JPH04349114A - Production of carbon material - Google Patents

Production of carbon material

Info

Publication number
JPH04349114A
JPH04349114A JP3117532A JP11753291A JPH04349114A JP H04349114 A JPH04349114 A JP H04349114A JP 3117532 A JP3117532 A JP 3117532A JP 11753291 A JP11753291 A JP 11753291A JP H04349114 A JPH04349114 A JP H04349114A
Authority
JP
Japan
Prior art keywords
raw material
pitch
carbon material
producing
oxygen content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3117532A
Other languages
Japanese (ja)
Other versions
JP3094502B2 (en
Inventor
Tomei Takegawa
東明 竹川
Ichiro Ueno
一郎 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP03117532A priority Critical patent/JP3094502B2/en
Publication of JPH04349114A publication Critical patent/JPH04349114A/en
Application granted granted Critical
Publication of JP3094502B2 publication Critical patent/JP3094502B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To improve the strength of a carbon material by heat-treating, then micronizing and oxidizing hydrogenated pitch, forming the obtained self- sinterable material, carbonizing, sintering and then graphitizing the formed material. CONSTITUTION:A pitch material such as petroleum bottoms having 40-250 deg.C softening point is charged into an autoclave and catalytically hydrogenated at 350-450 deg.C in a hydrogen gas atmosphere. The hydrogenated pitch is heat- treated to control its softening point to 250-380 deg.C and then atomized at high temp. to obtain the fine particles of the self-sinterable material. The fine particles are oxidized at 180-350 deg.C in the air to adjust the relative oxidation weight increase to >=1.0 and the relative oxygen content to >=1.0, and the hydrogenation degree is recognized. The hydrogenated pitch is placed in a die and press-formed, and the formed body is fired in a carbonization furnace and then graphitized at 2000-3000 deg.C in a graphitization furnace to obtain a carbon material high in density and strength.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、自己焼結性原料を用
いて高密度・高強度の等方性の炭素材を製造する方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a high-density, high-strength, isotropic carbon material using self-sintering raw materials.

【0002】0002

【従来技術】高密度等方性炭素材は放電加工用電極材や
アルミ蒸着用ルツボ、あるいは核融合炉用壁材として使
用されている。この高密度等方性炭素材を製造する場合
、一般に石油系コークスまたは石炭系コークスを微粉砕
して骨材として、それにバインダーを添加して成形する
。成形は、性状の均質化を図るために通常は冷間静水圧
プレス(CIP)を用いて行う。得られた成形体は1〜
10℃/Hrという非常に遅い昇温速度で炭化され、そ
の後2000〜3000℃に昇温されて黒鉛化処理に供
される。
BACKGROUND OF THE INVENTION High-density isotropic carbon materials are used as electrode materials for electrical discharge machining, crucibles for aluminum evaporation, and wall materials for nuclear fusion reactors. When producing this high-density isotropic carbon material, petroleum-based coke or coal-based coke is generally finely pulverized to form aggregate, and a binder is added to the aggregate to form it. Molding is usually performed using cold isostatic pressing (CIP) in order to homogenize the properties. The obtained molded body is 1~
It is carbonized at a very slow temperature increase rate of 10° C./Hr, and then heated to 2000 to 3000° C. and subjected to graphitization treatment.

【0003】この骨材とバインダーピッチを用いる2元
系の原料に対して、最近はフィラーの機能とバインダー
機能とを1種類の粒子で兼ねる自己焼結性原料が開発さ
れている。その中で、バルクメソフェーズは石油系ある
いは石炭系ピッチを350℃〜500℃の範囲で熱処理
して得られるもので、光学的異方性組織(液晶)が全面
的に展開したものである。そして、これが高密度等方性
炭素材の原料として使用される場合には、微粉砕してか
ら用いられる(特開昭59−164604)。このよう
な原料は、自己焼結性を保持しているため、成形するこ
とでそれ自身が相互に融着し、バインダー等の接着剤を
添加する必要がない。
In contrast to this binary raw material using aggregate and binder pitch, a self-sintering raw material has recently been developed in which one type of particle has both filler and binder functions. Among them, bulk mesophase is obtained by heat-treating petroleum-based or coal-based pitch in the range of 350°C to 500°C, and has an optically anisotropic structure (liquid crystal) fully developed. When this is used as a raw material for a high-density isotropic carbon material, it is used after being finely pulverized (Japanese Patent Application Laid-Open No. 164604/1983). Since such raw materials maintain self-sintering properties, they fuse themselves to each other when molded, and there is no need to add an adhesive such as a binder.

