JPH04349159A - Production of cement dispersant - Google Patents

Production of cement dispersant

Info

Publication number
JPH04349159A
JPH04349159A JP12029591A JP12029591A JPH04349159A JP H04349159 A JPH04349159 A JP H04349159A JP 12029591 A JP12029591 A JP 12029591A JP 12029591 A JP12029591 A JP 12029591A JP H04349159 A JPH04349159 A JP H04349159A
Authority
JP
Japan
Prior art keywords
salt
sulfuric acid
dispersant
mol
production
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12029591A
Other languages
Japanese (ja)
Inventor
Shuichi Fujita
修一 藤田
Yoshiaki Yadokoro
美明 谷所
Fujio Yamato
富士桜 倭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP12029591A priority Critical patent/JPH04349159A/en
Publication of JPH04349159A publication Critical patent/JPH04349159A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/16Sulfur-containing compounds
    • C04B24/20Sulfonated aromatic compounds
    • C04B24/22Condensation or polymerisation products thereof
    • C04B24/226Sulfonated naphtalene-formaldehyde condensation products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/40Surface-active agents, dispersants
    • C04B2103/408Dispersants

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)

Abstract

PURPOSE:To provide a production of a cement dispersant. CONSTITUTION:This cement dispersant is produced by the following processes (1) and (2) in the production of the alkali metal salt of a naphthalenesulfonic acid-formalin condensate. (1) One mol of naphthalene is sulfonated with 1.12-1.17 mols of fuming sulfuric acid (expressed in terms of sulfuric acid). (2) Neutralization is carried out with the double salt consisting of one mol of sodium salt and 0.8-1.2 mols of potassium salt. As a result, the process for producing the dispersant is drastically simplified, and the cost is reduced. The dispersant has excellent dispersibility and is widely used in the field of ready-mixed cement, secondary products, etc.

