JPH0434890A - High frequency heater - Google Patents

High frequency heater

Info

Publication number
JPH0434890A
JPH0434890A JP13965890A JP13965890A JPH0434890A JP H0434890 A JPH0434890 A JP H0434890A JP 13965890 A JP13965890 A JP 13965890A JP 13965890 A JP13965890 A JP 13965890A JP H0434890 A JPH0434890 A JP H0434890A
Authority
JP
Japan
Prior art keywords
heating
temperature
time
heating chamber
high frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13965890A
Other languages
Japanese (ja)
Inventor
Hideki Watanabe
秀樹 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Home Appliance Co Ltd
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Home Appliance Co Ltd
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Home Appliance Co Ltd, Mitsubishi Electric Corp filed Critical Mitsubishi Electric Home Appliance Co Ltd
Priority to JP13965890A priority Critical patent/JPH0434890A/en
Publication of JPH0434890A publication Critical patent/JPH0434890A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of High-Frequency Heating Circuits (AREA)
  • Electric Ovens (AREA)

Abstract

PURPOSE:To properly self-control the heating time of a material to be heated regardless of a heating starting mode, or a continuously using mode in use by calculating and mutually comparing the variation grades of a temperature function determined by the temperature of the air flowing in and out of a heating chamber so as to control high frequency power. CONSTITUTION:A surface temperature T1 and an exhaust temperature T2 of a high frequency oscillating tube 4 are calculated by a high frequency oscillating tube surface temperature sensor 15 and an exhaust temperature sensor 12 at a certain time interval after heating is started. If a variation grade C of a temperature function B to be determined is smaller than a preset value, high frequency power is increased, and if a variation grade Cn of the temperature function B at a certain sampling time is greater than the grade Cn-1 of the previous sampling time by one timing, an optimal heating time t2 from a time t1 when this variation grade Cng is reached, after the start of the heating is calculated, and after the time t2 passes by, the supply of high frequency power is stopped.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、高周波加熱装置に係り、特にその最適加熱時
間を自動的に制御する高周波加熱装置に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a high-frequency heating device, and particularly to a high-frequency heating device that automatically controls its optimum heating time.

[従来の技術] 第6図は、特開昭53−50545号公報に示された従
来の高周波加熱装置の概略構成図である。図において、
(1)は加熱室、(2)は加熱室内に置かれた受皿、(
3)は受皿(2)に乗せられた被加熱物、(4)は加熱
室(1)内に高周波を供給する高周波発振管、(5)は
加熱室(1)のドア、(6)は電源装置、(7)は加熱
室換気用ファン、(8)は高周波加熱装置の吸気口、(
8a)は高周波加熱装置の排気口、(9)は加熱室(1
)の吸気口、(10)は加熱室(1)の排気口、(11
)は吸気用温度センサ、(12)は排気用温度センサ、
(13)は高周波加熱装置の制御装置である。
[Prior Art] FIG. 6 is a schematic diagram of a conventional high-frequency heating device disclosed in Japanese Patent Application Laid-Open No. 53-50545. In the figure,
(1) is the heating chamber, (2) is the saucer placed in the heating chamber, (
3) is the object to be heated placed on the saucer (2), (4) is a high frequency oscillation tube that supplies high frequency waves into the heating chamber (1), (5) is the door of the heating chamber (1), and (6) is the (7) is the heating room ventilation fan, (8) is the intake port of the high-frequency heating device, (
8a) is the exhaust port of the high-frequency heating device, and (9) is the heating chamber (1
), (10) is the exhaust port of heating chamber (1), and (11) is the exhaust port of heating chamber (1).
) is the intake temperature sensor, (12) is the exhaust temperature sensor,
(13) is a control device for the high frequency heating device.