【0004】またこの自己焼結性原料としてメソカーボ
ンマイクロビーズ(MCB)を使用する方法が提案され
ている(特開昭49−2379)。MCBは、各種ピッ
チを熱処理する過程で生成してくる微小な10μm 程
度の直径を有する光学的に異方性の小球体である。MC
Bは、ピッチを熱処理することにより、光学的等方性の
ピッチマトリックスの中に発生する。発生したMCBは
そのまま加熱を続けるとMCB同士が合体しバルクメソ
フェーズになるため、微小なMCBが生成された段階で
熱処理を中止し、多量の溶媒を加えることで生成された
MCBを取り出す。ただし、MCBだけでは自己焼結性
が不足であるとして、溶媒でマトリックスピッチからM
CBを取り出す際に、マトリックスピッチのキノリン可
溶分から成るβ成分を主体とする部分をMCBの表面に
付着させることが提案されている(特開昭62−417
07)。
[0004] A method using mesocarbon microbeads (MCB) as the self-sintering raw material has also been proposed (Japanese Patent Laid-Open No. 49-2379). MCBs are optically anisotropic small spheres with a diameter of about 10 μm that are generated during the heat treatment process of various pitches. M.C.
B is generated in an optically isotropic pitch matrix by heat treating the pitch. If the generated MCB is continued to be heated, the MCB will coalesce into a bulk mesophase, so the heat treatment is stopped when minute MCB is generated, and a large amount of solvent is added to take out the generated MCB. However, since MCB alone does not have sufficient self-sintering properties, a solvent is used to convert matrix pitch to MCB.
It has been proposed that when extracting CB, a portion of matrix pitch consisting mainly of β component consisting of quinoline soluble material is attached to the surface of MCB (Japanese Patent Laid-Open No. 62-417).
07).

【0005】[0005]

【発明が解決しようとする課題】コークスを微粉砕して
骨材とし、それにバインダーを添加してCIP成形・炭
化・黒鉛化処理する方法では、得られる炭素材の性状の
均一化を図るため、骨材コークスの粒度をできるだけ細
かくして用いる傾向がある。しかしながら、それに伴っ
て、微粒子同士を接着するために添加するバインダーの
必要量が増加してしまう。バインダー添加量が増加する
と炭化処理過程でバインダー成分が分解し成形体より揮
発してしまうため、炭化処理後の残炭歩留が低下し、成
形体の焼成後の密度が低下してしまう欠点がある。
[Problems to be Solved by the Invention] In the method of finely pulverizing coke to make aggregate, adding a binder to it, and subjecting it to CIP molding, carbonization, and graphitization, in order to make the properties of the obtained carbon material uniform, There is a tendency to use aggregate coke with the particle size as fine as possible. However, along with this, the required amount of binder added to bond the fine particles to each other increases. If the amount of binder added increases, the binder component will decompose and volatilize from the compact during the carbonization process, resulting in a decrease in the residual carbon yield after carbonization and a decrease in the density of the compact after firing. be.

【0006】このような傾向は、MCBの周りにマトリ
ックスピッチのβ成分を主体とする部分をバインダーと
して付着させる方法でも同様に見られる。つまりMCB
の粒径を均質化のために小さくすればするほどMCB同
士を接着するバインダーとなるβ成分主体のマトリック
スピッチを多く残存させる必要があるが、それに伴って
炭化処理後の残炭歩留が低下し成形体の焼成後の密度が
低下してしまう。このような密度の低下は気孔率の増加
と対応しており、強度低下にも結び付くことになる。
[0006] Such a tendency is also seen in a method in which a portion mainly consisting of the β component of the matrix pitch is attached as a binder around the MCB. In other words, M.C.B.
The smaller the grain size of MCB is made for homogenization, the more matrix pitch consisting mainly of β component that acts as a binder for bonding MCBs must remain, but as a result, the residual carbon yield after carbonization decreases. However, the density of the compact after firing is reduced. Such a decrease in density corresponds to an increase in porosity and is also linked to a decrease in strength.

【0007】以上のような密度の低下すなわち気孔率の
増加を改善するため、炭化工程や黒鉛化工程で処理体に
ピッチを含浸して再加熱処理することがしばしば行われ
ている。しかしこの方法は工程として繁雑であり経済的
でない。
[0007] In order to improve the above-mentioned decrease in density, ie, increase in porosity, pitch is often impregnated into the treated body during the carbonization or graphitization process, followed by reheating. However, this method is complicated and uneconomical.

【0008】この発明はかかる事情に鑑みてなされたも
のであって、比較的簡便な工程によって確実に高密度化
及び高強度化を図ることができる炭素材の製造方法を提
供することを目的とする。
[0008] The present invention was made in view of the above circumstances, and an object thereof is to provide a method for producing a carbon material that can reliably achieve high density and high strength through a relatively simple process. do.