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明はセメント分散剤の製造法
に関するものであり、更に詳しくは、本発明の製造法は
濾過精製工程を不要とし、しかも分散剤溶液は0℃にお
いても無機塩の結晶析出がない、ナフタレンスルホン酸
ホルマリン縮合物のアルカリ塩による直接中和に関する
ものである。 【0002】本発明の製造法により得られるセメント分
散剤はセメントの他に、石炭、顔料、染料等の有機や無
機の粉体分散剤として有効に利用し得る。 【0003】 【従来の技術及び発明が解決しようとする課題】従来の
ナフタレンスルホン酸ホルマリン縮合物塩の製造を具体
的に説明すると、一般にスルホン化剤としては三酸化イ
オウ、無水硫酸、発煙硫酸、濃硫酸、クロルスルホン酸
などがある。この中でナフタレンの場合は濃硫酸を使用
するので、副生するジナフチルスルホンやナフタレンジ
スルホン酸の生成か少なく、高純度ナフタレンスルホン
酸量が多く得られる。従って、濃硫酸が一般に用いられ
ている。しかし、濃硫酸は酸性度が低く、スルホン化能
が弱いため、等モルの硫酸でスルホン化すると生成水で
硫酸濃度が60重量%以下となり反応が停止する。それ
故、ナフタレンに対して1.25モル以上の過剰硫酸が
必要となる。ホルムアルデヒドによる縮合反応から中和
の段階で、この過剰硫酸が中和によって硫酸アルカリ塩
、一般には硫酸ナトリウムが分散剤の固形分中に約12
%以上含まれることになる。この副性硫酸ナトリウムは
分散剤水溶液(通常は約40%) とした場合、15℃
以下の温度において10水和物として結晶化し、タンク
底に沈澱したりパイプなどを閉塞させ、溶液としての正
しい取扱が不可能となる。この硫酸ナトリウムは冷却し
、濾過することによって除去は可能であるが、冷却設備
や電力に莫大な費用がかかるとともに生産性の低下が問
題となる。 【0004】特開昭60−106523号公報によれば
ナトリウム・カリウムの複合塩にすることにより結晶化
温度は下がるとしているが、上記の硫酸塩量においては
5℃以下の温度において析出する。 【0005】従って通常、過剰硫酸の除去はライミング
・ソーデーションによる中和方法が行われている。即ち
、過剰硫酸を除去するために水酸化カルシウムあるいは
炭酸カルシウムによって硫酸カルシウムとして除去する
方法である。この方法によればナフタレンスルホン酸ホ
ルマリン縮合物もカルシウム塩として濾過分別し、さら
に炭酸ナトリウムのソーデーションによってナトリウム
塩とし、炭酸カルシウムと濾過分別する2回の濾過生成
工程を行う、極めて生産性の悪い製造方法が一般に行わ
れている。 【0006】 【課題を解決するための手段】本発明の製造方法は、ス
ルホン化剤として発煙硫酸を使用するもので、ナフタレ
ンに対する特定の反応モル比によって、ナフタレンスル
ホン酸量の収率を下げることなく、且つ過剰硫酸の低減
が可能となることを見出したものであり、さらにナトリ
ウム、カリウムの特定モル比の複合塩にすることによっ
て0℃においても硫酸塩の結晶析出のない分散剤水溶液
とすることを可能にしたものである。 【0007】即ち、本発明はナフタレンスルホン酸ホル
マリン縮合物アルカリ塩の製造において次の■、■を特
徴とするセメント分散剤の製造方法に関するものである
。 【0008】■;ナフタレン1モルに対し、発煙硫酸1
.12〜1.17モル(硫酸換算)によるスルホン化。 【0009】■;アルカリ塩がナトリウム塩とカリウム
塩の複塩からなり、ナトリウム塩1モルに対し、カリウ
ム塩が0.8 〜1.2 モルによる中和。 【0010】本発明におけるナフタレン1モルに対し、
発煙硫酸1.12〜1.17モルの範囲がナフタレンス
ルホン酸量の収率が高く、且つ未反応硫酸量が少ないス
ルホン化物である。 【0011】発煙硫酸のモル比が1.12より低い場合
、未反応ナフタレンの増加、未反応硫酸量の増加、副生
物のジナフチルスルホンの増加等が生じる。 【0012】また発煙硫酸のモル比が1.17より高い
場合は副生物のナフタレンジスルホン酸が増加する。 【0013】中和塩はナトリウム塩1モルに対し、カリ
ウム塩が0.8 〜1.2 モルの範囲が必要であり、
0℃においても無機塩の結晶析出はない。 【0014】ナトリウム塩1モルに対し、カリウム塩が
0.8 モルより小さいか或は1.2 モルより大きく
なると無機塩の析出温度は上昇する。 【0015】本発明に使用する発煙硫酸は20%から6
5%の三酸化イオウを吸収させた濃硫酸で、特に限定す
るものではない。 【0016】中和塩を形成するナトリウム化合物として
は、水酸化ナトリウム、炭酸ナトリウムが、カリウム化
合物としては、水酸化カリウム、炭酸カリウム等が挙げ
られる。 【0017】中和時の水酸化ナトリウム及び水酸化カリ
ウムは別々に加えるか、又これらのものを混合し、一緒
に加えることができる。また、水酸化ナトリウム及び水
酸化カリウムを最終のpH調整時に加えることも可能で
ある。 【0018】本発明の製造方法、即ちスルホン化やホル
ムアルデヒドによる縮合等の反応は公知の条件であり、
詳細は後述の実施例で説明する。 【0019】本発明の製造方法による分散剤はコンクリ
ート、モルタル、セメントペースト等の分散剤として用
いられる。 【0020】又、他のセメント添加剤(材)、例えば高
性能減水剤、流動化剤、AE剤(空気連行剤)、AE減
水剤、遅延剤、早強剤、促進剤、気泡剤、発泡剤、消泡
剤、保水剤、増粘剤、防水剤、防錆剤、着色剤、防黴剤
、ひびわれ低減剤、水溶性高分子、膨潤剤、フライアッ
シュ、高炉スラグ、シリカヒューム等との併用も可能で
ある。 【0021】 【実施例】以下実施例により本発明を説明するが、本発
明はこれらの実施例に限定されるものではない。 【0022】実施例   本発明の代表的な製造方法を示す。 【0023】反応容器にナフタレン1モルを仕込み、1
20 ℃に昇温し、25%発煙硫酸1.15モル(硫酸
換算)を滴下しながら、160 ℃まで昇温して160
 ℃で3時間熟成してスルホン化物を得た。その後、9
0℃に冷却して水を3モル加え、90℃で37%ホルマ
リン1.0 モルを滴下しながら100 ℃まで昇温し
て25時間反応させた後、水を加えて縮合物を得た。4
0℃に冷却して水酸化ナトリウムと水酸化カリウムの4
8%水溶液を等モル加えてpH9に調整し、固形分を4
0%に調整した。 【0024】前記の製造法に準じて、発煙硫酸量と濃硫
酸のモル比を変えて製造したスルホン化物の内容を表1
に示す。 【0025】 【表1】 【0026】 *1  ナフタレンに対する反応率(モル%)*2  
反応系中の(%) 表1の結果より、本発明品は、比較品と比べてスルホン
化後の有効成分であるナフタレンモノスルホン酸量が多
く(87%以上) 、また未反応硫酸量が少なく(7%
以下)さらに反応率の高いことが判る。 【0027】実施例に準じて縮合を行い、アルカリ塩の
モル比を変えて中和(pH=9.0)し、固形分40%
に調整したものを0℃の低温で30日貯蔵後の結晶析出
の有無について判定した内容を表2に示す。 【0028】 【表2】 【0029】表2の結果から明らかなように、本発明の
範囲の複合アルカリ金属塩は、比較品と比べて結晶析出
による沈澱の発生は認められないことが判る。 【0030】次に、コンクリートの配合を表3に、また
前述の実施例に準じて製造した本発明の分散剤のコンク
リートに対する分散性能(流動性能)を表4に示す。 【0031】使用材料 ・セメント:普通ボルトランドセメント  比重=3.
16・砂      :紀の川産川砂        
      比重=2.56 ・砂利    :宝塚産砕石            
                    比重=2.
60 コンクリートの配合       【0032】 【表3】 【0033】 W:水                  a:砂+
砂利(S+G)C:セメント            
S:砂G:砂利 【0034】 【表4】 【0035】*1  実施例の代表的な製造方法に準じ
て製造した分散剤(平均分子量=9000)*2  J
IS A 1101「コンクリートの流動性の測定法」
に準じて測定した。 【0036】表4の結果から明らかなように、本発明の
分散剤はコンクリート用分散剤として優れた効果を示す
ことが判る。 【0037】 【発明の効果】本発明のセメント分散剤の製造方法によ
り、製造工程の大幅な簡略が可能となるので、コストメ
リットが大きくなる。また本発明によるセメント分散剤
は優れた分散性能を有することから、生コンクリートや
二次製品分野まで広範な用途に用いることができる。
Detailed Description of the Invention [0001] [Industrial Application Field] The present invention relates to a method for producing a cement dispersant. The agent solution is related to direct neutralization of a naphthalene sulfonic acid formalin condensate with an alkali salt, without crystallization of an inorganic salt even at 0°C. The cement dispersant obtained by the production method of the present invention can be effectively used as an organic or inorganic powder dispersant for coal, pigments, dyes, etc. in addition to cement. [Prior Art and Problems to be Solved by the Invention] To specifically explain the conventional production of naphthalene sulfonic acid formalin condensate salt, the sulfonating agent generally includes sulfur trioxide, sulfuric anhydride, fuming sulfuric acid, Concentrated sulfuric acid, chlorosulfonic acid, etc. Among these, in the case of naphthalene, concentrated sulfuric acid is used, so that by-product dinaphthylsulfone and naphthalene disulfonic acid are produced less, and a large amount of high-purity naphthalenesulfonic acid can be obtained. Therefore, concentrated sulfuric acid is commonly used. However, concentrated sulfuric acid has low acidity and weak sulfonation ability, so when sulfonation is performed with equimolar sulfuric acid, the sulfuric acid concentration in the produced water becomes 60% by weight or less, and the reaction stops. Therefore, an excess of sulfuric acid of 1.25 moles or more relative to naphthalene is required. At the stage of neutralization after the condensation reaction with formaldehyde, this excess sulfuric acid is neutralized to form an alkali sulfate, generally sodium sulfate, in the solid content of the dispersant.
It will contain more than %. When this secondary sodium sulfate is made into an aqueous dispersant solution (usually about 40%), the temperature is 15°C.
At temperatures below, it crystallizes as a decahydrate, precipitating at the bottom of a tank or clogging pipes, making it impossible to handle it correctly as a solution. This sodium sulfate can be removed by cooling and filtering, but this requires enormous costs for cooling equipment and electricity, and reduces productivity. [0004] According to JP-A-60-106523, the crystallization temperature is lowered by forming a complex salt of sodium and potassium, but with the above amount of sulfate, precipitation occurs at temperatures below 5°C. [0005] Therefore, excess sulfuric acid is usually removed by neutralization using liming sodation. That is, in order to remove excess sulfuric acid, it is removed as calcium sulfate using calcium hydroxide or calcium carbonate. According to this method, the naphthalene sulfonic acid formalin condensate is also filtered and fractionated as a calcium salt, and then converted into a sodium salt by sodation with sodium carbonate, which is then filtered and fractionated from calcium carbonate.This process involves two filtration processes, which is extremely unproductive. The manufacturing method is commonly used. [Means for Solving the Problems] The production method of the present invention uses fuming sulfuric acid as a sulfonating agent, and it is possible to reduce the yield of naphthalene sulfonic acid depending on a specific reaction molar ratio to naphthalene. Furthermore, by forming a composite salt with a specific molar ratio of sodium and potassium, an aqueous dispersant solution that does not precipitate sulfate crystals even at 0°C can be obtained. This is what made it possible. That is, the present invention relates to a method for producing a cement dispersant characterized by the following (1) and (2) in the production of an alkali salt of a naphthalene sulfonic acid formalin condensate. ■; 1 mole of naphthalene to 1 mole of fuming sulfuric acid
