIG. By providing a pattern section 15 for electrode mounting, problems such as difficulty in forming the electrode and increased contact resistance with the electrode can be alleviated. 7 Furthermore, since the cross-sectional area of the current path can be effectively increased, the resistance of the cladding layer portion can also be reduced. Can be reduced. Furthermore, by allowing current to flow parallel to the membrane, the problem of Peter band discontinuity can be avoided.

活性層上にクラッド層をせり出し、電極取付はパターン
を設けるには埋込み再成長などの複雑な工程も考えられ
るが、本発明では第2図のような簡単な工程を用いて、
活性層脇に空孔14を持った電極取付はパターン15を
形成した。第2図は概略製作工程図を示すもので、第2
図(a)のように膜成長した後第2図(b)のように電
極取付は部に幅狭のマスクパターン21を設け、第2図
(e)のように斜め入射イオンビームエツチングを行う
。斜め入射イオンビーム23の作用は、エツチング断面
形状を逆メサ状にするためのものであり、斜め入射イオ
ンビームエツチングの代わりに結晶方位を反映する化学
エツチングを用いても構わない。
In order to protrude the cladding layer over the active layer and provide a pattern for attaching the electrodes, a complicated process such as embedding and regrowth can be considered, but in the present invention, a simple process as shown in Fig. 2 is used.
Electrode attachment with holes 14 beside the active layer formed a pattern 15. Figure 2 shows a schematic manufacturing process diagram.
After the film has grown as shown in Figure 2(a), a narrow mask pattern 21 is provided in the electrode mounting area as shown in Figure 2(b), and oblique incident ion beam etching is performed as shown in Figure 2(e). . The effect of the obliquely incident ion beam 23 is to make the etching cross-sectional shape into an inverted mesa shape, and instead of obliquely incident ion beam etching, chemical etching that reflects the crystal orientation may be used.

(実施例) 第2図(aXbXc)は、本発明の請求項1及び2によ
る第1の実施例を説明する概略素子断面図である。半絶
縁GaAs基板10の上にそれぞれ1/4波長相当厚の
AlAs/GaAsからなるn型半導体多層膜とn型A
lxGa1−xAsからなるn型クラッド層11、ノン
ドープInGaAsからなる活性層12、P型AlxG
a1−xAsとそれぞれ174波長相当厚のAlAs/
GaAsのP型半導体多層膜からなるP型クラッド層1
3を分子線ビームエピタキシー(MBE)法で成長した
。更に電極膜20を積層した後(第2図(a))、電極
取付は部で幅狭のレジストマスクパターン21及びレー
ザ本体部マスクパターン22を形成しく第2図(b))
、塩素ガスを用いた反応性イオンビームエツチング(R
IBE)法を用いイオンビームの試料に対する入射角を
試料基板垂直から傾けることで、断面が逆メサ状で活性
層芯に空孔14を持つ電極取付はパターン部15を形成
した。第2図(c)はこのときの電極取付はパターン部
での断面図である。この構造では、水平方向の電流注入
が可能になり、従来半導体多層膜の垂直方向への電流注
入の際の高電圧化に伴うもれ電流を低減でき、従来に比
べ小さな閾電流値が得られた。またこの構造では従来に
比べ電極及びクラッド層13での抵抗は半分以下であっ
た。、また、半導体多層膜の暦数増による多層膜反射率
の増加も容易になり、この点による発振閾電流値の顕著
な低減も得られた。本実施例ではレーザ本体部の活性層
幅は211m X 2pm、電極パターン16は3pm
X311mの矩形、電極取付はパターン部15はlpm
幅とした。第1導電型の電極パターン17はひき出され
た第1導電型クラッド層11上に形成した。
(Example) FIG. 2 (aXbXc) is a schematic cross-sectional view of an element explaining a first example according to claims 1 and 2 of the present invention. On a semi-insulating GaAs substrate 10, an n-type semiconductor multilayer film made of AlAs/GaAs and an n-type A film each having a thickness equivalent to 1/4 wavelength are formed.
N-type cladding layer 11 made of lxGa1-xAs, active layer 12 made of non-doped InGaAs, P-type AlxG
a1-xAs and AlAs with a thickness equivalent to 174 wavelengths/
P-type cladding layer 1 made of GaAs P-type semiconductor multilayer film
3 was grown by molecular beam epitaxy (MBE). After further laminating the electrode film 20 (FIG. 2(a)), a narrow resist mask pattern 21 and a laser main body mask pattern 22 are formed at the electrode mounting portion (FIG. 2(b)).
, reactive ion beam etching (R) using chlorine gas
By using the IBE method and tilting the incident angle of the ion beam onto the sample from the perpendicular to the sample substrate, an electrode attachment pattern 15 was formed with an inverted mesa-like cross section and a hole 14 at the core of the active layer. FIG. 2(c) is a sectional view of the electrode attachment at the pattern portion. This structure makes it possible to inject current in the horizontal direction, reducing leakage current caused by high voltage when injecting current in the vertical direction of conventional semiconductor multilayer films, and resulting in a smaller threshold current value than in the past. Ta. Furthermore, in this structure, the resistance at the electrode and cladding layer 13 was less than half that of the conventional structure. In addition, it became easy to increase the reflectance of the multilayer film by increasing the number of semiconductor multilayer films, and a significant reduction in the oscillation threshold current value was also obtained in this respect. In this example, the active layer width of the laser main body is 211 m x 2 pm, and the electrode pattern 16 is 3 pm.
Rectangle x311m, electrode mounting pattern part 15 is lpm
Width. A first conductivity type electrode pattern 17 was formed on the extracted first conductivity type cladding layer 11 .