【0009】[0009]

【課題を解決するための手段及び作用】この発明は、上
記目的を達成するために、自己焼結性原料を製造する工
程と、この原料を成形する工程と、成形体を炭化焼成す
る工程と、この焼結体を黒鉛化処理する工程とを有する
炭素材の製造方法であって、前記原料は、水素化された
ピッチに熱処理を施し、さらに微細化処理、及び酸化処
理を施すことによって得られ、かつこの原料の水素化が
適当になされているか否かを把握する工程を有すること
を特徴とする炭素材の製造方法を提供する。
[Means and effects for solving the problems] In order to achieve the above object, the present invention comprises a process of producing a self-sintering raw material, a process of molding this raw material, and a process of carbonizing and firing a molded body. , a method for producing a carbon material comprising the steps of graphitizing the sintered body, wherein the raw material is obtained by subjecting hydrogenated pitch to heat treatment, and further subjecting it to refinement treatment and oxidation treatment. The present invention provides a method for producing a carbon material, which comprises a step of determining whether or not the raw material is properly hydrogenated.

【0010】本願発明者等が比較的簡便な工程により炭
素材の高密度化及び高強度化を達成すべく鋭意検討を重
ねた結果、ピッチを水素化熱処理した後、微粒化し、さ
らに酸化処理することにより達成できることを見出した
。また、水素化が適当に行われているか否かを把握する
ことにより、炭素材の高密度化及び高強度化が十分に図
られているか否かを判断することができ、確実に高密度
化及び高強度化を図ることができることを見出した。 この発明はこのような知見に基づいてなされたものであ
る。以下、この発明を詳細に説明する。
[0010] As a result of intensive studies by the inventors of the present application to achieve higher density and higher strength of carbon materials through a relatively simple process, the pitch was subjected to hydrogenation heat treatment, then atomized, and further oxidized. I discovered what I could achieve by doing this. In addition, by understanding whether hydrogenation is being carried out properly, it is possible to judge whether or not the carbon material is sufficiently densified and strengthened, and to ensure that the densification is achieved properly. It has been found that it is possible to achieve high strength. This invention was made based on such knowledge. This invention will be explained in detail below.

【0011】この発明の炭素材を製造するための自己焼
結性原料に用いるピッチ原料としては、石炭系残油、石
油系残油のいずれでもよい。使用されるピッチ原料の軟
化点は40℃以上250℃以下が好ましい。この範囲よ
りも低いと熱処理したピッチの歩留が低下し、またこの
範囲よりも高いと高温度になるまでピッチ原料が溶解し
ないため、溶剤と混合させたり、あるいは反応器の中で
流動化を図ることが困難となる。より好ましい軟化点の
範囲は80℃〜150℃である。
The pitch raw material used as the self-sintering raw material for producing the carbon material of the present invention may be either coal-based residual oil or petroleum-based residual oil. The softening point of the pitch raw material used is preferably 40°C or more and 250°C or less. If the temperature is lower than this range, the yield of heat-treated pitch will decrease, and if it is higher than this range, the pitch raw material will not dissolve until the temperature is high, so it may be necessary to mix it with a solvent or fluidize it in the reactor. It becomes difficult to plan. A more preferable range of softening point is 80°C to 150°C.

【0012】水素化処理は、水素ガス雰囲気下で好まし
くは350〜450℃の温度で3時間以下の時間保持す
ることによって達成される。この範囲の温度まで昇温し
た後、保持せずに直ちに降温してもよい。この際に、触
媒として、Ni、Co、Mo等で構成されるもの、又は
赤泥、硫黄等を用いても良い。この場合に、水素ガス雰
囲気であれば大気圧下、加圧下のいずれでもよく、それ
ぞれに応じた効果を得ることができる。
[0012] The hydrogenation treatment is preferably carried out under a hydrogen gas atmosphere at a temperature of 350 to 450°C for a period of up to 3 hours. After raising the temperature to this range, the temperature may be lowered immediately without being held. In this case, as a catalyst, one composed of Ni, Co, Mo, etc., or red mud, sulfur, etc. may be used. In this case, as long as it is a hydrogen gas atmosphere, either atmospheric pressure or pressurized conditions may be used, and effects corresponding to each can be obtained.

【0013】また、この水素化処理は予め移行可能な水
素を保持した溶媒と当該ピッチとを混合して、350〜
450℃の温度で3時間以下の時間保持(保持しない場
合も含む)するものであっても良い。
[0013] In addition, this hydrogenation treatment is carried out by mixing the pitch with a solvent that holds transferable hydrogen in advance, and
It may be held at a temperature of 450° C. for 3 hours or less (including cases where it is not held).

