JPH04349214A - Magnetic recording medium for digital recording - Google Patents

Magnetic recording medium for digital recording

Info

Publication number
JPH04349214A
JPH04349214A JP3175991A JP17599191A JPH04349214A JP H04349214 A JPH04349214 A JP H04349214A JP 3175991 A JP3175991 A JP 3175991A JP 17599191 A JP17599191 A JP 17599191A JP H04349214 A JPH04349214 A JP H04349214A
Authority
JP
Japan
Prior art keywords
ferromagnetic metal
thin film
metal thin
magnetic
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3175991A
Other languages
Japanese (ja)
Inventor
Koji Kobayashi
康二 小林
Mitsuru Takai
充 高井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP3175991A priority Critical patent/JPH04349214A/en
Priority to EP19910115193 priority patent/EP0477641A3/en
Priority to KR1019910015854A priority patent/KR100256026B1/en
Publication of JPH04349214A publication Critical patent/JPH04349214A/en
Priority to US08/181,160 priority patent/US5453886A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To provide the magnetic recording medium for digital recording which has the lesser asymmetry and distortion of isolated reproducing waveforms, has the uniform reproducing waveforms in spite of the execution of forward and backward rotations at the time of recording and reproducing, has a lower error rates, obviate the degradation in S/N, does not require equalization or allows the use of a simple equalization circuit. CONSTITUTION:This recording medium has a 1st ferromagnetic metallic thin film and 2nd ferromagnetic metallic thin film deposited by diagonal evaporation from different directions. The total thickness of the 1st ferromagnetic thin film is 0.7 to 1.3 times the total thickness of the 2nd ferromagnetic thin film and the total sum of t. theta of the respective layers constituting the 1st ferromagnetic thin film is 0.7 to 1.3 times the tn theta of the respective layers constituting the 2nd ferromagnetic thin film when the max. incident angle is designated as thetamax., the min. incident angle as thetamin, theta=thetamax-thetamin, and the thickness of the ferromagnetic metallic thin film as t.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、ディジタル記録用磁気
記録媒体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic recording medium for digital recording.

【0002】0002

【従来の技術】HDTVの実用化に向けて、膨大なディ
ジタル画像信号を小型カセットへ記録するために、高密
度記録が可能な磁気テープが要求されている。
2. Description of the Related Art Toward the practical application of HDTV, a magnetic tape capable of high-density recording is required in order to record a huge amount of digital image signals onto a small cassette.

【0003】これを実現するため、テレビジョン学会技
術報告vol.13,No. 59, PP19−24
(1989) には、メタル磁性粉を用いた塗布型の磁
気テープを用いたディジタル画像記録の実験結果が報告
されている。
[0003] In order to realize this, the Technical Report of the Television Society vol. 13, No. 59, PP19-24
(1989) reported experimental results of digital image recording using a coated magnetic tape using metal magnetic powder.

【0004】また、電子情報通信学会技術研究報告(信
学技報)PP39−44 MR90−15では、Co−
Cr蒸着タイプの垂直磁気テープを用いて実験が行なわ
れている。
[0004] Also, in IEICE technical research report (IEICE technical report) PP39-44 MR90-15, Co-
Experiments have been conducted using a Cr-deposited perpendicular magnetic tape.

【0005】他方、Coを主体とし、さらにNi等を含
有し、斜め蒸着法によって形成した強磁性金属薄膜を磁
性層とする磁気テープは、飽和磁束密度が大きく、しか
も保磁力が高く、すぐれた電磁変換特性を示す。
On the other hand, a magnetic tape whose magnetic layer is a ferromagnetic metal thin film mainly composed of Co and further containing Ni etc. and formed by an oblique evaporation method has a high saturation magnetic flux density and a high coercive force, making it an excellent magnetic tape. Shows electromagnetic conversion characteristics.

【0006】そこで、信学技報PP43−49 MR9
0−7では、この斜め蒸着タイプの磁気テープを用い孤
立再生波を調べるために、矩形波を記録して、走行方向
依存性等の実験とその解析を行ない、その記録機構につ
いて考察を行なっている。
[0006] Therefore, IEICE Technical Report PP43-49 MR9
In 0-7, in order to investigate isolated reproduction waves using this obliquely deposited magnetic tape, we recorded rectangular waves, conducted experiments and analysis of the dependence on the running direction, and considered the recording mechanism. There is.

【0007】この場合、この報文では、その第43ペー
ジ図1に示されるように、蒸着テープとしては、1方向
から斜め蒸着し、1方向に柱状結晶粒が成長した単層の
蒸着膜を磁性層として用いている。
[0007] In this case, as shown in Figure 1 on page 43 of the report, the vapor deposition tape is a single-layer vapor deposition film in which columnar crystal grains grow in one direction, which is obliquely vapor-deposited from one direction. Used as a magnetic layer.

【0008】この結果、この報文では、正方向および逆
方向で孤立波信号を最適記録電流にて記録し、その各々
につき、正方向および逆方向での4種の孤立再生波形を
観察すると、第45ページ図4に示されるように、ゼロ
クロス点からピーク点の時間と、ピーク点からゼロクロ
ス点の時間との比は、1/5以下、あるいは5倍以上と
きわめて大きく、再生波形の非対称性がきわめて大きい
As a result, in this paper, by recording solitary wave signals in the forward and reverse directions at the optimum recording current, and observing four types of isolated reproduced waveforms in the forward and reverse directions for each, As shown in Figure 4 on page 45, the ratio of the time from the zero cross point to the peak point and the time from the peak point to the zero cross point is extremely large, less than 1/5, or more than 5 times, resulting in asymmetry of the reproduced waveform. is extremely large.

【0009】また、計4種の再生波形の重なり合いも少
なく、最も異なる再生波形間では、0点以上のピークの
重なり合いは60%以下となってしまう。
[0009] Furthermore, there is little overlap between the four types of reproduced waveforms, and among the most different reproduced waveforms, the overlap of peaks above 0 points is less than 60%.