.. Sulfonation with 12 to 1.17 mol (calculated as sulfuric acid). [0009] ■: The alkaline salt consists of a double salt of a sodium salt and a potassium salt, and neutralization is performed with 0.8 to 1.2 mol of the potassium salt per 1 mol of the sodium salt. [0010] For 1 mole of naphthalene in the present invention,
A sulfonated product in which the amount of fuming sulfuric acid is in the range of 1.12 to 1.17 moles provides a high yield of naphthalenesulfonic acid and a small amount of unreacted sulfuric acid. If the molar ratio of fuming sulfuric acid is lower than 1.12, an increase in unreacted naphthalene, an increase in the amount of unreacted sulfuric acid, an increase in by-product dinaphthylsulfone, etc. occur. Further, when the molar ratio of fuming sulfuric acid is higher than 1.17, the by-product naphthalenedisulfonic acid increases. [0013] The neutralizing salt requires a potassium salt in a range of 0.8 to 1.2 mol per 1 mol of the sodium salt.
There is no crystal precipitation of inorganic salt even at 0°C. When the amount of potassium salt is less than 0.8 mol or more than 1.2 mol per mol of sodium salt, the precipitation temperature of the inorganic salt increases. [0015] The fuming sulfuric acid used in the present invention is 20% to 6%
It is concentrated sulfuric acid that has absorbed 5% sulfur trioxide, and is not particularly limited. Examples of sodium compounds forming neutralized salts include sodium hydroxide and sodium carbonate, and examples of potassium compounds include potassium hydroxide and potassium carbonate. Sodium hydroxide and potassium hydroxide during neutralization can be added separately, or they can be mixed and added together. It is also possible to add sodium hydroxide and potassium hydroxide during final pH adjustment. The production method of the present invention, that is, reactions such as sulfonation and condensation with formaldehyde, are performed under known conditions.
Details will be explained in Examples below. The dispersant prepared by the production method of the present invention is used as a dispersant for concrete, mortar, cement paste, etc. [0020] Other cement additives (materials) such as high performance water reducing agents, fluidizing agents, AE agents (air entraining agents), AE water reducing agents, retarders, early strength agents, accelerators, foaming agents, foaming agents, etc. agent, antifoaming agent, water retention agent, thickener, waterproofing agent, rust preventive agent, coloring agent, antifungal agent, crack reducing agent, water-soluble polymer, swelling agent, fly ash, blast furnace slag, silica fume, etc. Combination use is also possible. [Examples] The present invention will be explained below with reference to Examples, but the present invention is not limited to these Examples. EXAMPLE A typical manufacturing method of the present invention will be described. 1 mole of naphthalene was charged into a reaction vessel, and 1 mole of naphthalene was charged.
The temperature was raised to 20 °C, and while 1.15 mol of 25% oleum (sulfuric acid equivalent) was added dropwise, the temperature was raised to 160 °C.
A sulfonated product was obtained by aging at ℃ for 3 hours. After that, 9
The mixture was cooled to 0°C, 3 mol of water was added, and while 1.0 mol of 37% formalin was added dropwise at 90°C, the temperature was raised to 100°C and reacted for 25 hours. Water was then added to obtain a condensate. 4