次に、この加熱動作について説明する。高周波発振管(
4)は電源装置(6)によって駆動されて発振し、加熱
室(1)内の受皿(2)上に置かれた被加熱物(3)を
加熱する。加熱期間中、加熱室換気用ファン(7)が動
作しこれによって高周波加熱装置の吸気口(8)から入
った外気は、加熱室(1)の吸気口(9)から加熱室(
1)内に入り被加熱物(3)の周囲を通過して、加熱室
(1)の排気口(10)から加熱室(1)の外に流出し
、さらに換気用ファン(7)を介して高周波加熱装置の
排気口(8a)から外に流れる。この場合、加熱室(1
)内に吸入される空気の温度を吸気用温度センサ(11
)で検出し、加熱室(1)から排出される空気の温度を
排気用温度センサ(12)で検知し、両者の温度差を求
めて加熱期間中の排気温度の上昇値を検知する。次に、
この検知信号を制御装置(13)に加え、排気温度の上
昇値があらかじめ設定した値に達した時に、制御装置(
13)によって電源装置(6)の出力を遮断し、高周波
発振管(4)の発振を停止させる。
Next, this heating operation will be explained. High frequency oscillator tube (
4) is driven by the power supply device (6) to oscillate and heat the object to be heated (3) placed on the saucer (2) in the heating chamber (1). During the heating period, the heating chamber ventilation fan (7) operates, and as a result, the outside air entering from the intake port (8) of the high-frequency heating device is transferred from the air intake port (9) of the heating chamber (1) to the heating chamber (
1) enters the interior, passes around the object to be heated (3), flows out of the heating chamber (1) from the exhaust port (10) of the heating chamber (1), and further passes through the ventilation fan (7). and flows out from the exhaust port (8a) of the high-frequency heating device. In this case, the heating chamber (1
) The intake temperature sensor (11
), the temperature of the air discharged from the heating chamber (1) is detected by the exhaust temperature sensor (12), and the temperature difference between the two is determined to detect the increase in exhaust temperature during the heating period. next,
This detection signal is applied to the control device (13), and when the exhaust temperature rise value reaches a preset value, the control device (13)
13) cuts off the output of the power supply device (6) and stops the oscillation of the high frequency oscillation tube (4).

[発明が解決しようとする課題] しかしながら、上記構成の従来の高周波加熱装置では、
加熱開始時の吸気と排気に温度差があったり、又、高周
波加熱装置を連続して使用する場合には、大きな制御誤
差を生じる。
[Problems to be Solved by the Invention] However, in the conventional high-frequency heating device having the above configuration,
If there is a temperature difference between intake air and exhaust air at the start of heating, or if a high frequency heating device is used continuously, a large control error will occur.

例えば、同じ物を3回連続して加熱した場合、加熱開始
時の排気温度は、加熱を繰り返す度に次第に高くなる。
For example, if the same object is heated three times in a row, the exhaust gas temperature at the start of heating will gradually become higher each time the heating is repeated.

これは前回の加熱によって受皿(2)や加熱室(1)の
天面、壁面、底面等の温度が上昇し、かつ被加熱物(3
)から発生した熱気が加熱室(1)内にこもっているた
めである。一方、吸気温度は連続して使用してもほぼ一
定である。従って連続して使用する度に加熱開始時にお
ける吸気と排気の温度差が大きくなり、この結果各回の
加熱終了時点における吸気と排気の温度差は次第に大き
くなる。このため吸気と排気の温度差があらかじめ設定
した一定値に達した時に加熱が停止するように設定する
と、加熱の2回目では早切れとなり、又、加熱の3回目
では加熱前から吸気と排気の温度差があらかじめ設定し
た一定値より大きくなって、加熱停止のまま被加工物の
加熱がなされないという場合があった。
This is because the temperature of the top, wall, bottom, etc. of the saucer (2) and heating chamber (1) has increased due to the previous heating, and the temperature of the object to be heated (3) has increased.
) is trapped inside the heating chamber (1). On the other hand, the intake air temperature remains almost constant even when used continuously. Therefore, each time the device is used continuously, the temperature difference between the intake air and exhaust gas at the start of heating increases, and as a result, the temperature difference between the intake air and exhaust gas at the end of each heating operation gradually increases. Therefore, if you set the heating to stop when the temperature difference between the intake and exhaust reaches a preset value, the second heating will turn off early, and the third heating will cause the intake and exhaust to change even before heating. There have been cases where the temperature difference has become larger than a preset constant value and the heating has stopped and the workpiece has not been heated.

本発明は、上記の課題を解決するためになされたもので
、加熱開始時の吸気と排気に温度差があったり、又、高
周波加熱装置を連続使用する場合にも、被加熱物の加熱
時間を適性に自動制御する高周波加熱装置を得ることを
目的とする。
The present invention has been made to solve the above-mentioned problems, and even when there is a temperature difference between intake air and exhaust air at the start of heating, or when a high-frequency heating device is used continuously, the heating time of the object to be heated is The purpose of this study is to obtain a high-frequency heating device that can appropriately control automatically.