【0014】水素ガスを用いる場合でも移行可能な水素
を保持した溶媒を用いる場合でも、上記範囲より低い温
度では十分な水素がピッチ原料に移行せず、また、この
範囲以上の温度ではピッチに移行した水素が再度脱離し
てしまうため好ましくない。
[0014] Regardless of whether hydrogen gas or a solvent containing transferable hydrogen is used, sufficient hydrogen will not transfer to the pitch raw material at temperatures below the above range, and will not transfer to the pitch at temperatures above this range. This is not preferable because the hydrogen that has been released will be desorbed again.

【0015】得られた水素化ピッチをさらに熱処理して
、好ましくはその軟化点が250℃以上380℃以下に
なるようにする。より好ましくは280〜350℃とな
るように調製する。これは、炭化焼成時の残炭歩留を向
上させると同時に適正なバインダー性能を保持させるた
めである。
The obtained hydrogenated pitch is further heat-treated to preferably have a softening point of 250°C or more and 380°C or less. More preferably, the temperature is adjusted to 280 to 350°C. This is to improve the residual carbon yield during carbonization firing and at the same time maintain appropriate binder performance.

【0016】このようにして熱処理して得られたピッチ
は所定の粒度に微粒子化される。この際の方法は特に限
定されず、機械的粉砕や高温下でのアトマイズ等の方法
を採用することができるが、成形時の充填性能を向上さ
せるためには粒子をより球状化することができるアトマ
イズによる方法が好ましい。
The pitch obtained by heat treatment in this manner is finely divided into a predetermined particle size. The method in this case is not particularly limited, and methods such as mechanical pulverization and atomization under high temperature can be adopted, but in order to improve the filling performance during molding, it is possible to make the particles more spherical. A method by atomization is preferred.

【0017】次いで、この微粒子化ピッチを酸化処理す
る。この際の温度は180〜350℃の範囲であること
が好ましい。これは、この温度より低い場合には十分酸
化されず、また、この温度よりも高い場合には酸化が進
み過ぎ、十分な粒子の接着性能が確保できないからであ
る。この酸化処理は空気中でも酸素雰囲気中でも良い。
Next, this finely divided pitch is subjected to an oxidation treatment. The temperature at this time is preferably in the range of 180 to 350°C. This is because if the temperature is lower than this, the oxidation will not be sufficient, and if the temperature is higher than this, the oxidation will proceed too much, making it impossible to ensure sufficient particle adhesion performance. This oxidation treatment may be performed in air or in an oxygen atmosphere.

【0018】このようにして製造した自己焼結性のピッ
チが炭素材料の高密度化と高強度化を満足できるかどう
かは、ピッチ原料の水素化が適当に行われているか否か
による。ピッチ原料が適切に水素化されているか否かは
、微細化した水素化熱処理ピッチの酸化処理における重
量増加を測定することにより把握できる。また、酸化処
理後の酸素含有量の増加割合を測定することによっても
把握することができる。具体的には、180〜350℃
の範囲内の特定温度における空気酸化処理で得られる重
量増加割合を測定することにより炭素材用原料として用
いるピッチの水素化が適当になされているか否かを把握
評価することが好ましい。この温度範囲以外では酸化処
理による重量増加の原料間における有為差を把握するこ
とが困難である。酸素含有量の増加割合を測定すること
によって水素化の適否を判断する場合にも、同様の温度
範囲内の特定温度における空気酸化処理後の酸素含有量
を測定することが好ましい。この場合にも、この温度の
範囲外で酸素含有量の原料間における有為差を把握する
ことが困難である。
Whether or not the self-sintering pitch produced in this manner can satisfy the requirements for increasing the density and strength of the carbon material depends on whether or not the pitch raw material is properly hydrogenated. Whether or not the pitch raw material has been properly hydrogenated can be determined by measuring the weight increase during the oxidation treatment of the refined pitch that has been subjected to the hydrogenation heat treatment. It can also be determined by measuring the rate of increase in oxygen content after oxidation treatment. Specifically, 180-350℃
It is preferable to understand and evaluate whether or not pitch used as a raw material for carbon material is properly hydrogenated by measuring the weight increase rate obtained by air oxidation treatment at a specific temperature within the range of . Outside this temperature range, it is difficult to understand the significant difference in weight increase between raw materials due to oxidation treatment. Even when determining the suitability of hydrogenation by measuring the rate of increase in oxygen content, it is preferable to measure the oxygen content after air oxidation treatment at a specific temperature within the same temperature range. In this case as well, it is difficult to grasp any significant difference in oxygen content between raw materials outside this temperature range.