本実施例ではレーザ本体部1つに電極部42を1つ設け
たが、2つ以上設けてもよい。例えばレーザ本体部の左
右に電極部42を設ければ、電極部及びクラツド層部の
抵抗は115以下にすることができ、層低しきい値化、
や高効率化が可能となる。
In this embodiment, one electrode section 42 is provided in one laser main body section, but two or more electrode sections 42 may be provided. For example, if the electrode sections 42 are provided on the left and right sides of the laser main body, the resistance of the electrode sections and the cladding layer section can be reduced to 115 or less, and the threshold value of the layer can be lowered.
This makes it possible to achieve higher efficiency.

第2の実施例としては、本発明の請求項2によるエツチ
ング工程において、実施例1のイオンビームエツチング
の斜め入射法のかわりにエツチングガスの圧力を高めて
化学エツチング性を用い、逆メサ形状の電極取付はパタ
ーン15を形成した。その際電極取付はパターン方向は
逆メサ断面の得られる<011>方向に選んだ。この方
法は、工程も簡単でかつ光学的損傷の小さいため、極め
て良質の発振特性が得られた。
As a second embodiment, in the etching process according to claim 2 of the present invention, instead of the oblique incidence method of ion beam etching of embodiment 1, the pressure of the etching gas is increased to use chemical etching properties to form an inverted mesa shape. Electrode attachment formed pattern 15. At this time, the electrode attachment pattern direction was selected to be the <011> direction, which provides an inverted mesa cross section. With this method, the process was simple and optical damage was small, so extremely high-quality oscillation characteristics were obtained.

第3図は本発明の第1の実施例の素子を半絶縁基板10
上に並列堆積した場合の概略素子平面図である。本発明
の基本素子及び基本工程はいずれも集積化に適しており
、各素子は、低閾電流値で駆動することが可能であった
FIG. 3 shows an element of the first embodiment of the present invention on a semi-insulating substrate 10.
FIG. 3 is a schematic plan view of an element when the elements are stacked in parallel on top. Both the basic element and the basic process of the present invention are suitable for integration, and each element can be driven with a low threshold current value.

なお、第1図では面内に平行な活性層・クラッド層断面
が矩形のものを示したが、断面形状が円または楕円状や
多角形でも構わない。また活性層は単一又は多重量子井
戸構造でもよい。また材料系についても、InGaAs
のかわりにAlGaAs系や可視光域のAIGaInP
/GaInP系、長波長のInGaAsP/InP系の
レーザについても有効である。またnとpの第1導電型
と第2導電型とが入れ替わっても構わない。なお、本実
施例では面発光型の半導体レーザを例にとって説明した
が、従来の水平共振器タイプの半導体レーザについても
、適用可能である。
Although FIG. 1 shows a case where the active layer/clad layer cross section parallel to the plane is rectangular, the cross section may be circular, elliptical, or polygonal. Further, the active layer may have a single or multiple quantum well structure. Regarding the material system, InGaAs
Instead, use AlGaAs or AIGaInP in the visible light range.
/GaInP-based lasers and long-wavelength InGaAsP/InP-based lasers are also effective. Further, the first conductivity type and the second conductivity type of n and p may be exchanged. Although this embodiment has been described using a surface emitting type semiconductor laser as an example, the present invention is also applicable to a conventional horizontal resonator type semiconductor laser.

(発明の効果)  。(Effect of the invention) .

本発明の半導体レーザとその製造方法は従来に比べ電流
注入が容易でかつ発振閾電流値を低くでき従って光情報
処理用の並列集積光源として適している。
The semiconductor laser of the present invention and its manufacturing method can facilitate current injection and lower the oscillation threshold current value compared to the conventional semiconductor laser, and are therefore suitable as a parallel integrated light source for optical information processing.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の1実施例である半導体レーザを示す素
子の斜視図、第2図(aXbXc)は本発明の半導体レ
ーザ製造方法の概略工程図、第3図は、本発明の並列集
積素子の概略素子平面図である。 各図において、 10・・・基板、11・・・第1導電型クラッド層、1
2・・・活性層、13・・・第2導電型クラッド層、1
4・・・空孔、15・・・電極取付パターン部、16、
17・・・電極パターン、18・・・光、20・・・電
極膜、21、22・・・マスクパターン、 23・・・斜め入射イオンビーム、 31、32・・・電流通電パターン、41・・・レーザ
本体部、42・・・電極部
FIG. 1 is a perspective view of a device showing a semiconductor laser which is an embodiment of the present invention, FIG. 2 (aXbXc) is a schematic process diagram of a semiconductor laser manufacturing method of the present invention, and FIG. 3 is a parallel integration diagram of the present invention. FIG. 2 is a schematic element plan view of the element. In each figure, 10...Substrate, 11...First conductivity type cladding layer, 1
2... Active layer, 13... Second conductivity type cladding layer, 1
4...Vacancy, 15...Electrode mounting pattern part, 16,
17... Electrode pattern, 18... Light, 20... Electrode film, 21, 22... Mask pattern, 23... Obliquely incident ion beam, 31, 32... Current conduction pattern, 41... ... Laser body part, 42... Electrode part

Claims (2)

【特許請求の範囲】[Claims] (1)半絶縁半導体基板上に、第1導電型のクラッド層
、活性層、第2導電型のクラッド層を備えるレーザ本体
部と、電極部と、電極取付けパターン部を有し、かつ該
電極取付けパターン部において第2導電型のクラッド層
を第1導電型のクラッド層と隔絶するための空孔を活性
層脇に有することを特徴とする半導体レーザ。
(1) A laser body comprising a cladding layer of a first conductivity type, an active layer, a cladding layer of a second conductivity type, an electrode part, and an electrode attachment pattern part on a semi-insulating semiconductor substrate, and the electrode 1. A semiconductor laser having a hole beside an active layer for separating a cladding layer of a second conductivity type from a cladding layer of a first conductivity type in a mounting pattern portion.
(2)半絶縁半導体基板上に第1導電型のクラッド層、
活性層、第2導電型のクラッド層を順に積層成長する工
程と、レーザ本体部と電極部とそれらを結ぶ幅の狭い電
極取付けパターン部を有するマスクパターンを前記第2
導電型クラッド層上に設け、斜め入射イオンビームエッ
チング法ないしは結晶方位を反映する化学エッチング法
の少なくともいずれかの方法により断面形状が逆メサ状
になるようエッチングを行って、前記電極取付けパター
ン部において第2導電型クラッド層を第1導電型クラッ
ド層と隔絶するための空孔を活性層脇に設ける工程を含
むことを特徴とする半導体レーザの製造方法。
(2) a cladding layer of a first conductivity type on a semi-insulating semiconductor substrate;
A process of sequentially laminating and growing an active layer and a cladding layer of the second conductivity type, and forming a mask pattern having a laser main body portion, an electrode portion, and a narrow electrode attachment pattern portion connecting them to the second conductivity type cladding layer.
The electrode mounting pattern is formed on the conductive cladding layer and etched to have an inverted mesa cross-sectional shape by at least one of oblique incident ion beam etching or chemical etching that reflects the crystal orientation. A method for manufacturing a semiconductor laser, comprising the step of providing a hole beside an active layer to isolate a second conductivity type cladding layer from a first conductivity type cladding layer.
JP14069490A 1990-05-30 1990-05-30 Semiconductor laser and manufacture thereof Pending JPH0434987A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14069490A JPH0434987A (en) 1990-05-30 1990-05-30 Semiconductor laser and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14069490A JPH0434987A (en) 1990-05-30 1990-05-30 Semiconductor laser and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH0434987A true JPH0434987A (en) 1992-02-05

Family

ID=15274576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14069490A Pending JPH0434987A (en) 1990-05-30 1990-05-30 Semiconductor laser and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH0434987A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007053406A (en) * 1997-03-06 2007-03-01 Finisar Corp Laser having selectively variable electric current closing layer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007053406A (en) * 1997-03-06 2007-03-01 Finisar Corp Laser having selectively variable electric current closing layer
JP4700593B2 (en) * 1997-03-06 2011-06-15 フィニサー コーポレイション Laser with a selectively confined current confinement layer

Similar Documents

Publication Publication Date Title
US5500868A (en) Vertical-to-surface transmission electro-photonic device with ion implanted current control regions
US5068869A (en) Surface-emitting laser diode
JPH07221398A (en) Semiconductor laser device
US6878958B2 (en) Vertical cavity surface emitting laser with buried dielectric distributed Bragg reflector
JPH06314854A (en) Surface light emitting element and its manufacture
JP2738194B2 (en) Surface emitting integrated device and method of manufacturing the same
US5271028A (en) Semiconductor laser device
JP3780665B2 (en) Manufacturing method of surface emitting semiconductor laser
JPH1168227A (en) Surface light emitting laser
JPH0434987A (en) Semiconductor laser and manufacture thereof
JP2546150B2 (en) Three-dimensional cavity surface emitting laser
JPH1027943A (en) Normal radiation semiconductor laser, method of fabricating the same, and method of varying wavelength
JP2595779B2 (en) Surface emitting laser and method of manufacturing the same
JP2812024B2 (en) Manufacturing method of surface emitting element
JP2689694B2 (en) Manufacturing method of surface emitting semiconductor laser
JP3470282B2 (en) Surface emitting semiconductor laser and manufacturing method thereof
JP3108183B2 (en) Semiconductor laser device and method of manufacturing the same
JP2800746B2 (en) Surface emitting device and method of manufacturing the same
JP2546153B2 (en) Surface emitting device and manufacturing method thereof
JPH09246652A (en) Semiconductor laser and manufacturing method thereof
JPH06177480A (en) Semiconductor laser element and manufacture thereof
JP3336981B2 (en) Semiconductor laminated structure
JPH05145170A (en) Plane emission laser
JP2003324249A (en) Surface-emitting semiconductor laser and its manufacturing method
JPH06318760A (en) Surface light emission laser and manufacture thereof