[課題を解決するための手段] 本発明に係る高周波加熱装置は、被加熱物を収納した加
熱室内に高周波電力を供給して被加熱物を加熱する高周
波加熱装置に、加熱室内に流入する空気又はこれと相当
部分の温度T1を検知する第1の温度検知手段と、加熱
室内の空気又は該加熱室から流出する空気の温度T2を
検知する第2の温度検知手段とを備えて、同一時刻にお
ける温度T とT2を所定の間隔でサンプリングし、同
■ 一時刻における温度T の温度T1に対する割合である
固有の定数a及び同一時刻における温度T1とT2で定
まる温度関数B B−axT2−71 の変化勾配Cを算出し、この変化勾配Cがあらかしめ設
定した設定値より小さい場合、高周波電力を増加させ、
温度関数Bのあるサンプリング時の変化勾配Cがこのサ
ンプリング時より一回前のサンプリング時の変化勾配C
より大きくなりn−ま たとき、加熱開始時より変化勾配Cに達したときまでの
時間t1からの被加工物の最適加熱時間t2を算出し、 加熱時間t2経過後、高周波電力の供給を停止させる制
御手段を設けたものである。
[Means for Solving the Problems] The high-frequency heating device according to the present invention heats the object by supplying high-frequency power into the heating chamber housing the object to be heated. or a first temperature detection means for detecting the temperature T1 of a portion corresponding to this, and a second temperature detection means for detecting the temperature T2 of the air inside the heating chamber or the air flowing out from the heating chamber, at the same time. Temperatures T and T2 at the same time are sampled at predetermined intervals, and the temperature function B B-axT2-71 determined by the unique constant a that is the ratio of the temperature T at the same time to the temperature T1 and the temperatures T1 and T2 at the same time is calculated. Calculate the change gradient C, and if this change gradient C is smaller than the preset value, increase the high frequency power,
The change gradient C at a certain sampling time of temperature function B is the change gradient C at the time of sampling one time before this sampling time.
When the temperature becomes larger than n- again, calculate the optimum heating time t2 of the workpiece from the time t1 from the start of heating until the time when the change gradient C is reached, and stop the supply of high-frequency power after the heating time t2 has elapsed. A control means is provided.

[作 用] 本発明による高周波加熱装置は、第1の温度検知手段と
第2の温度手段によって、同一時刻における加熱室内に
流入する空気又はこれと相当部分の温度T1と、加熱室
内の空気又は加熱室から流出する空気の温度T2を所定
の間隔でサンプリングする。
[Function] The high-frequency heating device according to the present invention uses the first temperature detection means and the second temperature means to detect the temperature T1 of the air flowing into the heating chamber or a corresponding portion thereof at the same time, and the temperature of the air or air inside the heating chamber at the same time. The temperature T2 of the air flowing out from the heating chamber is sampled at predetermined intervals.

そして、制御手段が、これらサンプリングした温度T 
とT2より定まる温度関数Bの変化勾配置 Cを算出し、この変化勾配Cが、あらかじめ設定した設
定値より小さい場合は、電源装置を介して高周波電力を
増加させ、被加熱物の加熱を続行する。
Then, the control means controls these sampled temperatures T
Calculate the change gradient position C of the temperature function B determined from do.

また、制御手段が、温度関数Bのあるサンプリング時の
変化勾配Cと、このサンプリング時より一回前のサンプ
リング時の変化勾配Cとを比較して、変化勾配Cが変化
勾配Cより大n              n−1き
いと判断すると、加熱開始時より変化勾配Cnに達した
ときまでの時間t1からの被加熱物の最適加熱時間t2
を算出して、この時間t2が経過するまで、電源装置を
介して、高周波電力を供給し加熱を行う。
Further, the control means compares a change gradient C at a certain sampling time of the temperature function B with a change gradient C at a sampling time immediately before this sampling time, and determines that the change gradient C is larger than the change gradient C n n -1, the optimum heating time t2 of the object to be heated from the time t1 from the start of heating until the time when the change gradient Cn is reached.
is calculated, and high frequency power is supplied via the power supply device to perform heating until this time t2 has elapsed.