【0019】実際の水素化処理の適否は、重量増加を測
定する場合には、水素化熱処理原料と同一軟化点の未水
素化熱処理ピッチの酸化重量増加に対する水素化熱処理
原料の同一温度における相対酸化重量増加によって判断
することが好ましく、この値が1.0を超える値であれ
ば水素化が適当に行われていると判断することができる
。また、酸素含有量を測定する場合には、水素化熱処理
原料と同一軟化点の未水素化熱処理ピッチの酸素含有量
に対する水素化熱処理原料の同一温度における相対酸素
含有量によって判断することが好ましく、この値が1.
0を超える値であれば水素化が適当に行われていると判
断することができる。これらの値が1.0以下では水素
化が不十分であり、高密度等方性炭素材として高密度化
と高強度化が図れない。このようにして得られた自己焼
結性原料は、公知の方法により成形され、炭化焼成され
、黒鉛化処理され、これによって所望の等方性炭素材が
得られる。なお、ここでいう軟化点はメトラ−法によっ
て得られる軟化点のことである。以上のようにして炭素
材を製造することにより、比較的簡便な工程にもかかわ
らず、確実に高密度化及び高強度化を図ることができる
When measuring the weight increase, the suitability of the actual hydrotreating is determined by the relative oxidation weight increase of the hydrothermally treated raw material at the same temperature with respect to the oxidized weight increase of the unhydrogenated pitch having the same softening point as the hydrothermally treated raw material. It is preferable to judge by weight increase, and if this value exceeds 1.0, it can be judged that hydrogenation is being carried out appropriately. In addition, when measuring the oxygen content, it is preferable to judge by the relative oxygen content of the hydrothermally treated raw material at the same temperature with respect to the oxygen content of the unhydrogenated heat treated pitch having the same softening point as the hydrothermally treated raw material, This value is 1.
If the value exceeds 0, it can be determined that hydrogenation is being performed appropriately. When these values are 1.0 or less, hydrogenation is insufficient, and high density and high strength cannot be achieved as a high density isotropic carbon material. The self-sintering raw material thus obtained is shaped by a known method, carbonized and fired, and graphitized, thereby obtaining the desired isotropic carbon material. In addition, the softening point here is the softening point obtained by the Mettler method. By manufacturing the carbon material as described above, high density and high strength can be reliably achieved despite the relatively simple process.

【0020】[0020]

【実施例】【Example】

(実施例1) (Example 1)

【0021】メトラー法による軟化点が120℃のピッ
チ50重量部に石油系FCC残油を50重量部混合した
。この混合物をオートクレーブに装入し、自生圧下で4
20℃まで昇温しその温度で30分保持した。その後回
収したすべての試料を熱処理装置に装入し、窒素ガス通
流下で420℃まで昇温し、その温度で85分間保持す
る熱処理を行って軟化点が300℃程度になるようにし
た。この熱処理を施したピッチをアトマイズにより平均
粒子径10μmに微粒子化した。得られた微粒子ピッチ
を250℃で15分間酸化処理し、酸化処理後の重量増
加を測定すると共に、酸化処理した試料の酸素含有量を
測定した。得られた試料の一部を炭素材製造用の原料と
した。
50 parts by weight of a petroleum-based FCC residual oil was mixed with 50 parts by weight of pitch having a softening point of 120° C. according to the Mettler method. This mixture was charged into an autoclave and placed under autogenous pressure for 4 hours.
The temperature was raised to 20°C and held at that temperature for 30 minutes. Thereafter, all the collected samples were placed in a heat treatment apparatus, heated to 420°C under nitrogen gas flow, and heat-treated by holding at that temperature for 85 minutes to achieve a softening point of about 300°C. The heat-treated pitch was atomized into fine particles with an average particle diameter of 10 μm. The resulting fine particle pitch was oxidized at 250° C. for 15 minutes, and the weight increase after the oxidation treatment was measured, as well as the oxygen content of the oxidized sample. A part of the obtained sample was used as a raw material for producing carbon material.

