JPH0456092A - High frequency heating device - Google Patents

High frequency heating device

Info

Publication number
JPH0456092A
JPH0456092A JP16471290A JP16471290A JPH0456092A JP H0456092 A JPH0456092 A JP H0456092A JP 16471290 A JP16471290 A JP 16471290A JP 16471290 A JP16471290 A JP 16471290A JP H0456092 A JPH0456092 A JP H0456092A
Authority
JP
Japan
Prior art keywords
heated
output
heating
detection sensor
magnetron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16471290A
Other languages
Japanese (ja)
Inventor
Masato Yota
正人 要田
Masaaki Yamaguchi
公明 山口
Tomomi Moriyama
森山 智美
Shinichi Sakai
伸一 酒井
Takashi Kashimoto
隆 柏本
Koji Yoshino
浩二 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP16471290A priority Critical patent/JPH0456092A/en
Publication of JPH0456092A publication Critical patent/JPH0456092A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To determine a stabilized and optimum thawing time, and realize automation of thawing by performing the integral computing processing with a control means for controlling the high frequency output of a magnetron per each period of an even heating means, and computing a heating time of the material to be heated, and controlling the high frequency output of the magnetron. CONSTITUTION:The output from a microwave detecting sensor 10 is led to an integral circuit 15 through a fan 5 for agitating a microwave with a constant period and an even heating device such as a turn table 12 for turning the material 4 to be heated with a constant period. This circuit 15 performs integral processing per a period of the even heating device to commpute the heating time of the material 4 to be heated with a weight and an initial measured temperature of this material 4 to be heated, and controls the frequency output of a magnetron 1. The optimum thawing time can be thereby obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は被加熱物の重量、初期温度などに応じて加熱時
間を制御する高周波加熱装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a high-frequency heating device that controls heating time depending on the weight, initial temperature, etc. of an object to be heated.

従来の技術 近年、高周波加熱装置は食品などの被加熱物を解凍する
とき、被加熱物の重量、初期温度などによって加熱時間
を自動的に設定し、最適の状態で解凍終了ができること
が求められている。
Conventional technology In recent years, high-frequency heating devices have been required to automatically set the heating time based on the weight of the object, initial temperature, etc. when thawing food or other objects, and to be able to finish thawing in optimal conditions. ing.

従来、この種の高周波加熱装置は加熱室内の被加熱物の
重量に応して常に適切に加熱する方法として加熱室内に
マイクロ波検波センサを配置し、被加熱物に吸収されな
かった反射マイクロ波を検出し、この反射マイクロ波電
力が被加熱物の重量に反比例する特性を用いるものであ
る。
Conventionally, this type of high-frequency heating device has placed a microwave detection sensor inside the heating chamber as a method of always appropriately heating the object to be heated in accordance with the weight of the object to be heated in the heating chamber. This method uses the characteristic that the reflected microwave power is inversely proportional to the weight of the object to be heated.

すなわち、加熱室内のマイクロ波の分布状態は被加熱物
の状態によって影響を受け、マイクロ波の分布を何らか
の手段で検知しておけば被加熱物の状態を知ることがで
きる。この原理を応用したのがマイクロ波検波センサで
ある。このマイクロ波検波センサは加熱室内のマイクロ
波のエネルギーを検波ダイオードで検波し、平滑化して
直流信号に変換するものであり、このマイクロ波検波セ
ンサの出力によりタイマなどを駆動して解凍終了するよ
うにしていた。
That is, the distribution state of microwaves in the heating chamber is influenced by the state of the object to be heated, and if the distribution of microwaves is detected by some means, the state of the object to be heated can be known. Microwave detection sensors apply this principle. This microwave detection sensor detects the microwave energy in the heating chamber with a detection diode, smoothes it, and converts it into a DC signal.The output of this microwave detection sensor drives a timer etc. to finish defrosting. I was doing it.