[実施例] 第1図は本発明の一実施例を示す高周波加熱装置の概略
構成図、第2図は本発明に係る第1の温度検知手段の一
実施例を示す構成図、第3図は本発明に係る第2の温度
検知手段の一実施例を示す構成図である。図において第
6図と同一符号は同−又は相当部分を示す。(13a)
は本発明に係る加熱制御動作を行う制御装置、(14)
は電気室、(15)は加熱室(1)内に流入する空気に
相当する高周波発振管(4)の表面温度を検知する高周
波発振管表面温度センサ、(16)は電気室(14)の
冷却用ファンである。上記実施例では、高周波発振管(
4)などを冷却するため、電気室(14)内に強制的に
外気を入れて、この空気の一部を加熱室(1)の吸気口
(9)から、加熱室(1)内に流入させている。また、
(17)は温度センサ(12)、(15)を駆動させる
ための直流電源、(18)、(19)は負荷抵抗である
[Example] FIG. 1 is a schematic configuration diagram of a high-frequency heating device showing an embodiment of the present invention, FIG. 2 is a configuration diagram showing an embodiment of the first temperature detection means according to the present invention, and FIG. FIG. 2 is a configuration diagram showing an embodiment of a second temperature detection means according to the present invention. In the figure, the same reference numerals as in FIG. 6 indicate the same or corresponding parts. (13a)
is a control device that performs a heating control operation according to the present invention, (14)
(15) is a high frequency oscillation tube surface temperature sensor that detects the surface temperature of the high frequency oscillation tube (4) corresponding to the air flowing into the heating chamber (1), (16) is the electric chamber (14). It is a cooling fan. In the above embodiment, the high frequency oscillation tube (
4), etc., force outside air into the electrical room (14), and part of this air flows into the heating room (1) from the air intake port (9) of the heating room (1). I'm letting you do it. Also,
(17) is a DC power source for driving the temperature sensors (12) and (15), and (18) and (19) are load resistances.

ここで、温度関数について説明する。Here, the temperature function will be explained.

加−熱開始時からある時間を秒経過後の加熱室(1)内
の空気又は加熱室(1)内から流出する空気の温度T2
(t)は、加熱室(1)内に流入する空気の温度に相当
する高周波発振管(4)の表面温度T1(t)と、加熱
室(1)内の受皿(2)上の被加熱物(3)の温度上昇
に伴う加熱室(1)の排気口(10)の温度上昇分△T
 (t)の関数であられすことができる。
Temperature T2 of the air in the heating chamber (1) or the air flowing out from the heating chamber (1) after a certain time in seconds has elapsed from the start of heating
(t) is the surface temperature T1(t) of the high frequency oscillation tube (4), which corresponds to the temperature of the air flowing into the heating chamber (1), and the heated target on the saucer (2) in the heating chamber (1). Temperature increase △T of the exhaust port (10) of the heating chamber (1) due to the temperature rise of the object (3)
It can be expressed as a function of (t).

’r2(t)−(’r、(t)/at 十(b+△T(t)l・・・・・・(1)こでaは、加
熱室(1)内の空気又は加熱室(1)から流出する空気
の温度T2の加熱室(1)内に流入する空気又はこれと
相当部分の温度T1に対する同一時刻における割合で、
加熱室(1)の大きさ、加熱室(1)の吸気口(9) 
 加熱室(1)の排気口(lO)の形状、実際の吸・排
気の温度に対する同時刻の温度検知の応答性などによっ
て異なるが、実験によって容易に求めることができる。
'r2(t)-('r, (t)/at ten(b+△T(t)l)...(1) Here, a is the air in the heating chamber (1) or the heating chamber ( The ratio of the temperature T2 of the air flowing out from 1) to the temperature T1 of the air flowing into the heating chamber (1) or a corresponding portion thereof at the same time,
Size of heating chamber (1), intake port (9) of heating chamber (1)
Although it varies depending on the shape of the exhaust port (lO) of the heating chamber (1), the responsiveness of temperature detection at the same time to the actual intake and exhaust temperatures, etc., it can be easily determined by experiment.