【0022】次いで、得られた酸化処理微粒ピッチをゴ
ム型に装入し、1.5T/cm2 でCIP成形した。 この成形体を炭化処理炉へ入れ1000℃で焼成した後
、さらに黒鉛化炉で2200℃まで昇温して黒鉛化処理
を施した。最終的に得られた製品は50mmφ×50m
mの大きさであった。得られた試料の嵩密度と曲げ強度
とを評価した。その結果を表1に示す。また、相対酸化
重量増加及び相対酸素含有量も合わせて表1に示す。な
お、相対酸化重量増加は、 水素化熱処理ピッチの重量増加率/未水素化熱処理ピッ
チの重量増加率 で表され、相対酸素含有量は、 水素化熱処理ピッチの酸素含有量/未水素化熱処理ピッ
チの酸素含有量 (いずれもdry  baseの重量%)で表される。 (実施例2)
[0022] Next, the obtained oxidized fine pitch was charged into a rubber mold and CIP molded at 1.5 T/cm2. This compact was placed in a carbonization furnace and fired at 1000°C, and then further heated to 2200°C in a graphitization furnace to perform graphitization treatment. The final product is 50mmφ x 50m
The size was m. The bulk density and bending strength of the obtained samples were evaluated. The results are shown in Table 1. Table 1 also shows the relative oxidation weight increase and relative oxygen content. Note that the relative oxidation weight increase is expressed as the weight increase rate of hydrotreated pitch/weight increase rate of unhydrogenated heat treated pitch, and the relative oxygen content is expressed as: oxygen content of hydrogenated heat treated pitch/unhydrogenated heat treated pitch It is expressed as the oxygen content (both weight % of dry base). (Example 2)

【0023】メトラー法による軟化点が120℃のピッ
チ50重量部に石油系FCC残油を50重量部混合した
。この混合物をオートクレーブに装入し、オートクレー
ブ内を5kg/cm2 Gに維持した状態で420℃ま
で昇温し、その温度で30分間保持した。その後回収し
たすべての試料を熱処理装置に装入し、窒素ガス通流下
で420℃まで昇温し、その温度で100分間保持する
熱処理を行って軟化点が300℃程度になるようにした
。この熱処理を施したピッチをアトマイズにより平均粒
子径10μmまで微粒子化した。得られた微粒子ピッチ
を250℃で15分間酸化処理し、酸化処理後の重量増
加を測定すると共に、酸化処理した試料の酸素含有量を
測定した。得られた試料の一部を炭素材製造用の原料と
した。
[0023] 50 parts by weight of a petroleum-based FCC residual oil was mixed with 50 parts by weight of pitch having a softening point of 120°C by the Mettler method. This mixture was charged into an autoclave, and while maintaining the inside of the autoclave at 5 kg/cm 2 G, the temperature was raised to 420° C. and held at that temperature for 30 minutes. Thereafter, all the collected samples were placed in a heat treatment apparatus, heated to 420°C under nitrogen gas flow, and heat-treated by holding at that temperature for 100 minutes to achieve a softening point of about 300°C. The heat-treated pitch was atomized into fine particles with an average particle size of 10 μm. The resulting fine particle pitch was oxidized at 250° C. for 15 minutes, and the weight increase after the oxidation treatment was measured, as well as the oxygen content of the oxidized sample. A part of the obtained sample was used as a raw material for producing carbon material.

【0024】次いで、得られた酸化処理微粒ピッチをゴ
ム型に装入し、1.5T/cm2 でCIP成形した。 この成形体を炭化処理炉へ入れ1000℃で焼成し、そ
の後さらに黒鉛化炉で2200℃まで昇温して黒鉛化処
理を施した。最終的に得られた製品は50mmφ×50
mmの大きさであった。得られた試料の嵩密度と曲げ強
度とを評価した。その結果を表1に示す。また、相対酸
化重量増加及び相対酸素含有量も合わせて表1に示す。 (比較例1)
Next, the obtained oxidized fine pitch was charged into a rubber mold and CIP molded at 1.5 T/cm2. This compact was placed in a carbonization furnace and fired at 1000°C, and then further heated to 2200°C in a graphitization furnace to undergo graphitization treatment. The final product is 50mmφ×50
The size was mm. The bulk density and bending strength of the obtained samples were evaluated. The results are shown in Table 1. Table 1 also shows the relative oxidation weight increase and relative oxygen content. (Comparative example 1)

【0025】メトラー法による軟化点が120℃のピッ
チを熱処理装置に装入し、窒素ガス通流下で420℃ま
で昇温しその温度で55分間保持する熱処理を行って軟
化点が300℃程度になるように熱処理した。その熱処
理ピッチをアトマイズにより平均粒子径10μmまで微
粒子化した。得られた微粒子ピッチを250℃で15分
間酸化処理し、酸化処理後の重量増加を測定すると共に
、酸化処理した試料の酸素含有量を測定した。得られた
試料の一部を炭素材製造用の原料とした。
Pitch with a softening point of 120°C determined by the Mettler method was charged into a heat treatment equipment, heated to 420°C under nitrogen gas flow, and heat-treated by holding at that temperature for 55 minutes until the softening point reached approximately 300°C. It was heat treated to The heat-treated pitch was atomized into fine particles with an average particle size of 10 μm. The resulting fine particle pitch was oxidized at 250° C. for 15 minutes, and the weight increase after the oxidation treatment was measured, as well as the oxygen content of the oxidized sample. A part of the obtained sample was used as a raw material for producing carbon material.