Cool to 0℃ and add sodium hydroxide and potassium hydroxide.
Add an equimolar amount of 8% aqueous solution to adjust the pH to 9, and reduce the solid content to 4.
Adjusted to 0%. Table 1 shows the contents of the sulfonated products produced according to the above production method by varying the amount of oleum and the molar ratio of concentrated sulfuric acid.
Shown below. [Table 1] *1 Reaction rate to naphthalene (mol%) *2
(%) in the reaction system From the results in Table 1, the product of the present invention has a higher amount of naphthalene monosulfonic acid, which is an active ingredient after sulfonation, than the comparative product (87% or more), and a lower amount of unreacted sulfuric acid. Few (7%
(below) It can be seen that the reaction rate is even higher. Condensation was carried out according to the example, neutralization was carried out by changing the molar ratio of the alkali salt (pH=9.0), and the solid content was 40%.
Table 2 shows the determination of the presence or absence of crystal precipitation after storage at a low temperature of 0° C. for 30 days. [0028] As is clear from the results in Table 2, it can be seen that the complex alkali metal salts within the scope of the present invention do not cause precipitation due to crystal precipitation compared to the comparative products. Next, Table 3 shows the formulation of concrete, and Table 4 shows the dispersion performance (fluidity performance) of the dispersant of the present invention, which was produced according to the above-mentioned example, on concrete. [0031] Materials used/cement: Ordinary boltland cement Specific gravity = 3.
16.Sand: Kinokawa river sand
Specific gravity = 2.56 - Gravel: Crushed stone from Takarazuka
Specific gravity = 2.
60 Concrete mix 0032 [Table 3] 0033 W: Water a: Sand +
Gravel (S+G) C: Cement
S: sand G: gravel 0034 [Table 4] 0035 *1 Dispersant manufactured according to the typical manufacturing method of Examples (average molecular weight = 9000) *2 J
IS A 1101 “Method for measuring the fluidity of concrete”
Measured according to. As is clear from the results in Table 4, it can be seen that the dispersant of the present invention exhibits excellent effects as a dispersant for concrete. [0037] The method for producing a cement dispersant of the present invention allows for a significant simplification of the production process, resulting in great cost benefits. Further, since the cement dispersant according to the present invention has excellent dispersion performance, it can be used in a wide range of applications including ready-mixed concrete and secondary product fields.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】ナフタレンスルホン酸ホルマリン縮合物ア
ルカリ金属塩の製造において次の■、■を特徴とするセ
メント分散剤の製造方法。 ■;ナフタレン1モルに対し、発煙硫酸1.12〜1.
17モル(硫酸換算)によるスルホン化。 ■;アルカリ塩がナトリウム塩とカリウム塩の複塩から
なり、ナトリウム塩1モルに対し、カリウム塩が0.8
 〜1.2 モルによる中和。
1. A method for producing a cement dispersant, characterized in the following (1) and (2), in the production of an alkali metal salt of a naphthalene sulfonic acid formalin condensate. ■: oleum 1.12 to 1.1% per mole of naphthalene.
Sulfonation with 17 mol (calculated as sulfuric acid). ■; The alkaline salt consists of a double salt of sodium salt and potassium salt, and potassium salt is 0.8 per mol of sodium salt.
Neutralization with ~1.2 mol.
JP12029591A 1991-05-24 1991-05-24 Production of cement dispersant Pending JPH04349159A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12029591A JPH04349159A (en) 1991-05-24 1991-05-24 Production of cement dispersant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12029591A JPH04349159A (en) 1991-05-24 1991-05-24 Production of cement dispersant