また、bは加熱開始時の温度T およびT2や、■ この温度差によって異なり、時間によって変化する関数
なので容易に求められない。そこで、(1)式を変形し
て、 a (△T (t) + b ) = a X T 2
 (t)−’r、(t)・・・・・・(2) とし、さらに、(2)式の左辺をBとおくとB = a
 x T2 (t)  ”1 (t) ・・・・・・(
3)となりこれを温度関数と呼ぶことにする。第4図は
接定時間t。ごとに、高周波発振管表面温度センサ(1
5)で測定した温度T1と、排気用温度センサ(12)
で測定した温度T2から算出した、温度関数Bを示すグ
ラフである。
Moreover, b varies depending on the temperatures T and T2 at the start of heating, and (1) the temperature difference, and is not easily determined because it is a function that changes with time. Therefore, by transforming equation (1), a (△T (t) + b) = a X T 2
(t)-'r, (t)... (2) and further, let B be the left side of equation (2), then B = a
x T2 (t) ”1 (t) ・・・・・・(
3), and this will be called the temperature function. FIG. 4 shows the contact time t. High frequency oscillation tube surface temperature sensor (1
5) The temperature T1 measured in step 5) and the exhaust temperature sensor (12)
It is a graph showing temperature function B calculated from temperature T2 measured in .

第4図によれば、加熱開始とともに、温度関数Bはある
一定値に近づき、その変化勾配Cは小さくなってゆく。
According to FIG. 4, as heating begins, the temperature function B approaches a certain constant value, and its change gradient C becomes smaller.

しかし、加熱室(1)内の受皿(2)の被加工物(3)
の温度が上昇してきて、排気用温度センサ(12)に影
響を与えてくると、変化勾配Cは再び大きくなる。この
ことは、吸気と排気の空気の温度が加熱前に異なってい
ても、又、連続して加熱する場合も同様である。しがし
、温度関数Bの変化勾配Cが所定の設定値よりも小さい
場合は被加熱物(3)が加熱されにくいものが、又はそ
の温度が充分低いもので、被加熱物(3)の影響が排気
用温度センサ(12)に現われにくい。
However, the workpiece (3) on the saucer (2) in the heating chamber (1)
As the temperature rises and begins to affect the exhaust temperature sensor (12), the change gradient C becomes large again. This is true even if the temperatures of the intake air and exhaust air are different before heating, or even when they are heated continuously. However, if the change gradient C of the temperature function B is smaller than the predetermined set value, the object to be heated (3) is difficult to heat or the temperature thereof is sufficiently low. The effect is less likely to appear on the exhaust temperature sensor (12).

次に、以上のことを利用した制御装置(1(a)を備え
た上記実施例の高周波加熱装置の加熱動作を説明する。
Next, the heating operation of the high-frequency heating apparatus of the above embodiment equipped with the control device (1(a)) utilizing the above will be explained.

第5図は第1図の高周波加熱装置における加熱制御の、
フローチャートである。
Figure 5 shows heating control in the high frequency heating device of Figure 1.
It is a flowchart.

まず、加熱を開始すると、ステップS1で、−定時間t
。秒ごとにおけるn番目(nは0を含む正の整数)のサ
ンプリング時(n X t o秒)のとき、高周波発振
管表面温度センサ(15)及び排気用温度センサ(12
)がそれぞれの温度検出用電圧V1nとv2nを検知す
る。
First, when heating is started, in step S1 - fixed time t
. At the time of the nth (n is a positive integer including 0) sampling every second (n X to seconds), the high frequency oscillation tube surface temperature sensor (15) and the exhaust temperature sensor (12
) detects the respective temperature detection voltages V1n and v2n.

次に、ステップS2で、この温度検出用電圧V1nとv
2nから高周波発振管(4)の表面温度T1n及び排気
温度T2nを算出する。
Next, in step S2, the temperature detection voltages V1n and v
The surface temperature T1n of the high frequency oscillation tube (4) and the exhaust temperature T2n are calculated from 2n.

次に、ステップS3で、このn番目における温度関数B
 を、 B −aXT2n−Tlnにより算出する。
Next, in step S3, the temperature function B at this nth
is calculated by B -aXT2n-Tln.

次に、ステップS4で、温度関数B の変化勾配Cを、
C−(B  −B   )/loによりn      
 n       n      n−1算出する。こ
こでのnは1以上の整数で、Bn−1は、n−1番目の
サンプリング時((n−1) x t 。
Next, in step S4, the change gradient C of the temperature function B is
C-(B-B)/lo by n
Calculate n n n-1. n here is an integer greater than or equal to 1, and Bn-1 is ((n-1) x t at the n-1st sampling time.

秒)のときの温度関数である。It is a temperature function when

次に、ステップS5で、今回算出した変化勾配Cがこれ
より一回前に算出した変化勾配Cn−1より、大きいか
否か判断し、大きい場合はステップS6へ、小さい場合
はステップS1に戻る。
Next, in step S5, it is determined whether the change gradient C calculated this time is larger than the change gradient Cn-1 calculated one time before. If it is larger, the process goes to step S6; if it is smaller, the process returns to step S1. .

次に、ステップS6で、加熱開始時からこのn番目のサ
ンプリング時までの時間t1を測定する□。
Next, in step S6, the time t1 from the start of heating to this nth sampling time is measured □.

次に、ステップS7でステップS6で測定した時間t1
から、加熱室(1)内の被加熱物(3)が適温になるま
での残り加熱時間t2を以下の式で算出する。
Next, in step S7, the time t1 measured in step S6 is
From this, the remaining heating time t2 until the heated object (3) in the heating chamber (1) reaches the appropriate temperature is calculated using the following formula.

・ ・ ・ ・ (4) ここで、d =  e +  t aは高周波加熱装置
の加熱室(1)の大きさや、加熱室(1)の吸気口(9
)、加熱室(1)の排気口(10)の形状等によって定
まる固有の定数であって実験により求められる。
・ ・ ・ ・ (4) Here, d = e + ta is the size of the heating chamber (1) of the high-frequency heating device and the intake port (9) of the heating chamber (1).
), is a unique constant determined by the shape of the exhaust port (10) of the heating chamber (1), etc., and is determined by experiment.

次に、ステップS8で、時間t2をカウントダウンし、
0になった時に、電源装置(6)に作用して高周波電力
の供給を停止させる。
Next, in step S8, time t2 is counted down,
When it becomes 0, it acts on the power supply device (6) to stop the supply of high frequency power.

また、フローチャートに示していないが、ステップS4
で算出した変化勾配Cがあらかじめ設定した設定値より
小さい場合は、電源装置(6)に作用して高周波電力を
増加させ、加熱を続行する。
Also, although not shown in the flowchart, step S4
If the gradient of change C calculated is smaller than the preset value, the power supply device (6) is operated to increase the high frequency power and continue heating.

なお、上記実施例では所定の時間間隔t。ごとに温度T
 とT2のサンプリングを行ったが、温度T2の変化を
とらえ、所定の温度間隔ごとに温度T1とT2のサンプ
リングを行ってもよい。
Note that in the above embodiment, the predetermined time interval t. every temperature T
Although sampling of temperatures T1 and T2 was performed, changes in temperature T2 may be captured and sampling of temperatures T1 and T2 may be performed at predetermined temperature intervals.

また、上記実施例では、高周波発振管(4)の表面温度
を検知したが、加熱室(1)内に流入する空気そのもの
を検知してもよい。
Further, in the above embodiment, the surface temperature of the high frequency oscillation tube (4) is detected, but the air itself flowing into the heating chamber (1) may also be detected.

また、上記実施例では、加熱室(1)から排出する空気
の温度を検知したが、加熱室(1)内の空気の温度を検
知してもよい。この場合には、温度センサは電波遮へい
物によって、高周波から遮へいして使用する。
Further, in the above embodiment, the temperature of the air discharged from the heating chamber (1) is detected, but the temperature of the air inside the heating chamber (1) may also be detected. In this case, the temperature sensor is used by shielding it from high frequencies with a radio wave shield.

その他、単に外気を加熱室(1)内に強制的に流入させ
る機構、あるいは、加熱室(1)内の空気を強制的に流
出させる機構の場合には、それぞれの吸気と排気から温
度T とT2を検知するようにしてもよい。
In addition, in the case of a mechanism that simply forces outside air into the heating chamber (1) or a mechanism that forces the air inside the heating chamber (1) to flow out, the temperature T and It is also possible to detect T2.

上記実施例によれば、加熱前に吸・排気に温度差があっ
ても、また、連続して加熱を行う場合でも精度の高い加
熱制御ができるほか、高周波発振管(4)の表面温度を
直接検知しているので、高周波発振管(4)の異常温度
上昇も検出できる。
According to the above embodiment, even if there is a temperature difference between the intake and exhaust air before heating, or even when heating is performed continuously, highly accurate heating control can be performed, and the surface temperature of the high frequency oscillation tube (4) can be controlled. Since it is directly detected, abnormal temperature rises in the high frequency oscillator tube (4) can also be detected.