【0026】次いで、得られた酸化処理微粒ピッチをゴ
ム型に装入し、1.5T/cm2 でCIP成形した。 この成形体を炭化処理炉へ入れ1000℃で焼成し、そ
の後さらに黒鉛化炉で2200℃まで昇温して黒鉛化処
理を施した。最終的に得られた製品は50mmφ×50
mmの大きさであった。得られた試料の嵩密度と曲げ強
度とを評価した。その結果を表1に示す。また、相対酸
化重量増加及び相対酸素含有量も合わせて表1に示す。
Next, the obtained oxidized fine pitch was charged into a rubber mold and CIP molded at 1.5 T/cm2. This compact was placed in a carbonization furnace and fired at 1000°C, and then further heated to 2200°C in a graphitization furnace to undergo graphitization treatment. The final product is 50mmφ×50
The size was mm. The bulk density and bending strength of the obtained samples were evaluated. The results are shown in Table 1. Table 1 also shows the relative oxidation weight increase and relative oxygen content.

【0027】[0027]

【表1】[Table 1]

【0028】この表1に示すように、実施例1,2はい
ずれも相対酸化重量増加及び相対酸素含有量が1.0を
超えた値となり、その結果、嵩密度が1.95g/cm
3 を超え、曲げ強度が1000kg/cm2 を超え
、いずれも高い値となった。
As shown in Table 1, in both Examples 1 and 2, the relative oxidation weight increase and relative oxygen content exceeded 1.0, and as a result, the bulk density was 1.95 g/cm.
3 and the bending strength exceeded 1000 kg/cm2, both of which were high values.

【0029】これに対し、水素化処理を行わなかった比
較例1では、相対酸化重量増加及び相対酸素含有量が1
.0であり、その結果、嵩密度が実施例と比較して低く
、曲げ強度も実施例の半分以下の値となった。この結果
から、本発明の有効性が確認された。
On the other hand, in Comparative Example 1 in which no hydrogenation treatment was performed, the relative oxidation weight increase and relative oxygen content were 1.
.. As a result, the bulk density was lower than that of the example, and the bending strength was also less than half of that of the example. From this result, the effectiveness of the present invention was confirmed.

【0030】なお、上記実施例では、石油系FCC残油
を移行可能な水素を保持した溶媒として用いて水素化処
理を行ったが、水素ガス雰囲気下での水素化処理でも同
様の効果を得ることができた。
In the above example, the hydrogenation treatment was carried out using petroleum-based FCC residual oil as a solvent holding transferable hydrogen, but the same effect can be obtained by hydrogenation treatment in a hydrogen gas atmosphere. I was able to do that.

【0031】[0031]