【0010】このように孤立再生波形が非対称で歪んで
おり、また記録再生の正逆逆転により波形の不揃が生じ
ると、実際の記録再生では、エラー率が増大し、S/N
の低下につながり、また複雑な等化回路を必要とし、あ
るいは等化がきわめて困難となったり、その再生波形の
歪み具合によっては、いわゆるメタルテープ等との互換
性がとりづらくなる。
[0010] If the isolated reproduced waveform is asymmetric and distorted as described above, and if waveform irregularities occur due to forward/reverse reversal of recording and reproduction, the error rate will increase in actual recording and reproduction, and the S/N will decrease.
In addition, a complicated equalization circuit is required, or equalization becomes extremely difficult, and depending on the degree of distortion of the reproduced waveform, it becomes difficult to maintain compatibility with so-called metal tapes.

【0011】[0011]

【発明が解決しようとする課題】本発明の目的は、孤立
再生波形の非対称性と歪とが少なく、記録再生時の正逆
逆転を行なっても再生波形が揃い、エラー率が少なく、
S/Nの低下がなく、等化が不要であるか、あるいは単
純な等化回路を用いることができるディジタル記録用磁
気記録媒体を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to reduce the asymmetry and distortion of an isolated reproduced waveform, to ensure that the reproduced waveform is uniform even when forward/reverse rotation is performed during recording and reproduction, and to have a low error rate.
It is an object of the present invention to provide a magnetic recording medium for digital recording that does not cause a decrease in S/N, does not require equalization, or can use a simple equalization circuit.

【0012】0012

【課題を解決するための手段】このような目的は、下記
(1)〜(6)の本発明により達成される。 (1)ディジタル記録を行なう磁気記録媒体であって、
非磁性基体上に磁性層を有し、この磁性層は、少なくと
も1層の斜め蒸着法により形成され、Coを主成分とす
る第1の強磁性金属薄膜と、少なくとも1層の前記第1
の強磁性金属薄膜とは異なる方向から斜め蒸着を行なっ
て形成され、Coを主成分とする第2の強磁性金属薄膜
とを有し、蒸着時に強磁性金属が入射する方向と前記非
磁性基体表面の法線とがなす角度を入射角とし、入射角
の最大値をθmax 、入射角の最小値をθmin 、
Δθ=θmax −θmin とし、前記第1および第
2の強磁性金属薄膜を構成する層の膜厚をtとしたとき
、前記第1の強磁性金属薄膜の総膜厚が、前記第2の強
磁性金属薄膜の総膜厚の0.7〜1.3倍であり、前記
第1の強磁性金属薄膜を構成する各層のt・Δθの総和
が、前記第2の強磁性金属薄膜を構成する各層のt・Δ
θの総和の0.7〜1.3倍であることを特徴とするデ
ィジタル記録用磁気記録媒体。
[Means for Solving the Problems] Such objects are achieved by the present invention as described in (1) to (6) below. (1) A magnetic recording medium for digital recording,
A magnetic layer is provided on a non-magnetic substrate, and this magnetic layer is formed by an oblique evaporation method and includes at least one first ferromagnetic metal thin film containing Co as a main component, and at least one layer of the first ferromagnetic metal thin film.
a second ferromagnetic metal thin film mainly composed of Co, which is formed by oblique evaporation from a direction different from that of the ferromagnetic metal thin film of The angle formed by the surface normal is the incident angle, the maximum value of the incident angle is θmax, the minimum value of the incident angle is θmin,
When Δθ=θmax −θmin and t is the film thickness of the layers constituting the first and second ferromagnetic metal thin films, the total film thickness of the first ferromagnetic metal thin film is equal to the second ferromagnetic metal thin film. The thickness is 0.7 to 1.3 times the total thickness of the magnetic metal thin film, and the sum of t and Δθ of each layer constituting the first ferromagnetic metal thin film constitutes the second ferromagnetic metal thin film. t・Δ of each layer
A magnetic recording medium for digital recording, characterized in that the value of θ is 0.7 to 1.3 times the sum of θ.

【0013】(2)ディジタル記録を行なう磁気記録媒
体であって、非磁性基体上に磁性層を有し、この磁性層
は、少なくとも1層の斜め蒸着法により形成され、Co
を主成分とする第1の強磁性金属薄膜と、少なくとも1
層の前記第1の強磁性金属薄膜とは異なる方向から斜め
蒸着を行なって形成され、Coを主成分とする第2の強
磁性金属薄膜とを有し、正および負の孤立波信号を最適
記録電流にて記録して再生したとき、ゼロクロス点から
ピーク点までの時間が、ピーク点からゼロクロス点の時
間の0.5〜2倍であることを特徴とするディジタル記
録用磁気記録媒体。
(2) A magnetic recording medium for digital recording, which has a magnetic layer on a non-magnetic substrate, and this magnetic layer is formed by an oblique evaporation method, and includes at least one layer of Co.
a first ferromagnetic metal thin film whose main component is at least one
and a second ferromagnetic metal thin film whose main component is Co, which is formed by oblique deposition from a direction different from that of the first ferromagnetic metal thin film, and which optimizes positive and negative solitary wave signals. 1. A magnetic recording medium for digital recording, wherein the time from a zero cross point to a peak point is 0.5 to 2 times the time from a peak point to a zero cross point when recorded and reproduced using a recording current.

【0014】(3)ディジタル記録を行なう磁気記録媒
体であって、非磁性基体上に磁性層を有し、この磁性層
は、少なくとも1層の斜め蒸着法により形成され、Co
を主成分とする第1の強磁性金属薄膜と、少なくとも1
層の前記第1の強磁性金属薄膜とは異なる方向から斜め
蒸着を行なって形成され、Coを主成分とする第2の強
磁性金属薄膜とを有し、正方向および逆方向に走行して
孤立波信号を最適記録電流にて記録し、それぞれにつき
正方向および逆方向に走行して再生を行なって、各再生
波形を重ね合わせたとき、各再生波形の重なり合いが7
0%以上であることを特徴とするディジタル記録用磁気
記録媒体。
(3) A magnetic recording medium for digital recording, which has a magnetic layer on a non-magnetic substrate, and this magnetic layer is formed by an oblique evaporation method, and includes at least one layer of Co.
a first ferromagnetic metal thin film whose main component is at least one
The first ferromagnetic metal thin film of the layer is formed by oblique deposition from a direction different from that of the first ferromagnetic metal thin film, and has a second ferromagnetic metal thin film mainly composed of Co, and runs in the forward and reverse directions. When a solitary wave signal is recorded at the optimum recording current, reproduced by running in the forward direction and reverse direction, and the reproduced waveforms are superimposed, the overlap between the reproduced waveforms is 7.
A magnetic recording medium for digital recording, characterized in that the magnetic recording medium is 0% or more.