[発明の効果コ 以上のように本発明によれば、同一時刻における加熱室
内に流入する空気又はこれと相当部分の温度T1と、加
熱室内の空気又は加熱室内から流出する空気の温度T2
を所定の間隔でサンプリングし、これらから定まる温度
関数Bの変化勾配Cを算出して、この変化勾配Cがあら
かじめ設定した設定値より小さい場合、高周波電力を増
加させ、さらに、温度関数Bのあるサンプリング時の変
化勾配Cが、このサンプリング時より一回前のすシブリ
ング時の変化勾配Cより大きくなったとき、加熱開始時
からこの変化勾配Cに達したときまでの時間t1からの
最適加熱時間t2を算出して、時間t2経過後に高周波
電力の供給を停止する手段を設けたので、単に温度T1
とT2の差から加熱を制御する場合にくらべ、高精度の
制御が可能となり、温度T とT2が加熱前に異なって
いても、又連続して被加熱物を加熱する場合にも、適切
な加熱が行える高周波加熱装置を得ることができる。
[Effects of the Invention] As described above, according to the present invention, the temperature T1 of the air flowing into the heating chamber or a corresponding portion thereof at the same time, and the temperature T2 of the air inside the heating chamber or the air flowing out from the heating chamber at the same time.
is sampled at a predetermined interval, and the gradient of change C of temperature function B determined from these is calculated. If this gradient of variation C is smaller than a preset value, the high frequency power is increased, and When the change gradient C at the time of sampling becomes larger than the change gradient C at the time of sifting one time before this sampling time, the optimum heating time from the time t1 from the start of heating to the time when this change gradient C is reached. Since we provided a means for calculating t2 and stopping the supply of high-frequency power after the elapse of time t2, we simply calculated the temperature T1.
Compared to the case where heating is controlled based on the difference between A high frequency heating device capable of heating can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す高周波加熱装置の概略
構成図、第2図は本発明に係る第1の温度検知手段の一
実施例を示す構成図、第3図は本発明に係る第2の温度
検知手段の一実施例を示す構成図、第4図は温度関数B
を示すグラフ、第5図は第1図の高周波加熱装置におけ
る加熱制御のフローチャート、第6図は従来の高周波加
熱装置の概略構成図である。 図において、(1)は加熱室、(3)は被加熱物、(4
)は高周波発振管、(6)は電源装置、(9)は加熱室
(1)の吸気口、(10)は加熱室の排気口、(12)
は排気用温度センサ、(13a)は高周波加熱装置の制
御装置、(15)は高周波発振管表面温度センサである
。 なお、各図中、同一符号は同−又は相当部分を示す。
FIG. 1 is a schematic block diagram of a high-frequency heating device showing an embodiment of the present invention, FIG. 2 is a block diagram showing an embodiment of a first temperature detection means according to the present invention, and FIG. A configuration diagram showing an example of the second temperature detection means, FIG. 4 shows the temperature function B.
FIG. 5 is a flowchart of heating control in the high-frequency heating device of FIG. 1, and FIG. 6 is a schematic diagram of the conventional high-frequency heating device. In the figure, (1) is the heating chamber, (3) is the object to be heated, and (4) is the heating chamber.
) is a high-frequency oscillation tube, (6) is a power supply device, (9) is an intake port of the heating chamber (1), (10) is an exhaust port of the heating chamber, (12)
(13a) is a control device for the high-frequency heating device; (15) is a high-frequency oscillation tube surface temperature sensor. In each figure, the same reference numerals indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】 被加熱物を収納した加熱室内に高周波電力を供給して被
加熱物を加熱する高周波加熱装置において、 上記加熱室内に流入する空気又はこれと相当部分の温度
T_1を検知する第1の温度検知手段と、上記加熱室内
の空気又は該加熱室から流出する空気の温度T_2を検
知する第2の温度検知手段とを備え、 同一時刻における上記温度T_1とT_2を所定の間隔
でサンプリングし、 同一時刻における上記温度T_2の上記温度T_1に対
する割合である固有の定数a及び同一時刻における上記
温度T_1とT_2で定まる温度関数BB=a×T_2
−T_1 の変化勾配Cを算出し、 上記変化勾配Cが、あらかじめ設定した設定値より小さ
い場合、上記高周波電力を増加させ、上記温度関数Bの
あるサンプリング時の変化勾配C_nが、該サンプリン
グ時より一回前のサンプリング時の変化勾配C_n_−
_1より大きくなったとき、加熱開始時より上記変化勾
配C_nに達したときまでの時間t_1からの上記被加
熱物の最適加熱時間t_2を算出し、 該加熱時間t_2経過後、上記高周波電力の供給を停止
させる制御手段を設けたことを特徴とする高周波加熱装
置。
[Claims] In a high-frequency heating device that heats an object by supplying high-frequency power into a heating chamber housing an object to be heated, the temperature T_1 of the air flowing into the heating chamber or a corresponding portion thereof is detected. comprising a first temperature detection means and a second temperature detection means for detecting the temperature T_2 of the air in the heating chamber or the air flowing out from the heating chamber, and the temperature T_1 and T_2 at the same time are detected at predetermined intervals. A temperature function BB=a×T_2 determined by a unique constant a that is the ratio of the temperature T_2 to the temperature T_1 at the same time and the temperatures T_1 and T_2 at the same time.
- Calculate the gradient C of change of T_1, and if the gradient C is smaller than a preset value, increase the high frequency power, and the gradient C_n of temperature function B at a certain sampling time will be lower than that at the sampling time. Change gradient C_n_- at the time of previous sampling
When the temperature exceeds _1, calculate the optimum heating time t_2 of the object to be heated from the time t_1 from the start of heating until the time when the change gradient C_n is reached, and after the heating time t_2 elapses, supply the high-frequency power. A high-frequency heating device characterized by comprising a control means for stopping the heating.
JP13965890A 1990-05-31 1990-05-31 High frequency heater Pending JPH0434890A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13965890A JPH0434890A (en) 1990-05-31 1990-05-31 High frequency heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13965890A JPH0434890A (en) 1990-05-31 1990-05-31 High frequency heater

Publications (1)

Publication Number Publication Date
JPH0434890A true JPH0434890A (en) 1992-02-05

Family

ID=15250397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13965890A Pending JPH0434890A (en) 1990-05-31 1990-05-31 High frequency heater

Country Status (1)

Country Link
JP (1) JPH0434890A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020050356A1 (en) * 2018-09-07 2020-03-12 パナソニックIpマネジメント株式会社 Rf energy radiation device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020050356A1 (en) * 2018-09-07 2020-03-12 パナソニックIpマネジメント株式会社 Rf energy radiation device
JPWO2020050356A1 (en) * 2018-09-07 2021-08-30 パナソニックIpマネジメント株式会社 RF energy radiant device

Similar Documents

Publication Publication Date Title
EP0619692B1 (en) Heating temperature control in high frequency induction heating
US4461941A (en) Microwave oven with infrared temperature detector
JP2004184060A (en) Microwave oven and method of controlling the same
KR0154643B1 (en) Power signal of steam sensor for microwave oven
US5360966A (en) Microwave oven with temperature fluctuation detection
JPH0434890A (en) High frequency heater
EP0763963B1 (en) Method for controlling cooking by using a vapor sensor in a microwave oven
KR900003967B1 (en) Cooking method of electronic range
JP2712697B2 (en) Automatic heating device
JPH09105526A (en) High-frequency thawing apparatus
JP2957782B2 (en) Cooker
JPH0456092A (en) High frequency heating device
JPH07229626A (en) Temperature control in heating cooker
US6988047B1 (en) Method for determining the instantaneous temperature of a medium
KR940004978B1 (en) Heat control system for a microwave range
KR0161090B1 (en) Automatic cooking method of microwave oven
JP2989418B2 (en) Humidity detector of cooking device
JPH0141046Y2 (en)
KR950004357B1 (en) Automatic control system for a microwave range
JP2706396B2 (en) Cooking device
KR100248781B1 (en) A controller for operating microwave oven
KR0154623B1 (en) Automatic cooking method of microwave oven
JPH05157248A (en) High frequency heater
JPH0539929A (en) High frequency heater
KR900004450B1 (en) Cooking method for microwave range