【発明の効果】この発明によれば、比較的簡便な工程に
よって容易にかつ確実に高密度化及び高強度化を図るこ
とができる炭素材の製造方法が提供される。
According to the present invention, there is provided a method for manufacturing a carbon material that can easily and reliably increase density and strength through relatively simple steps.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】  自己焼結性原料を製造する工程と、こ
の原料を成形する工程と、成形体を炭化焼成する工程と
、この焼結体を黒鉛化処理する工程とを有する炭素材の
製造方法であって、前記原料は、水素化されたピッチに
熱処理を施し、さらに微細化処理、及び酸化処理を施す
ことによって得られ、かつこの原料の水素化が適当にな
されているか否かを把握する工程を有することを特徴と
する炭素材の製造方法。
1. Production of a carbon material comprising the steps of producing a self-sintering raw material, molding the raw material, carbonizing and firing the molded body, and graphitizing the sintered body. A method, wherein the raw material is obtained by heat-treating hydrogenated pitch, followed by micronization treatment, and oxidation treatment, and determining whether or not this raw material has been properly hydrogenated. A method for producing a carbon material, comprising the step of:
【請求項2】  酸化処理における前記原料の重量増加
により水素化が適当になされているか否かを把握するこ
とを特徴とする請求項1に記載の炭素材の製造方法。
2. The method for producing a carbon material according to claim 1, wherein whether or not hydrogenation is being performed appropriately is determined based on an increase in weight of the raw material during oxidation treatment.
【請求項3】  酸化処理後の前記原料の酸素含有量の
増加により水素化が適当になされているか否かを把握す
ることを特徴とする請求項1に記載の炭素材の製造方法
3. The method for producing a carbon material according to claim 1, wherein whether or not hydrogenation has been carried out appropriately is determined based on an increase in oxygen content of the raw material after oxidation treatment.
【請求項4】  酸化処理における重量増加を、180
〜350℃の範囲内の特定温度における空気酸化処理に
よって得られる重量増加割合から求めることを特徴とす
る請求項2に記載の炭素材の製造方法。
Claim 4: The weight increase due to oxidation treatment is reduced to 180
3. The method for producing a carbon material according to claim 2, wherein the method is determined from a weight increase rate obtained by air oxidation treatment at a specific temperature within the range of ~350°C.
【請求項5】  酸化処理後の酸素含有量の増加を、1
80〜350℃の範囲内の特定温度における空気酸化処
理によって得られる重量増加割合から求めることを特徴
とする請求項3に記載の炭素材の製造方法。
[Claim 5] Increase in oxygen content after oxidation treatment by 1
4. The method for producing a carbon material according to claim 3, wherein the method is determined from a weight increase rate obtained by air oxidation treatment at a specific temperature within the range of 80 to 350C.
【請求項6】  前記水素化熱処理原料と同一軟化点の
未水素化熱処理ピッチの酸化重量増加に対する前記水素
化熱処理原料の同一温度における相対酸化重量増加が1
.0を超える値であることを特徴とする請求項2に記載
の炭素材の製造方法。
6. The relative oxidation weight increase of the hydroheat-treated raw material at the same temperature with respect to the oxidation weight increase of unhydrogenated heat-treated pitch having the same softening point as the hydroheat-treated raw material is 1.
.. The method for producing a carbon material according to claim 2, wherein the value exceeds 0.
【請求項7】  前記水素化熱処理原料と同一軟化点の
未水素化熱処理ピッチの酸素含有量に対する前記水素化
熱処理原料の同一温度における相対酸素含有量が1.0
を超える値であることを特徴とする請求項3に記載の炭
素材の製造方法。
7. The relative oxygen content of the hydrothermally treated raw material at the same temperature with respect to the oxygen content of the unhydrogenated pitch having the same softening point as the hydrothermally treated raw material is 1.0.
4. The method for producing a carbon material according to claim 3, wherein the carbon material has a value exceeding .
JP03117532A 1991-05-22 1991-05-22 Manufacturing method of carbon material Expired - Fee Related JP3094502B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03117532A JP3094502B2 (en) 1991-05-22 1991-05-22 Manufacturing method of carbon material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03117532A JP3094502B2 (en) 1991-05-22 1991-05-22 Manufacturing method of carbon material

Publications (2)

Publication Number Publication Date
JPH04349114A true JPH04349114A (en) 1992-12-03
JP3094502B2 JP3094502B2 (en) 2000-10-03

Family

ID=14714126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03117532A Expired - Fee Related JP3094502B2 (en) 1991-05-22 1991-05-22 Manufacturing method of carbon material

Country Status (1)

Country Link
JP (1) JP3094502B2 (en)

Also Published As

Publication number Publication date
JP3094502B2 (en) 2000-10-03

Similar Documents

Publication Publication Date Title
CN112521172A (en) Composite carbon material for in-situ growth of carbon fibers and preparation method and application thereof
EP0283211B1 (en) Binderless carbon materials
JPS6114110A (en) Manufacture of fine and hollow body of carbon
JP2000007436A (en) Graphite material and its production
JPH04349114A (en) Production of carbon material
CA2086858C (en) Sinterable carbon powder
JPS6172610A (en) Production of high-density graphite material
JP2697482B2 (en) Method for producing pitch-based material and method for producing carbon material using the same as raw material
JP2652909B2 (en) Method for producing isotropic high-strength graphite material
JPH02271919A (en) Production of fine powder of titanium carbide
JP3198123B2 (en) Method for producing isotropic high-strength graphite material
JPS63151610A (en) Raw material composition for producing large-sized carbonaceous material
JPS6235964B2 (en)
JPH04104954A (en) Production of oxidation resistant high-density carbon material
JPS6270216A (en) Production of coke for isotropic carbon material
JPH0158125B2 (en)
JPH04187564A (en) Production of oxidation-resistant high-density carbon material
JPH09208314A (en) Production of carbonaceous material
KR970008694B1 (en) Process for the preparation of carbon composite material
JP2806408B2 (en) Self-fusing carbonaceous powder and high density carbon material
JPH01239058A (en) Production of isotropic high-density carbon material
JPH06100366A (en) Production of ceramic-carbon composite material
JPS6187789A (en) Production of coke for isotropic carbon material
KR19990053883A (en) Manufacturing method of carbon molded body
JPS6272508A (en) Preparation of starting material for high density isotropic carbon material

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees