JPH0434870A - Organic electrolyte battery - Google Patents

Organic electrolyte battery

Info

Publication number
JPH0434870A
JPH0434870A JP2140263A JP14026390A JPH0434870A JP H0434870 A JPH0434870 A JP H0434870A JP 2140263 A JP2140263 A JP 2140263A JP 14026390 A JP14026390 A JP 14026390A JP H0434870 A JPH0434870 A JP H0434870A
Authority
JP
Japan
Prior art keywords
negative electrode
lithium
pas
current collector
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2140263A
Other languages
Japanese (ja)
Other versions
JP2632427B2 (en
Inventor
Hajime Kinoshita
肇 木下
Masatoshi Komori
正敏 小森
Shizukuni Yada
静邦 矢田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Ltd
Original Assignee
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Ltd filed Critical Kanebo Ltd
Priority to JP2140263A priority Critical patent/JP2632427B2/en
Publication of JPH0434870A publication Critical patent/JPH0434870A/en
Application granted granted Critical
Publication of JP2632427B2 publication Critical patent/JP2632427B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To enable charge and discharge for a long period by applying specified quantity of lithium to insoluble infusible substrate which includes polyacene construction on a negative electrode, and adhering the negative electrode to a negative electrode current collector with conductive paste having Ni as its main ingredient. CONSTITUTION:In an organic electrolytic battery equipped with electrolyte, including a positive electrode, negative electrode and solution prepared by dissolving lithium salt in aprotic solvent, the negative electrode is constructed by applying 3% or more of lithium by mole percentage to an insoluble infusible substrate including a polyacene structure in which a ratio between the number of hydrogen atoms and the number of carbon atoms in a heat treated material is 0.50 to 0.05, which heat treated material consisting of aromatic condensed polymer, made of carbon, hydrogen, and oxygen. Then, the negative electrode is adhered to a negative electrode current collector with conductive paste having Ni as its main ingredient.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は有機電解質電池に係り、更に詳細には、負極が
ポリアセン系構造を含有する不溶不融性基体にリチウム
を担持させたものであり、該負極が負極集電体にNiを
主成分とする電導性ペーストにて接着した有機電解質電
池に関する。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to an organic electrolyte battery, and more specifically, the present invention relates to an organic electrolyte battery, and more specifically, the negative electrode is one in which lithium is supported on an insoluble and infusible substrate containing a polyacene structure. , relates to an organic electrolyte battery in which the negative electrode is adhered to a negative electrode current collector with a conductive paste containing Ni as a main component.

(従来の技術) 近年、導電性高分子、遷移金属酸化物あるいは活性炭を
正極とした電池が提案されている。これらの電池の負極
としてリチウムを用いた場合には高い電圧を有し、容量
及びエネルギー密度が大きいエネルギー源用二次電池が
得られる。しかしながらこのような負極にリチウムを用
いた電池の実用化に際しては、デンドライト発生に伴う
充放電サイクル寿命の低下という問題があった。デンド
ライトは充電の際にリチウム負極表面に発生する樹枝状
あるいはこけ状のリチウム結晶である。該デンドライト
は充放電の繰返しに伴い成長し遂には両極が短絡しサイ
クル寿命がつきてしまう、従って該デンドライトの発生
を抑制することが該電池の実用化に際しては重要となる
(Prior Art) In recent years, batteries using conductive polymers, transition metal oxides, or activated carbon as positive electrodes have been proposed. When lithium is used as the negative electrode of these batteries, secondary batteries for energy sources with high voltage, capacity, and energy density can be obtained. However, when such a battery using lithium as a negative electrode is put into practical use, there is a problem in that the charge/discharge cycle life is reduced due to the generation of dendrites. Dendrites are dendritic or moss-like lithium crystals that form on the surface of a lithium negative electrode during charging. The dendrites grow with repeated charging and discharging, and eventually the two electrodes are short-circuited, shorting the cycle life. Therefore, it is important to suppress the generation of dendrites when putting the battery into practical use.

近時、グラファイト等の炭素材、ポリアセチレン、ポリ
パラフェニレン等の導電性高分子にリチウムを担持させ
たリチウム電池の研究が進められている、しかしながら
、デンドライトの発注は著しく少ないもののリチウムの
出し入れに対して、構造の変化が大きく、サイクル特性
が低下するという問題があった。
Recently, research has been progressing on lithium batteries in which lithium is supported on carbon materials such as graphite, and conductive polymers such as polyacetylene and polyparaphenylene. However, although orders for dendrites are extremely small, However, there was a problem in that the structure changed significantly and the cycle characteristics deteriorated.

一方上述した導電性高分子に比べ、安定性に優れた電極
材料としてポリアセン系骨格構造を含有する不溶不融性
基体が報告されている。(特公平1−44212.特開
昭60−170163,5ynth、 Met、+  
18 (1987) 645)該不溶不融性基体は電子
供与性ドーパントをドーピング(P型ドーピング)でき
るだけでなくリチウム等の電子受容性ドーパントをもド
ーピング(N型ドーピング)することができ、例えばリ
チウムをドーピングにより担持させた場合不溶不融性基
体の電位はリチウム金属に近ずく、さらにドーピング、
アンド−ピングに対しても良好な可逆性を有することか
ら、リチウムに代る負極材として考えられる。
On the other hand, an insoluble and infusible substrate containing a polyacene skeleton structure has been reported as an electrode material that is more stable than the above-mentioned conductive polymer. (Special Publication No. 1-44212. Japanese Patent Publication No. 60-170163, 5ynth, Met, +
18 (1987) 645) The insoluble and infusible substrate can be doped not only with an electron-donating dopant (P-type doping) but also with an electron-accepting dopant such as lithium (N-type doping). When supported by doping, the potential of the insoluble and infusible substrate approaches that of lithium metal;
Since it has good reversibility against and-pumping, it can be considered as a negative electrode material in place of lithium.