加熱室内の被加熱物が凍結しているときにはマイクロ波
加熱の特性上、被加熱物から反射されるエネルギー量が
比較的大きく、そしてこの反射エネルギー量は重量に逆
比例する。加熱が進み、被加熱物に吸収されるエネルギ
ー量が増えてくるにつれて、反射されるエネルギー量が
しだいに減少してくる。したがってマイクロ波検波セン
サの出力信号の変化を見ていくと被加熱物の加熱状態を
知ることができる。被加熱物の重量は加熱当初のマイク
ロ波検波センサの出力との相関から推定でき、被加熱物
の初期温度と加熱状態の変化は相関が取れているので、
一定時間のマイクロ波検波センサの出力変化を見ていれ
ば、被加熱物の初期温度を知ることができる。したがっ
て、推定重量と初期温度が分かれば演算によって必要な
解凍エネルギーが算出でき、加熱時間と加熱出力を決定
して解凍するようにしていた。
When the object to be heated in the heating chamber is frozen, the amount of energy reflected from the object to be heated is relatively large due to the characteristics of microwave heating, and this amount of reflected energy is inversely proportional to the weight. As heating progresses and the amount of energy absorbed by the heated object increases, the amount of energy reflected gradually decreases. Therefore, by observing changes in the output signal of the microwave detection sensor, it is possible to know the heating state of the object to be heated. The weight of the object to be heated can be estimated from the correlation with the output of the microwave detection sensor at the beginning of heating, and since the initial temperature of the object to be heated and the change in the heating state are correlated,
By observing the change in the output of the microwave detection sensor over a certain period of time, the initial temperature of the heated object can be determined. Therefore, if the estimated weight and initial temperature are known, the required thawing energy can be calculated by calculation, and the heating time and heating output are determined to defrost the food.

また、高周波加熱装置は、通常、不均一なマイクロ波分
布を改善、またはその影響を少なくするために、加熱室
内でマイクロ波を攪拌したり、被加熱物を回転するなど
移動させるようにしている。
In addition, high-frequency heating devices usually stir the microwaves in the heating chamber or move the object to be heated by rotating it in order to improve uneven microwave distribution or reduce its influence. .

発明が解決しようとする課題 このような従来の高周波加熱装置では、被加熱物を均一
に加熱するために通常用いられるマイクロ波攪拌機構や
ターンテーブルなどの被加熱物移動機構などの均一加熱
手段を用いたとき、マイクロ波検波センサの出力信号は
均一加熱手段の動作とともに大きく変動する。このため
、マイクロ波検波センサの出力信号を検波し平滑化して
得た直流信号は大きく変動し、タイマで処理するとき、
広い入力電圧範囲と高速演算が必要であった。たとえば
タイマにマイクロコンピュータを用いた場合、時々刻々
変化する変動する出力電気信号に追従するために高速度
のマイクロコンピュータが要求されたりプログラムの処
理時間のうち大部分を信号処理に追われるなどの問題が
あった。
Problems to be Solved by the Invention In such conventional high-frequency heating devices, uniform heating means such as a microwave stirring mechanism or a mechanism for moving the heated object such as a turntable, which is normally used to uniformly heat the heated object, are not used. When used, the output signal of the microwave detection sensor varies greatly with the operation of the uniform heating means. For this reason, the DC signal obtained by detecting and smoothing the output signal of the microwave detection sensor fluctuates greatly, and when processed by a timer,
A wide input voltage range and high-speed calculation were required. For example, when using a microcomputer as a timer, there are problems such as a high-speed microcomputer is required to follow the fluctuating output electrical signals that change from moment to moment, and a large portion of the program processing time is consumed by signal processing. was there.

本発明は上記課題を解決するもので、加熱室内の均一加
熱手段によって変動するマイクロ波検出信号の変動を抑
えて安定化し、高速性を必要とせず処理できる高周波加
熱装置を提供することを目的としている。
The present invention has been made to solve the above-mentioned problems, and aims to provide a high-frequency heating device that suppresses and stabilizes fluctuations in the microwave detection signal by uniform heating means in the heating chamber, and can perform processing without requiring high speed. There is.

課題を解決するための手段 本発明は上記目的を達成するために、マイクロ波検波セ
ンサからの出力信号を積分する積分回路を備え、この積
分回路の出力を入力しマグネトロンの高周波出力を制御
する制御手段は、均一加熱手段の同期ごとに積分演算処
理し、被加熱物の加熱時間を計算しマグネトロンの高周
波出力を制御するようにしたことを課題解決手段として
いる。
Means for Solving the Problems In order to achieve the above object, the present invention includes an integrating circuit that integrates an output signal from a microwave detection sensor, and controls the high frequency output of a magnetron by inputting the output of this integrating circuit. The problem solving means is to perform integral calculation processing every time the uniform heating means is synchronized, calculate the heating time of the object to be heated, and control the high frequency output of the magnetron.