【0015】(4)蒸着時に強磁性金属が入射する方向
と前記非磁性基体表面の法線とがなす角度を入射角とし
、入射角の最大値をθmax 、入射角の最小値をθm
in 、Δθ=θmax −θmin とし、前記第1
および第2の強磁性金属薄膜を構成する層の膜厚をtと
したとき、前記第1の強磁性金属薄膜の総膜厚が、前記
第2の強磁性金属薄膜の総膜厚の0.7〜1.3倍であ
り、前記第1の強磁性金属薄膜を構成する各層のt・Δ
θの総和が、前記第2の強磁性金属薄膜を構成する各層
のt・Δθの総和の0.7〜1.3倍である上記(2)
または(3)に記載のディジタル記録用磁気記録媒体。
(4) The angle between the direction in which the ferromagnetic metal is incident during vapor deposition and the normal to the surface of the non-magnetic substrate is defined as the incident angle, the maximum value of the incident angle is θmax, and the minimum value of the incident angle is θm.
in, Δθ=θmax −θmin, and the first
And, when the thickness of the layers constituting the second ferromagnetic metal thin film is t, the total thickness of the first ferromagnetic metal thin film is 0.0% of the total thickness of the second ferromagnetic metal thin film. 7 to 1.3 times, and t・Δ of each layer constituting the first ferromagnetic metal thin film.
(2) above, wherein the sum of θ is 0.7 to 1.3 times the sum of t and Δθ of each layer constituting the second ferromagnetic metal thin film;
Or the magnetic recording medium for digital recording according to (3).

【0016】(5)蒸着時に強磁性金属が入射する方向
と前記非磁性基体表面の法線とがなす角度を入射角とし
、入射角の最大値をθmax 、入射角の最小値をθm
in 、Δθ=θmax −θmin とし、前記第1
および第2の強磁性金属薄膜を構成する層の膜厚をtと
したとき、前記第1の強磁性金属薄膜の総膜厚が、前記
第2の強磁性金属薄膜の総膜厚の0.7〜1.3倍であ
り、前記第1の強磁性金属薄膜を構成する各層のt・Δ
θの総和が、前記第2の強磁性金属薄膜を構成する各層
のt・Δθの総和の0.7〜1.3倍であり、正および
負の孤立波信号を最適電流にて記録して再生したとき、
ゼロクロス点からピーク点までの時間が、ピーク点から
ゼロクロス点の時間の0.5〜2倍である上記(3)に
記載のディジタル記録用磁気記録媒体。
(5) The angle between the direction in which the ferromagnetic metal is incident during vapor deposition and the normal to the surface of the non-magnetic substrate is defined as the incident angle, the maximum value of the incident angle is θmax, and the minimum value of the incident angle is θm.
in, Δθ=θmax −θmin, and the first
And, when the thickness of the layers constituting the second ferromagnetic metal thin film is t, the total thickness of the first ferromagnetic metal thin film is 0.0% of the total thickness of the second ferromagnetic metal thin film. 7 to 1.3 times, and t・Δ of each layer constituting the first ferromagnetic metal thin film.
The sum of θ is 0.7 to 1.3 times the sum of t and Δθ of each layer constituting the second ferromagnetic metal thin film, and positive and negative solitary wave signals are recorded at the optimum current. When played,
The magnetic recording medium for digital recording according to (3) above, wherein the time from the zero cross point to the peak point is 0.5 to 2 times the time from the peak point to the zero cross point.

【0017】(6)半値巾50〜500nsec、記録
波長0.35〜0.80μm の信号にてディジタル記
録を行なう上記(1)ないし(5)のいずれかに記載の
ディジタル記録用磁気記録媒体。
(6) The magnetic recording medium for digital recording according to any one of (1) to (5) above, wherein digital recording is performed using a signal having a half-width of 50 to 500 nsec and a recording wavelength of 0.35 to 0.80 μm.

【0018】[0018]

【作用】斜め蒸着型の磁気記録媒体の強磁性金属薄膜形
成においては、回転する円筒状の冷却ドラム表面に非磁
性基体を添わせて搬送しながら、定置された強磁性金属
源に電子ビーム等を照射して蒸着を行なう。
[Operation] In forming a ferromagnetic metal thin film on an oblique evaporation type magnetic recording medium, a nonmagnetic substrate is placed on the surface of a rotating cylindrical cooling drum and transported, while an electron beam or the like is directed at a stationary ferromagnetic metal source. Vapor deposition is performed by irradiating the

【0019】このとき、強磁性金属が入射する方向と非
磁性基体表面の法線とがなす角度を入射角と呼び、通常
、蒸着開始から終了まで入射角が漸減するように蒸着す
る。従って、非磁性基体上に形成された強磁性金属薄膜
中の柱状結晶粒子は、非磁性基体側ではほぼ非磁性基体
表面と平行であり、非磁性基体表面から離れるに従って
弧状に成長している。
At this time, the angle between the direction in which the ferromagnetic metal is incident and the normal to the surface of the non-magnetic substrate is called the angle of incidence, and the deposition is normally performed so that the angle of incidence gradually decreases from the start to the end of the deposition. Therefore, the columnar crystal grains in the ferromagnetic metal thin film formed on the non-magnetic substrate are approximately parallel to the non-magnetic substrate surface on the non-magnetic substrate side, and grow in an arc shape as they move away from the non-magnetic substrate surface.

【0020】蒸着時の入射角の最大値および最小値を、
それぞれ最大入射角θmax および最小入射角θmi
n と称する。なお、θmax は90度以下であり、
θmin は0度より大の所定の角度である。
[0020] The maximum and minimum values of the incident angle during vapor deposition are
Maximum incident angle θmax and minimum incident angle θmi respectively
It is called n. Note that θmax is 90 degrees or less,
θmin is a predetermined angle greater than 0 degrees.

【0021】そして、θmax からθmin にかけ
てのΔθ=θmax −θmin にて、強磁性金属薄
膜の蒸着が行なわれる。
Then, a ferromagnetic metal thin film is deposited at Δθ=θmax −θmin from θmax to θmin.

【0022】本発明では、このような強磁性金属薄膜を
2層以上用いて磁性層とし、蒸着時順方向に基体を搬送
させて、1方向に結晶粒の方位が向いた1層以上の第1
の強磁性金属薄膜と、これと逆方向に基体を搬送させて
、上記と逆の方向に結晶粒の方位が向いた1層以上の第
2の強磁性金属薄膜とを積層する。
In the present invention, two or more layers of such ferromagnetic metal thin films are used as a magnetic layer, and the substrate is transported in the forward direction during vapor deposition to form one or more layers with crystal grains oriented in one direction. 1
The ferromagnetic metal thin film is laminated with one or more second ferromagnetic metal thin films whose crystal grains are oriented in the opposite direction by transporting the substrate in the opposite direction.

【0023】そして、これら第1および第2の強磁性金
属薄膜を積層し、好ましくは、各薄膜のΔθと膜厚とを
所定の範囲に規制して、孤立再生波形の対称性を向上し
、またその歪をなくし、さらには、記録再生の正逆逆転
による波形の不揃をなくすものである。
Then, the first and second ferromagnetic metal thin films are laminated, and preferably the Δθ and film thickness of each thin film are controlled within a predetermined range to improve the symmetry of the isolated reproduced waveform, It also eliminates the distortion and further eliminates waveform irregularities caused by forward/reverse recording/reproduction.

【0024】[0024]

【具体的構成】以下、本発明の具体的構成について詳細
に説明する。 [非磁性基体]本発明で用いる非磁性基体の材質に特に
制限はなく、強磁性金属薄膜蒸着時の熱に耐える各種フ
ィルム、例えばポリエチレンテレフタレート等を用いる
ことができる。また、特開昭63−10315号公報に
記載の各種材料が使用可能である。なお、膜厚等、各種
寸法は、用途に応じて適宜決定すればよい。
[Specific Configuration] The specific configuration of the present invention will be explained in detail below. [Nonmagnetic Substrate] There are no particular restrictions on the material of the nonmagnetic substrate used in the present invention, and various films that can withstand the heat during deposition of a ferromagnetic metal thin film, such as polyethylene terephthalate, can be used. Further, various materials described in Japanese Patent Application Laid-Open No. 10315/1988 can be used. Note that various dimensions such as film thickness may be appropriately determined depending on the application.

【0025】[磁性層]非磁性基体上に形成される磁性
層は、Coを主成分とし、斜め蒸着法により形成される
2層以上の強磁性金属薄膜から構成される。
[Magnetic Layer] The magnetic layer formed on the nonmagnetic substrate is composed of two or more ferromagnetic metal thin films containing Co as a main component and formed by oblique evaporation.

【0026】各強磁性金属薄膜蒸着時のθmax は8
0〜90度であることが好ましく、θmin は10〜
60度であることが好ましい。
[0026] θmax during deposition of each ferromagnetic metal thin film is 8
The angle is preferably 0 to 90 degrees, and θmin is 10 to 90 degrees.
Preferably, the angle is 60 degrees.

【0027】この場合、Δθの算出においては、θma
x およびθmin には正負の符号をつけないものと
するが、正確には、第1の強磁性金属薄膜のθmax 
、θmin を正の値とすれば、第2の強磁性金属薄膜
のθmax 、θmin は負の値である。
In this case, in calculating Δθ, θma
x and θmin shall not be given positive or negative signs, but more precisely, θmax of the first ferromagnetic metal thin film
, θmin are positive values, θmax and θmin of the second ferromagnetic metal thin film are negative values.

【0028】第1および第2の強磁性金属薄膜を構成す
るそれぞれの層間では、強磁性金属が入射する方向が前
記非磁性基体の法線を挟んで交差するように蒸着されて
いるからである。これら第1および第2の強磁性金属薄
膜を構成する層間では、強磁性金属の柱状結晶粒子の成
長方向が、非磁性基体表面の法線を挟んで交差している
[0028] This is because the ferromagnetic metal is deposited between the layers constituting the first and second ferromagnetic metal thin films so that the direction of incidence of the ferromagnetic metal intersects the normal line of the non-magnetic substrate. . Between the layers constituting the first and second ferromagnetic metal thin films, the growth directions of the columnar crystal grains of the ferromagnetic metal intersect with the normal line to the surface of the nonmagnetic substrate interposed therebetween.

【0029】そして、このような構造は、非磁性基体の
走行方向を逆にして斜め蒸着することによって得られる
[0029] Such a structure can be obtained by diagonally depositing the non-magnetic substrate with its running direction reversed.

【0030】強磁性金属薄膜の積層総数に特に制限はな
く、目的に応じて2層、3層あるいは4層以上の構成を
選択すればよい。
There is no particular restriction on the total number of laminated ferromagnetic metal thin films, and a configuration of two, three, or four or more layers may be selected depending on the purpose.

【0031】これらの場合、第1の強磁性金属薄膜層と
第2の強磁性金属薄膜層との積層順は任意である。
In these cases, the stacking order of the first ferromagnetic metal thin film layer and the second ferromagnetic metal thin film layer is arbitrary.

【0032】すなわち、2層構成の場合、媒体走行方向
に対し、どちらが上層にあってもよい。
That is, in the case of a two-layer structure, either layer may be located on the upper layer with respect to the medium running direction.

【0033】3層以上の多層構成とする場合、任意の順
序で積層すればよいが、通常は、第1および第2の強磁
性金属薄膜層を交互に積層する。
In the case of a multilayer structure of three or more layers, the layers may be laminated in any order, but usually the first and second ferromagnetic metal thin film layers are alternately laminated.

【0034】このような前提において、各強磁性金属薄
膜層の膜厚をtとしたとき、第1の強磁性金属薄膜の総
膜厚は、第2の強磁性金属薄膜の総膜厚の0.7〜1.
3倍、特に0.8〜1.2倍である。
Under this assumption, when the thickness of each ferromagnetic metal thin film layer is t, the total thickness of the first ferromagnetic metal thin film is 0 of the total thickness of the second ferromagnetic metal thin film. .7~1.
3 times, especially 0.8 to 1.2 times.

【0035】また、第1の強磁性金属薄膜を構成する各
層のt・Δθの総和は、第2の強磁性金属薄膜を構成す
る各層のt・Δθの総和の0.7〜1.3倍、特に0.
8〜1.2倍である。
Further, the sum of t and Δθ of each layer constituting the first ferromagnetic metal thin film is 0.7 to 1.3 times the sum of t and Δθ of each layer constituting the second ferromagnetic metal thin film. , especially 0.
It is 8 to 1.2 times.

【0036】このような積層体により、再生波形の対称
性が向上し、歪が減少し、記録再生の正逆逆転によって
も揃った波形応答が得られる。
[0036] Such a laminated body improves the symmetry of the reproduced waveform, reduces distortion, and provides a uniform waveform response even when recording and reproduction are performed in forward and reverse directions.

【0037】磁性層を構成する各強磁性金属薄膜は、N
iを含有するCo−Ni合金であることが好ましく、特
にモル比でCoを約80%、Niを約20%含有する合
金が好適である。
Each ferromagnetic metal thin film constituting the magnetic layer is made of N
A Co--Ni alloy containing i is preferable, and an alloy containing about 80% Co and about 20% Ni in molar ratio is particularly suitable.

【0038】また、必要に応じてCrを10%以下含有
していてもよく、特開昭63−10315号公報等に記
載されている各種金属やその他の金属成分を含有してい
てもよい。
[0038] Further, if necessary, it may contain 10% or less of Cr, and may also contain various metals described in JP-A-63-10315 and other metal components.

【0039】さらに、必要に応じて少量の酸素を各層の
表面層に含有させたり、この他非磁性層を介在させたり
して、耐食性等を向上させることができる。
Furthermore, if necessary, corrosion resistance etc. can be improved by incorporating a small amount of oxygen into the surface layer of each layer or by interposing a non-magnetic layer.

【0040】各強磁性金属薄膜層の厚さは、約300〜
1500A であることが好ましい。
The thickness of each ferromagnetic metal thin film layer is about 300 to
Preferably it is 1500A.

【0041】磁性層全体の厚さは、1200〜3000
A 程度であることが好ましい。これにより出力を十分
に大きくすることができる。
[0041] The total thickness of the magnetic layer is 1200 to 3000 mm.
It is preferable that it is about A. This allows the output to be sufficiently increased.

【0042】各強磁性金属薄膜層は、それぞれ斜め蒸着
法により形成される。斜め蒸着装置および方法は、前掲
した各種の文献に記載されているのでそれらのうちから
任意のものを採用すればよい。
Each ferromagnetic metal thin film layer is formed by an oblique vapor deposition method. Since the oblique vapor deposition apparatus and method are described in the various documents mentioned above, any one may be adopted from among them.

【0043】斜め蒸着法は、例えば、供給ロールから繰
り出された長尺フィルム状の非磁性基体を回転する冷却
ドラムの表面に添わせて送りながら、一個以上の定置金
属源から斜め蒸着をし、巻き取りロールに巻き取るもの
である。この場合、入射角は蒸着初期のθmax から
最終のθmin まで連続的に変化し、非磁性基体表面
にCoを主成分とする強磁性金属の柱状結晶粒子を弧状
一方向に成長させ、整列させるものである。
In the oblique vapor deposition method, for example, a long film-like nonmagnetic substrate unwound from a supply roll is fed along the surface of a rotating cooling drum, while oblique vapor deposition is performed from one or more stationary metal sources. It is wound onto a take-up roll. In this case, the incident angle changes continuously from θmax at the initial stage of evaporation to θmin at the final stage, and columnar crystal grains of ferromagnetic metal mainly composed of Co are grown on the surface of the nonmagnetic substrate in an arc shape in one direction and aligned. It is.

【0044】磁性層を多層構成とする場合は、この工程
を繰り返し行なう。
When the magnetic layer has a multilayer structure, this step is repeated.

【0045】そして、強磁性金属が入射する方向が非磁
性基体の法線を挟んで交差するような2層の強磁性金属
薄膜層を形成する場合、非磁性基体の走行方向を逆にし
て斜め蒸着を行なえばよい。
When forming two ferromagnetic metal thin film layers in which the direction of incidence of the ferromagnetic metal crosses the normal line of the nonmagnetic substrate, the running direction of the nonmagnetic substrate is reversed and diagonally Vapor deposition may be performed.

【0046】本発明の磁気記録媒体の磁性層上には、磁
性層の保護および耐食性向上のために公知の種々のトッ
プコート層が設けられることが好ましい。また、テープ
化したときの走行性を確保するために、非磁性基体の磁
性層と反対側には公知の種々のバックコート層が設けら
れることが好ましい。
Preferably, various known top coat layers are provided on the magnetic layer of the magnetic recording medium of the present invention in order to protect the magnetic layer and improve corrosion resistance. Furthermore, in order to ensure runnability when formed into a tape, it is preferable that various known back coat layers be provided on the side of the nonmagnetic substrate opposite to the magnetic layer.

【0047】[特性]このような磁気記録媒体のテープ
長手方向の保磁力Hcは800〜1700 Oe 程度
、残留磁束密度Br は2500〜5000G 程度、
最大磁束密度Bm は3000〜7000G 程度とす
ればよい、
[Characteristics] Such a magnetic recording medium has a coercive force Hc in the longitudinal direction of the tape of about 800 to 1700 Oe, a residual magnetic flux density Br of about 2500 to 5000 G,
The maximum magnetic flux density Bm may be approximately 3000 to 7000G.

【0048】また、(半値巾50〜500n
sec)記録波長0.35〜0.80μm 程度の例え
ば矩形波の正および負の孤立波パルス信号列を最適記録
電流にて記録した場合、その再生波形のゼロクロス点か
らピーク点までの時間(立ち上がり時間)は、ピーク点
からゼロクロス点までの時間(立ち下がり時間)の0.
5〜2倍、特に0.8〜1.5倍であることが好ましい
。なお、最適記録電流とは、最大出力が得られる記録電
流である。
[0048] Also, (half width 50 to 500n
sec) When a rectangular wave positive and negative solitary wave pulse signal train having a recording wavelength of about 0.35 to 0.80 μm is recorded at the optimum recording current, the time from the zero cross point to the peak point of the reproduced waveform (rise time) is the time (fall time) from the peak point to the zero cross point.
It is preferably 5 to 2 times, particularly 0.8 to 1.5 times. Note that the optimum recording current is a recording current that provides the maximum output.