Publications (1)

Publication Number Publication Date
JPH04349159A true JPH04349159A (en) 1992-12-03

Family

ID=14782706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12029591A Pending JPH04349159A (en) 1991-05-24 1991-05-24 Production of cement dispersant

Country Status (1)

Country Link
JP (1) JPH04349159A (en)

Similar Documents

Publication Publication Date Title
KR100439603B1 (en) Solidification and hardening accelerator for hydraulic binders
US3277162A (en) Water-soluble condensation products of naphthalenesulfonic acid and formaldehyde
FI100966B (en) Process for the treatment of ferrous sulphate
US20170022107A1 (en) SYNTHESIS AND APPLICATION OF CaSO4-BASED HARDENING ACCELERATORS
CA1218910A (en) Dispersing composition
JPH04349159A (en) Production of cement dispersant
CA1228607A (en) Water reducing agent utilized in mortar and concrete
JPH06199557A (en) Cement admixture
KR910006230B1 (en) Noncrystallizing aqueous solutions of metal salts of naphthalens sulfonic acid-formaldehyde condensation products
EP0699214A1 (en) Processes for manufacture of sulfonated melamine-formaldehyde resins
US4744882A (en) Polycondensates of sulfonated coal tar fractions
JPH0412038A (en) Dispersant composition
JP2833135B2 (en) Manufacturing method of high performance water reducing agent
CN103387349A (en) Method for synthesizing slump-resistant naphthalene-based efficient water reducing agent
JPH01219052A (en) Dispersant composition for cement
JPS60106523A (en) Dispersant composition
JP2503155B2 (en) Process for producing high molecular weight sulfonate neutral salt
CN109437645A (en) A kind of method that sulfonation by-product organic acid prepares mortar auxiliary agent
JPH06183803A (en) Cement admixture
CN101885590B (en) Method for preparing concrete air entraining agent
JPH0627173B2 (en) Method for producing melamine formaldehyde resin containing sulfonic acid group
JPS58222054A (en) Preparation of 3,3'-iminodipropionic acid alkali metal salt
JPH07247147A (en) Cement admixture
JPH054846A (en) Cement admixture
JPS6158082B2 (en)