作用 本発明は上記した課題解決手段により、不均一なマイク
ロ波分布を改善またはその影響を少なくするために、加
熱室内でマイクロ波を攪拌したり、被加熱物を回転する
など移動させる場合のマイクロ波検波センサの出力変動
を積分回路で平滑したのち制御手段に入力し、均一加熱
手段の周期にあわせて積分演算することによって安定し
た出力信号を得ることができ、以降の信号処理が簡素化
できる。
The present invention uses the above-mentioned problem-solving means to improve uneven distribution of microwaves or reduce its influence by stirring microwaves in a heating chamber or rotating or otherwise moving an object to be heated. A stable output signal can be obtained by smoothing the output fluctuation of the wave detection sensor using an integrating circuit, inputting it to the control means, and performing integral calculations in accordance with the period of the uniform heating means, which simplifies subsequent signal processing. .

実施例 以下、本発明の一実施例について第1図から第6図に基
づいて説明する。
EXAMPLE Hereinafter, an example of the present invention will be described based on FIGS. 1 to 6.

図に示すように、マグネトロン1によって励振されたマ
イクロ波は導波管2によって加熱室3内に導かれ、被加
熱物4に吸収される。またファン5により起こされた風
はマグネトロンlを冷却後、加熱室3の側面に設けた多
数の小穴6を通り加熱室3内に入り、被加熱物4が加熱
された結果生じた熱を運んで加熱室3の対向壁面の多数
の小穴7から排気ガイド8内に入り、そして外郭9の外
部へと排気される。加熱室3の天井部にはマイクロ検波
センサ(以下、検波センサというNOを穴11に直角に
取付けている。被加熱物4は均一加熱のためターンテー
ブル12上に載せられ、ターンテーブル12はターンテ
ーブルモータ13によって回転されている。一方、検波
センサlOによって測定されたマイクロ波の強さは積分
回路14で積分された後、制御手段(以下、マイコンと
いう)15に入力される。
As shown in the figure, microwaves excited by a magnetron 1 are guided into a heating chamber 3 by a waveguide 2 and absorbed by an object to be heated 4. After cooling the magnetron l, the air generated by the fan 5 enters the heating chamber 3 through a number of small holes 6 provided on the side of the heating chamber 3, and carries the heat generated as a result of heating the object 4. The air enters the exhaust guide 8 through the numerous small holes 7 in the opposing wall of the heating chamber 3, and is exhausted to the outside of the outer shell 9. A micro detection sensor (hereinafter referred to as a detection sensor) is installed on the ceiling of the heating chamber 3 at right angles to the hole 11.The object to be heated 4 is placed on a turntable 12 for uniform heating, and the turntable 12 is It is rotated by a table motor 13. On the other hand, the intensity of the microwave measured by the detection sensor IO is integrated by an integrating circuit 14 and then input to a control means (hereinafter referred to as a microcomputer) 15.

検波センサlOは、第3図のようにプリント基板16上
にエツチングされた銅箔パターン17とチップ部品18
群で構成されており、エツチングで形成されたアンテナ
19を加熱室3に穿たれた穴11に対向して取付は板2
0を介して設置している。アンテナ19で検出した信号
を第4図のように、検波ダイオード21で検波し、この
検波された高周波電圧はフィルタ部22によって低周波
分のみを通過させ、平滑部23で直流化されて、検波セ
ンサ1oの出力となる。
The detection sensor IO consists of a copper foil pattern 17 etched on a printed circuit board 16 and a chip component 18 as shown in FIG.
The antenna 19 formed by etching is mounted on the plate 2 facing the hole 11 made in the heating chamber 3.
It is installed via 0. As shown in FIG. 4, the signal detected by the antenna 19 is detected by the detection diode 21, and the detected high-frequency voltage is passed through the filter section 22 for only the low frequency component, converted into DC by the smoothing section 23, and then detected. This is the output of the sensor 1o.

積分回路14は、第5図のように、バッファ増幅部24
で人力インピーダンスを検波センサ1oの出力インピー
ダンスに比べ十分に高くした後、積分部25で抵抗器R
およびキャパシター〇で決定すれる積分定数で積分され
、ターンテーブルI2の回転による出力変動を平滑して
マイコン15に入力する。
The integrating circuit 14 includes a buffer amplifier 24 as shown in FIG.
After making the human impedance sufficiently higher than the output impedance of the detection sensor 1o, the integrating section 25 connects the resistor R.
It is integrated by an integral constant determined by capacitor 0, smoothes output fluctuations due to rotation of turntable I2, and inputs it to microcomputer 15.

マイコン15に入力した信号は、第6図のように、■積
分カウンタ26でターンテーブルI2の1回転分積分さ
れ、Va、Vbメモリ27に記憶され、VaはW演算部
28で重量Wが計算され、Va−Vb演算部29でVa
−Vbが計算され、Va−Vbメモ1J30に記憶され
、TI)II:部31で加熱時間Tが計算される。加熱
時間Tはタイマ32に設定され、かつ減算処理部33で
減算が開始される。また外部の表示部34にも減算中の
内容が表示される。減算中はスイッチ35がONになる
。減算処理が終了すると調理が終了する。
As shown in FIG. 6, the signal input to the microcomputer 15 is integrated by an integral counter 26 for one rotation of the turntable I2, and stored in the Va and Vb memory 27, and the weight W of Va is calculated by the W calculation unit 28. The Va-Vb calculation unit 29 calculates Va
-Vb is calculated and stored in Va-Vb memo 1J30, and heating time T is calculated in TI)II: section 31. The heating time T is set in the timer 32, and the subtraction processing section 33 starts subtraction. The content being subtracted is also displayed on the external display unit 34. The switch 35 is turned on during subtraction. When the subtraction process ends, cooking ends.

上記構成において動作を説明すると、ターンテーブル1
2に載せた被加熱物4の形状が第7図のように回転対称
でない場合、ターンテーブル12の回転によって第8図
に示す検波センサ10の出力と時間の関係チャートのよ
うに出力が突発的な信号を伴って大きく変動する。この
ときのピークMVpとターンテーブル12の回転周期T
間の平均値Vmを比較するとマイコン150人力範囲は
8ビツトマイコンでは256段階のうちV m / V
 pの利用に留まっている。Vm/Vpは1に近いほど
検波センサ10の信号がマイコン15の入力256段階
をを効に使えることを示す。このような検波センサ1o
の出力を積分回路14に入力む7、積分すると、第9図
のようにビーチ値Vplと平均[jVmlの比Vml/
VplはV m / V pよりも大きく1に近づき、
マイコン15の256段階を有効に使うことができ、マ
イコン15の演算精度を向上することができる。
To explain the operation in the above configuration, turntable 1
If the shape of the heated object 4 placed on the holder 2 is not rotationally symmetrical as shown in FIG. 7, the rotation of the turntable 12 causes the output to suddenly change as shown in the relationship chart between the output of the detection sensor 10 and time shown in FIG. The signal fluctuates greatly. The peak MVp at this time and the rotation period T of the turntable 12
Comparing the average value Vm between 150 and 8-bit microcontrollers, the human power range is V m / V out of 256 levels for an 8-bit microcontroller.
The use of p is limited. The closer Vm/Vp is to 1, the more effectively the signal from the detection sensor 10 can use the 256 input stages of the microcomputer 15. Such a detection sensor 1o
The output of
Vpl is larger than V m / V p and approaches 1,
The 256 stages of the microcomputer 15 can be used effectively, and the calculation precision of the microcomputer 15 can be improved.

マイコン15の中でターンテーブル12の回転周期を毎
に積分された後の信号は第10図のようになる。
The signal after being integrated every rotation period of the turntable 12 in the microcomputer 15 is as shown in FIG.

第11図は検波センサ10の出力と被加熱物4の重量と
の関係を示しており、加熱当初の検波センサ10の出力
は被加熱物4の重量が大きいほど小さいという特性から
、重量Wが推定できる。また、第12図は検波センサ1
0の出力の時間変化を示しており、加熱開始時点での電
圧レベルVaと1分後の電圧レベルvbを測定し、その
差を求めると解凍の進行程度を知ることができる。また
被加熱物4の初期温度による加熱時間の差は実験的に知
られており、初期温度が10度ちがうと約20%時間が
かわる。したがって、Va−VbとWがら最適解凍時間
を計算することができる。
FIG. 11 shows the relationship between the output of the detection sensor 10 and the weight of the object to be heated 4. Since the output of the detection sensor 10 at the beginning of heating is smaller as the weight of the object to be heated 4 is larger, the weight W is It can be estimated. In addition, Fig. 12 shows the detection sensor 1.
It shows the time change of the output of 0, and by measuring the voltage level Va at the start of heating and the voltage level Vb 1 minute later, and finding the difference between them, it is possible to know the degree of progress of defrosting. Furthermore, the difference in heating time depending on the initial temperature of the object to be heated 4 is known experimentally, and a 10 degree difference in initial temperature results in a difference of approximately 20% in time. Therefore, the optimum decompression time can be calculated from Va-Vb and W.

第13図は上記検知過程を実行するマイコン15の処理
過程のフローチャートで、調理スタート後、検波センサ
10の出力測定を行う。これは第14図のように、ター
ンテーブル1回転分10秒間の検波センサ10の出力の
積分を行ない、これを積分時間10秒で割って積分出力
Vaを得る。この積分出力Vaから重量Wを計算し、1
分後に同様の積分を行なって積分出力vbを得る。Wと
Va−Vbから加熱残り時間Tを計算する。T経過後、
解凍を終了する。
FIG. 13 is a flowchart of the processing process of the microcomputer 15 that executes the above-mentioned detection process. After the start of cooking, the output of the detection sensor 10 is measured. As shown in FIG. 14, the output of the detection sensor 10 is integrated for 10 seconds corresponding to one turn of the turntable, and this is divided by the integration time of 10 seconds to obtain the integrated output Va. The weight W is calculated from this integral output Va, and 1
After a minute, similar integration is performed to obtain an integral output vb. Calculate the remaining heating time T from W and Va-Vb. After T,
Finish unzipping.

発明の効果 以上の実施例から明らかなように本発明によれば、マイ
クロ波検波センサからの出力信号を積分する積分回路を
備え、前記積分回路の出力を入力しマグネトロンの高周
波出力を制御する制御手段は、均一加熱手段の周期ごと
に積分演算処理し、被加熱物の加熱時間を計算しマグネ
トロンの高周波出力を制御するようにしたから、マイク
ロ波攪拌機構や被加熱物載置台などの均一加熱手段の動
作にかかわらず検波センサ出力信号を正確に精度よく処
理できる結果、安定した最適な解凍時間を決定すること
ができ、解凍の自動化が実現できる。
Effects of the Invention As is clear from the above-described embodiments, the present invention includes an integrating circuit that integrates an output signal from a microwave detection sensor, and controls the high-frequency output of the magnetron by inputting the output of the integrating circuit. The means uses integral calculation processing for each period of the uniform heating means to calculate the heating time of the object to be heated and controls the high frequency output of the magnetron, so that it can uniformly heat the microwave stirring mechanism, the object mounting table, etc. As a result of being able to accurately and accurately process the detection sensor output signal regardless of the operation of the means, a stable and optimal defrosting time can be determined, and automation of defrosting can be realized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の高周波加熱装置のシステム
構成図、第2図は同高周波加熱装置の一部切欠した正面
図、第3図は同高周波加熱装置の検波センサの分解斜視
図、第4図は同検波センサの回路図、第5図は同検波セ
ンサの出力信号を積分する積分回路の回路図、第6図は
同高周波加熱装置の制御手段内部のデータフロー図、第
7図は同高周波加熱装置の食品を載せたターンテーブル
の上面図、第8図は同検波センサ出力信号の時間変化特
性図、第9図は同積分回路出力信号の時間変化特性図、
第10図は同制御手段演算出力信号の時間変化特性図、
第11図は加熱する被加熱物の重量と検波センサ出力信
号の特性図、第12図は加熱する被加熱物の異なる初期
温度での検波センサ出力信号の時間変化特性図、第13
図は同制扉手段の処理内容を示すフローチャート、第1
4図は同フローチャートのサブルーチンフローチャート
である。 1・・・・・・マグ7トロン、3・・・・・・加熱室、
4・・・・・・被加熱物、10・・・・・・マイクロ波
検波センサ、12・・・・・・ターンテーブル(均一加
熱手段)、14・・・・・・積分回路、15・・・・・
・@御手段。 代理人の氏名 弁理士 粟野重孝 ほか1名1−−マつ
ネトロン マイクロ看flWlセンV 第2図 第 図 第 図 O 第 図 第 図 摂 図 第 図 仄 第 図 第 10図 第13図 ハ 1 】 図 第12図 14図
Fig. 1 is a system configuration diagram of a high-frequency heating device according to an embodiment of the present invention, Fig. 2 is a partially cutaway front view of the same high-frequency heating device, and Fig. 3 is an exploded perspective view of a detection sensor of the same high-frequency heating device. , FIG. 4 is a circuit diagram of the detection sensor, FIG. 5 is a circuit diagram of an integrating circuit that integrates the output signal of the detection sensor, FIG. 6 is a data flow diagram inside the control means of the high-frequency heating device, and FIG. The figure is a top view of the turntable on which food is placed in the same high-frequency heating device, FIG. 8 is a time change characteristic diagram of the detection sensor output signal, and FIG. 9 is a time change characteristic diagram of the same integration circuit output signal.
FIG. 10 is a time change characteristic diagram of the calculation output signal of the control means,
Fig. 11 is a characteristic diagram of the weight of the object to be heated and the detection sensor output signal, Fig. 12 is a time change characteristic diagram of the detection sensor output signal at different initial temperatures of the object to be heated, and Fig. 13
The figure is a flowchart showing the processing contents of the same door means.
FIG. 4 is a subroutine flowchart of the same flowchart. 1...Mag7tron, 3...Heating chamber,
4...Object to be heated, 10...Microwave detection sensor, 12...Turntable (uniform heating means), 14...Integrator circuit, 15...・・・・・・
・@Go means. Name of agent: Patent attorney Shigetaka Awano and 1 other person 1--Matsunetron MicroviewflWlsen V Figure 2 Figure Figure O Figure Figure Set Figure Figure 2 Figure 10 Figure 13 Figure C 1] Figure 12 Figure 14

Claims (1)

【特許請求の範囲】[Claims] 被加熱物を載置する加熱室と、前記加熱室内の被加熱物
に高周波エネルギーを供給するマグネトロンと、前記加
熱室内の被加熱物からの高周波エネルギーの反射量を検
出するマイクロ波検波センサと、マイクロ波を一定周期
で攪拌する機構や前記被加熱物を載置し一定周期で移動
する被加熱物載置台などの均一加熱手段と、前記マイク
ロ波検波センサからの出力信号を積分する積分回路と、
前記積分回路の出力を入力し前記マグネトロンの高周波
出力を制御する制御手段とを備え、前記制御手段は前記
均一加熱手段の周期ごとに積分演算処理し、被加熱物の
加熱時間を計算しマグネトロンの高周波出力を制御する
ようにしてなる高周波加熱装置。
a heating chamber in which an object to be heated is placed, a magnetron that supplies high frequency energy to the object to be heated in the heating chamber, a microwave detection sensor that detects the amount of reflection of high frequency energy from the object to be heated in the heating chamber; Uniform heating means such as a mechanism for stirring microwaves at a constant cycle or a table for placing the heated object on which the heated object is placed and moved at a constant cycle; and an integrating circuit for integrating the output signal from the microwave detection sensor. ,
control means for inputting the output of the integration circuit and controlling the high frequency output of the magnetron; the control means performs integral calculation processing for each period of the uniform heating means, calculates the heating time of the object to be heated, and controls the magnetron's output. A high-frequency heating device that controls high-frequency output.
JP16471290A 1990-06-22 1990-06-22 High frequency heating device Pending JPH0456092A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16471290A JPH0456092A (en) 1990-06-22 1990-06-22 High frequency heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16471290A JPH0456092A (en) 1990-06-22 1990-06-22 High frequency heating device

Publications (1)

Publication Number Publication Date
JPH0456092A true JPH0456092A (en) 1992-02-24

Family

ID=15798455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16471290A Pending JPH0456092A (en) 1990-06-22 1990-06-22 High frequency heating device

Country Status (1)

Country Link
JP (1) JPH0456092A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007074843A1 (en) * 2005-12-26 2007-07-05 Matsushita Electric Industrial Co., Ltd. State detector for detecting operating state of radio-frequency heating apparatus
JP2007335375A (en) * 2006-06-19 2007-12-27 Matsushita Electric Ind Co Ltd Operation status detection device for high frequency heating apparatus
JP2011138721A (en) * 2009-12-29 2011-07-14 Sharp Corp High-frequency heating cooker
JP2013529283A (en) * 2010-05-03 2013-07-18 ゴジ リミテッド Loss profile analysis
WO2020026930A1 (en) 2018-07-31 2020-02-06 パナソニックIpマネジメント株式会社 High-frequency heating apparatus
JP2020043057A (en) * 2018-09-10 2020-03-19 エヌエックスピー ユーエスエイ インコーポレイテッドNXP USA,Inc. Defrosting apparatus with mass estimation and methods of operation thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS522133A (en) * 1975-06-24 1977-01-08 Hitachi Ltd Connecting test control system in data communication system
JPS54153685A (en) * 1978-05-24 1979-12-04 Sanyo Electric Co Ltd High frequency heating device
JPS59176655A (en) * 1983-03-28 1984-10-06 Hitachi Heating Appliance Co Ltd Detector for thawing state

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS522133A (en) * 1975-06-24 1977-01-08 Hitachi Ltd Connecting test control system in data communication system
JPS54153685A (en) * 1978-05-24 1979-12-04 Sanyo Electric Co Ltd High frequency heating device
JPS59176655A (en) * 1983-03-28 1984-10-06 Hitachi Heating Appliance Co Ltd Detector for thawing state

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007074843A1 (en) * 2005-12-26 2007-07-05 Matsushita Electric Industrial Co., Ltd. State detector for detecting operating state of radio-frequency heating apparatus
US7863887B2 (en) 2005-12-26 2011-01-04 Panasonic Corporation State detection device for detecting abnormal operation of a high-frequency magnetron heating apparatus
US7960966B2 (en) 2005-12-26 2011-06-14 Panasonic Corporation State detection device for detecting operation state of high-frequency heating apparatus
US8026713B2 (en) 2005-12-26 2011-09-27 Panasonic Corporation State detection device for detecting operation state of high-frequency heating apparatus
JP2007335375A (en) * 2006-06-19 2007-12-27 Matsushita Electric Ind Co Ltd Operation status detection device for high frequency heating apparatus
JP2011138721A (en) * 2009-12-29 2011-07-14 Sharp Corp High-frequency heating cooker
JP2013529283A (en) * 2010-05-03 2013-07-18 ゴジ リミテッド Loss profile analysis
WO2020026930A1 (en) 2018-07-31 2020-02-06 パナソニックIpマネジメント株式会社 High-frequency heating apparatus
JP2020043057A (en) * 2018-09-10 2020-03-19 エヌエックスピー ユーエスエイ インコーポレイテッドNXP USA,Inc. Defrosting apparatus with mass estimation and methods of operation thereof

Similar Documents

Publication Publication Date Title
US4401884A (en) Method of controlling heating in food heating apparatus including infrared detecting system
JP2004184060A (en) Microwave oven and method of controlling the same
EP0275097B1 (en) Heat cooking apparatus
US5744785A (en) Method for automatically controlling cooking by using a vapor sensor in a microwave oven
JPH0456092A (en) High frequency heating device
KR900002206B1 (en) Automatic cooking method for microwave range
KR100341327B1 (en) Defrosting Method For a Microwave Oven
EP0763963B1 (en) Method for controlling cooking by using a vapor sensor in a microwave oven
US5847261A (en) Polarity discriminating method and signal processing circuit for a vapor sensor in a microwave oven
US5247146A (en) Method and device for determining the weight of foods contained in a microwave oven and for controlling their treatment
KR100214598B1 (en) Microwave oven with temperature sensor
JPS5949679B2 (en) microwave oven
KR100341333B1 (en) Method For Discrimination Of Cooking Completion Time In a Microwave Oven
JP2697265B2 (en) High frequency heating equipment
JP2957782B2 (en) Cooker
KR100248781B1 (en) A controller for operating microwave oven
JPH0831568A (en) High frequency heating apparatus
JPH0456093A (en) High frequency heating device
JP2678071B2 (en) High frequency heating equipment
KR940010287B1 (en) Automatic dry system of a range
JPH0465095A (en) High frequency heating device
JPH05248640A (en) High frequency heater
JPH08270954A (en) Heating cooking apparatus
KR100354071B1 (en) Method For Controlling Liquid Food Boiling Of a Microwave Oven
KR0161090B1 (en) Automatic cooking method of microwave oven