【0049】さらに、固定ヘッド方式のヘッドテスタを
用い、上記の孤立波信号を正方向および逆方向に最適記
録電流にて記録し、それぞれにつき正方向および逆方向
に再生して、得られた4種の再生波形を重ね合わせたと
き、各再生波形の0点以上のピークの重なり合いが、7
0%以上、特に80%以上、さらには90〜100%で
あることが好ましい。
Furthermore, using a fixed head type head tester, the above-mentioned solitary wave signal was recorded in the forward and reverse directions at the optimum recording current, and then reproduced in the forward and reverse directions, respectively. When the reproduction waveforms of seeds are superimposed, the overlap of the peaks of 0 or more points of each reproduction waveform is 7
It is preferably 0% or more, particularly 80% or more, and even 90 to 100%.

【0050】このように、再生波形が対称化し、歪がな
くなり、しかも記録再生の正逆逆転に際し、波形が揃う
と、エラー率が減少し、S/Nが向上し、また等化が容
易になるか、あるいは省略することもでき、他のテープ
との互換性も向上する。
[0050] In this way, when the reproduced waveform becomes symmetrical, distortion disappears, and the waveforms are aligned during forward/reverse recording/reproduction, the error rate decreases, the S/N ratio improves, and equalization becomes easier. It can also be omitted, improving compatibility with other tapes.

【0051】[記録再生]前記の各種報文等に従い、公
知の各種フォーマットでディジタル記録再生を行なえば
よい。この際、通常、記録信号の半値巾は50〜500
nsec程度、記録波長は0.35〜0.80μm 程
度とする。
[Recording and Reproduction] Digital recording and reproduction may be performed in various known formats according to the various reports mentioned above. At this time, the half width of the recording signal is usually 50 to 500.
The recording wavelength is approximately 0.35 to 0.80 μm.

【0052】[0052]

【実施例】以下、本発明の具体的実施例を示し、本発明
をさらに詳細に説明する。 [実施例1]10−4TorrのAr雰囲気中で、供給
ロールから厚さ7μm のポリエチレンテレフタレート
(PET)フィルムを繰り出して回転する円筒状冷却ド
ラムの周面に添わせて移動させ、20at% Ni−C
o合金を斜め蒸着して強磁性金属薄膜を形成し、巻き取
りロールに巻き取った。
EXAMPLES Hereinafter, specific examples of the present invention will be shown and the present invention will be explained in more detail. [Example 1] In an Ar atmosphere of 10-4 Torr, a polyethylene terephthalate (PET) film with a thickness of 7 μm was fed out from a supply roll and moved along the circumferential surface of a rotating cylindrical cooling drum. C
A ferromagnetic metal thin film was formed by diagonally depositing the O alloy, and the film was wound onto a take-up roll.

【0053】次いで、この巻き取りロールを供給ロール
とし、PETフィルム表面の法線方向を挟んで上記斜め
蒸着時の入射方向と交差する入射方向にて強磁性金属を
斜め蒸着して、2層構成の磁性層を有する磁気記録媒体
を得た。
Next, using this winding roll as a supply roll, a ferromagnetic metal is obliquely vapor-deposited in an incident direction that intersects the incident direction during the above-mentioned oblique vapor deposition, with the normal direction of the PET film surface in between, to form a two-layer structure. A magnetic recording medium having a magnetic layer was obtained.

【0054】上層および下層の強磁性金属薄膜の蒸着時
のθmin およびθmax は、ともにそれぞれ、4
0°および90°とし、上層および下層のΔθt およ
びΔθu を、それぞれ、50°とし、上層の厚さtt
 は1000A 、下層の厚さtu は1000A と
した。
Both θmin and θmax during vapor deposition of the upper and lower ferromagnetic metal thin films are 4, respectively.
0° and 90°, Δθt and Δθu of the upper layer and lower layer are respectively 50°, and the thickness of the upper layer tt
was 1000A, and the thickness tu of the lower layer was 1000A.

【0055】このサンプルは、tu /tt =1、t
u Δθu /tt Δθu =1である。
This sample has tu /tt =1, t
u Δθu /tt Δθu =1.

【0056】このサンプルをスリッタにて8mm巾に裁
断してテープ化し、ビデオカセットとした。
[0056] This sample was cut into a tape with a width of 8 mm using a slitter to make a video cassette.

【0057】これとは別に比較のため、θmin =4
0°、θmax =90°にて、2000A膜の1層構
成の20at% Ni−Co合金薄膜を形成し、比較用
カセットを作製した。
Separately, for comparison, θmin = 4
A 20 at % Ni--Co alloy thin film having a single layer structure of a 2000A film was formed at 0° and θmax = 90° to produce a comparative cassette.

【0058】各カセットを、MIGヘッドを搭載した実
機(ソニー社製  S900)に装填し、1MHz の
正負孤立矩形波を最適記録電流にて記録し、孤立再生波
のゼロクロス−ピーク時間Tl 、ピーク−ゼロクロス
時間Tr を測定した。
Each cassette was loaded into an actual machine (S900 manufactured by Sony Corporation) equipped with an MIG head, and 1 MHz positive and negative isolated square waves were recorded at the optimum recording current, and the zero cross-peak time Tl and peak- Zero cross time Tr was measured.

【0059】また、ドラム式ヘッドテスタを用い、上記
の孤立矩形波を、正・逆方向で最適記録電流にて記録し
て、これらをそれぞれ正・逆方向で再生し、4種の波形
をディジタルオシロで測定し、16回平均し、プロット
アウトした。これらのプロットを重ね合わせ、0点以上
のピークの重なり合う面積が最も少ないものを、重なり
度とした。これらの結果を下記表1に示す。
Furthermore, using a drum-type head tester, the above-mentioned isolated rectangular wave was recorded in the forward and reverse directions at the optimum recording current, and these were reproduced in the forward and reverse directions, respectively, to digitally reproduce the four types of waveforms. It was measured with an oscilloscope, averaged 16 times, and plotted. These plots were superimposed, and the one with the smallest overlapping area of 0 or more peaks was determined as the degree of overlap. These results are shown in Table 1 below.

【0060】[0060]

【表1】[Table 1]

【0061】次に、これら各カセットを用い、実機(改
造したディジタルオーディオテープレコーダ)にてエラ
ー率を測定したところ、本発明のカセットは、比較カセ
ットと比較して、エラー率が10−4から10−5にな
った。
Next, using each of these cassettes, we measured the error rate on an actual machine (modified digital audio tape recorder), and found that the cassette of the present invention had an error rate of 10-4 compared to the comparative cassette. It became 10-5.

【0062】[0062]

【発明の効果】本発明の磁気記録媒体をディジタル記録
用に用いると、エラー率が少なく、S/Nが高く、等化
が簡略化でき、他の媒体との互換性にもすぐれるなど、
きわめてすぐれたディジタル記録を行なうことができる
[Effects of the Invention] When the magnetic recording medium of the present invention is used for digital recording, the error rate is low, the S/N is high, equalization can be simplified, and compatibility with other media is excellent.
Extremely high quality digital recording can be performed.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】  ディジタル記録を行なう磁気記録媒体
であって、非磁性基体上に磁性層を有し、この磁性層は
、少なくとも1層の斜め蒸着法により形成され、Coを
主成分とする第1の強磁性金属薄膜と、少なくとも1層
の前記第1の強磁性金属薄膜とは異なる方向から斜め蒸
着を行なって形成され、Coを主成分とする第2の強磁
性金属薄膜とを有し、蒸着時に強磁性金属が入射する方
向と前記非磁性基体表面の法線とがなす角度を入射角と
し、入射角の最大値をθmax 、入射角の最小値をθ
min 、Δθ=θmax −θmin とし、前記第
1および第2の強磁性金属薄膜を構成する層の膜厚をt
としたとき、前記第1の強磁性金属薄膜の総膜厚が、前
記第2の強磁性金属薄膜の総膜厚の0.7〜1.3倍で
あり、前記第1の強磁性金属薄膜を構成する各層のt・
Δθの総和が、前記第2の強磁性金属薄膜を構成する各
層のt・Δθの総和の0.7〜1.3倍であることを特
徴とするディジタル記録用磁気記録媒体。
1. A magnetic recording medium for digital recording, comprising a magnetic layer on a non-magnetic substrate, the magnetic layer being formed of at least one layer by an oblique evaporation method, and comprising at least one layer containing Co as a main component. a ferromagnetic metal thin film, and at least one second ferromagnetic metal thin film, which is formed by oblique evaporation from a direction different from that of the first ferromagnetic metal thin film, and whose main component is Co. , the angle between the direction in which the ferromagnetic metal is incident during vapor deposition and the normal to the surface of the non-magnetic substrate is defined as the incident angle, the maximum value of the incident angle is θmax, and the minimum value of the incident angle is θ
min, Δθ=θmax −θmin, and the thickness of the layer constituting the first and second ferromagnetic metal thin films is t.
When, the total film thickness of the first ferromagnetic metal thin film is 0.7 to 1.3 times the total film thickness of the second ferromagnetic metal thin film, and the first ferromagnetic metal thin film t・ of each layer constituting
A magnetic recording medium for digital recording, characterized in that the sum of Δθ is 0.7 to 1.3 times the sum of t·Δθ of each layer constituting the second ferromagnetic metal thin film.
【請求項2】  ディジタル記録を行なう磁気記録媒体
であって、非磁性基体上に磁性層を有し、この磁性層は
、少なくとも1層の斜め蒸着法により形成され、Coを
主成分とする第1の強磁性金属薄膜と、少なくとも1層
の前記第1の強磁性金属薄膜とは異なる方向から斜め蒸
着を行なって形成され、Coを主成分とする第2の強磁
性金属薄膜とを有し、正および負の孤立波信号を最適記
録電流にて記録して再生したとき、ゼロクロス点からピ
ーク点までの時間が、ピーク点からゼロクロス点の時間
の0.5〜2倍であることを特徴とするディジタル記録
用磁気記録媒体。
2. A magnetic recording medium for digital recording, comprising a magnetic layer on a non-magnetic substrate, the magnetic layer comprising at least one layer formed by an oblique evaporation method and comprising Co as a main component. a ferromagnetic metal thin film, and at least one second ferromagnetic metal thin film, which is formed by oblique evaporation from a direction different from that of the first ferromagnetic metal thin film, and whose main component is Co. , when positive and negative solitary wave signals are recorded and reproduced at the optimum recording current, the time from the zero cross point to the peak point is 0.5 to 2 times the time from the peak point to the zero cross point. A magnetic recording medium for digital recording.
【請求項3】  ディジタル記録を行なう磁気記録媒体
であって、非磁性基体上に磁性層を有し、この磁性層は
、少なくとも1層の斜め蒸着法により形成され、Coを
主成分とする第1の強磁性金属薄膜と、少なくとも1層
の前記第1の強磁性金属薄膜とは異なる方向から斜め蒸
着を行なって形成され、Coを主成分とする第2の強磁
性金属薄膜とを有し、正方向および逆方向に走行して孤
立波信号を最適記録電流にて記録し、それぞれにつき正
方向および逆方向に走行して再生を行なって、各再生波
形を重ね合わせたとき、各再生波形の重なり合いが70
%以上であることを特徴とするディジタル記録用磁気記
録媒体。
3. A magnetic recording medium for digital recording, comprising a magnetic layer on a non-magnetic substrate, the magnetic layer comprising at least one layer formed by an oblique evaporation method and comprising Co as a main component. a ferromagnetic metal thin film, and at least one second ferromagnetic metal thin film, which is formed by oblique evaporation from a direction different from that of the first ferromagnetic metal thin film, and whose main component is Co. , when traveling in the forward and reverse directions to record a solitary wave signal at the optimum recording current, reproducing by traveling in the forward and reverse directions, and superimposing each reproduced waveform, each reproduced waveform The overlap is 70
% or more.
【請求項4】  蒸着時に強磁性金属が入射する方向と
前記非磁性基体表面の法線とがなす角度を入射角とし、
入射角の最大値をθmax 、入射角の最小値をθmi
n 、Δθ=θmax −θmin とし、前記第1お
よび第2の強磁性金属薄膜を構成する層の膜厚をtとし
たとき、前記第1の強磁性金属薄膜の総膜厚が、前記第
2の強磁性金属薄膜の総膜厚の0.7〜1.3倍であり
、前記第1の強磁性金属薄膜を構成する各層のt・Δθ
の総和が、前記第2の強磁性金属薄膜を構成する各層の
t・Δθの総和の0.7〜1.3倍である請求項2また
は3に記載のディジタル記録用磁気記録媒体。
4. The angle between the direction in which the ferromagnetic metal is incident during vapor deposition and the normal to the surface of the non-magnetic substrate is defined as the incident angle,
The maximum value of the incident angle is θmax, the minimum value of the incident angle is θmi
n, Δθ=θmax −θmin, and when the film thickness of the layers constituting the first and second ferromagnetic metal thin films is t, the total film thickness of the first ferromagnetic metal thin film is the second ferromagnetic metal thin film. is 0.7 to 1.3 times the total film thickness of the ferromagnetic metal thin film, and t·Δθ of each layer constituting the first ferromagnetic metal thin film.
4. The magnetic recording medium for digital recording according to claim 2, wherein the sum of t and Δθ of each layer constituting the second ferromagnetic metal thin film is 0.7 to 1.3 times.
【請求項5】  蒸着時に強磁性金属が入射する方向と
前記非磁性基体表面の法線とがなす角度を入射角とし、
入射角の最大値をθmax 、入射角の最小値をθmi
n 、Δθ=θmax −θmin とし、前記第1お
よび第2の強磁性金属薄膜を構成する層の膜厚をtとし
たとき、前記第1の強磁性金属薄膜の総膜厚が、前記第
2の強磁性金属薄膜の総膜厚の0.7〜1.3倍であり
、前記第1の強磁性金属薄膜を構成する各層のt・Δθ
の総和が、前記第2の強磁性金属薄膜を構成する各層の
t・Δθの総和の0.7〜1.3倍であり、正および負
の孤立波信号を最適電流にて記録して再生したとき、ゼ
ロクロス点からピーク点までの時間が、ピーク点からゼ
ロクロス点の時間の0.5〜2倍である請求項3に記載
のディジタル記録用磁気記録媒体。
5. The angle between the direction in which the ferromagnetic metal is incident during vapor deposition and the normal to the surface of the non-magnetic substrate is defined as the incident angle,
The maximum value of the incident angle is θmax, the minimum value of the incident angle is θmi
n, Δθ=θmax −θmin, and when the film thickness of the layers constituting the first and second ferromagnetic metal thin films is t, the total film thickness of the first ferromagnetic metal thin film is the second ferromagnetic metal thin film. is 0.7 to 1.3 times the total film thickness of the ferromagnetic metal thin film, and t·Δθ of each layer constituting the first ferromagnetic metal thin film.
is 0.7 to 1.3 times the sum of t and Δθ of each layer constituting the second ferromagnetic metal thin film, and positive and negative solitary wave signals are recorded and reproduced at the optimum current. 4. The magnetic recording medium for digital recording according to claim 3, wherein the time from the zero cross point to the peak point is 0.5 to twice the time from the peak point to the zero cross point.
【請求項6】  半値巾50〜500nsec、記録波
長0.35〜0.80μmの信号にてディジタル記録を
行なう請求項1ないし5のいずれかに記載のディジタル
記録用磁気記録媒体。
6. The magnetic recording medium for digital recording according to claim 1, wherein digital recording is performed using a signal having a half-width of 50 to 500 nsec and a recording wavelength of 0.35 to 0.80 μm.
JP3175991A 1990-09-11 1991-06-20 Magnetic recording medium for digital recording Pending JPH04349214A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP3175991A JPH04349214A (en) 1990-09-11 1991-06-20 Magnetic recording medium for digital recording
EP19910115193 EP0477641A3 (en) 1990-09-11 1991-09-09 Magnetic recording medium for digital recording
KR1019910015854A KR100256026B1 (en) 1990-09-11 1991-09-11 Magnetic recording medium for digital recording
US08/181,160 US5453886A (en) 1990-09-11 1994-01-13 Digital recording method using a specified magnetic recording medium

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP24183390 1990-09-11
JP2-241833 1990-09-11
JP3175991A JPH04349214A (en) 1990-09-11 1991-06-20 Magnetic recording medium for digital recording

Publications (1)

Publication Number Publication Date
JPH04349214A true JPH04349214A (en) 1992-12-03

Family

ID=26497072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3175991A Pending JPH04349214A (en) 1990-09-11 1991-06-20 Magnetic recording medium for digital recording

Country Status (1)

Country Link
JP (1) JPH04349214A (en)

Similar Documents

Publication Publication Date Title
US5815342A (en) Perpendicular magnetic recording/reproducing apparatus
US4661418A (en) Magnetic recording medium
KR100256026B1 (en) Magnetic recording medium for digital recording
US4604293A (en) Process for producing magnetic recording medium
US8208217B2 (en) Magnetic recording medium and magnetic recording/reproducing system
JPH04259909A (en) Magnetic recording medium
JPH04349214A (en) Magnetic recording medium for digital recording
JPH06105499B2 (en) Magnetic recording medium
JPH11328645A (en) Method for reproducing magnetic recording medium
JPH026130B2 (en)
EP1434198A1 (en) Magnetic recording medium
JP3206322B2 (en) Magnetic head and magnetic recording / reproducing device
JP2977618B2 (en) Magnetic recording method
JP3009943B2 (en) Magnetic recording media for digital recording
JPS58180008A (en) Magnetic recording medium
JP3203943B2 (en) Magnetic recording / reproducing device
JP2970219B2 (en) Magnetic recording medium and manufacturing method thereof
KR960000822B1 (en) A magnetic recording medium
JPS58143401A (en) Magnetic recording and reproducing device
JP3041088B2 (en) Digital magnetic recording system
JPH0341898B2 (en)
JPH07121854A (en) Magnetic recording medium
JPS6194240A (en) Preparation of magnetic recording medium
JPH01208720A (en) Magnetic recording medium
JPH0520603A (en) Magnetic recording and reproducing system

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20000201