しかしながらポリアセン系骨格構造を有する不溶不融性
基体にリチウムをドーピングにより担持せしめ負極とし
、電池を組んだ場合、リチウム金属を用いるのに比べ、
内部抵抗が高くなる問題が残されていた。
However, when lithium is supported on an insoluble and infusible substrate having a polyacene skeleton structure by doping and used as a negative electrode, and a battery is assembled, compared to using lithium metal,
The problem of high internal resistance remained.

(発明が解決しようとする問題点) 本発明者等は上記問題点に鑑み鋭意研究を続けた結果、
本発明を完成したものである。
(Problems to be solved by the invention) The inventors of the present invention have conducted intensive research in view of the above-mentioned problems, and as a result, have found that:
This completes the present invention.

本発明の目的は内部抵抗の小さい二次電池を提供するに
ある。
An object of the present invention is to provide a secondary battery with low internal resistance.

本発明の他の目的は長期に亘って充電、放電が可能な二
次電池を提供するにある。
Another object of the present invention is to provide a secondary battery that can be charged and discharged for a long period of time.

(問題点を解決するための手段) 本発明の上記の目的は、正極、負極、並びにリチウム塩
を非プロトン性有機溶媒に溶解した溶液を含む電解液を
備えた有機電解質電池において、負極が炭素、水素およ
び酸素から成る芳香族系縮合ポリマーの熱処理物であり
、該熱処理物の水素原子/炭素原子の原子比が0.50
〜0.05であるポリアセン系骨格構造を含有する不溶
不融性基体にリチウムをモル百分率で3%以上担持させ
たものより成り、該負極が負極集電体にNjを主成分と
する電導性ペーストにて接着されていることを特徴とす
る有機電解質電池によって達成される。
(Means for Solving the Problems) The above-mentioned object of the present invention is to provide an organic electrolyte battery equipped with a positive electrode, a negative electrode, and an electrolytic solution containing a solution of a lithium salt dissolved in an aprotic organic solvent, in which the negative electrode is made of carbon. is a heat-treated product of an aromatic condensation polymer consisting of hydrogen and oxygen, and the atomic ratio of hydrogen atoms/carbon atoms of the heat-treated product is 0.50.
The negative electrode is made of an insoluble and infusible substrate containing a polyacene skeleton structure of ~0.05 and carrying lithium in a molar percentage of 3% or more, and the negative electrode has conductivity mainly composed of Nj on the negative electrode current collector. This is achieved by an organic electrolyte battery characterized by being bonded with a paste.

本発明におけるポリアセン系骨格構造を含有する不溶不
融性基体(以下、PASと記す)は本願の出願人の出願
にかかる特公平1−44212号公報に記載されている
芳香族系縮合ポリマーを特定の条件で熱処理することに
より得られる。
The insoluble and infusible substrate containing a polyacene skeleton structure (hereinafter referred to as PAS) in the present invention is an aromatic condensation polymer described in Japanese Patent Publication No. 1-44212 filed by the applicant of the present application. It can be obtained by heat treatment under the following conditions.

また600m”/g以上のBET法による比表面積を有
するPASは本願の出願人の出願にかかる特開昭60−
170163号公報に記載されている方法により得られ
る。
In addition, PAS having a specific surface area of 600 m"/g or more by the BET method is
It is obtained by the method described in Japanese Patent No. 170163.

具体的には高い比表面積を必要としない場合、本発明に
用いる芳香族系縮合ポリマーとしては、(a)フェノー
ル・ホルムアルデヒド樹脂の如き、フェノール性水酸基
を有する芳香族系炭化水素化合物とアルデヒド類の縮合
物、(b)キシレン変性フェノール、ホルムアルデヒド
樹脂(フェノールの一部をキシレンで置換したもの)の
如き、フェノール性水酸基を有する芳香族系炭化水素化
合物。
Specifically, when a high specific surface area is not required, the aromatic condensation polymer used in the present invention is (a) a combination of an aromatic hydrocarbon compound having a phenolic hydroxyl group and an aldehyde, such as a phenol-formaldehyde resin. (b) Aromatic hydrocarbon compounds having a phenolic hydroxyl group, such as xylene-modified phenol and formaldehyde resin (phenol partially substituted with xylene).

フェノール性水酸基を有さない芳香族系炭化水素化合物
およびアルデヒドの縮合物及び(c)フラン樹脂が好適
なものとして挙げられる。
Suitable examples include aromatic hydrocarbon compounds having no phenolic hydroxyl group, condensates of aldehydes, and (c) furan resins.

該芳香族系縮合ポリマーを、非酸化性雰囲気(真空状態
も含む)中で、400℃〜1000℃の温度、好ましく
は600℃〜800℃の適当な温度まで徐々に加熱し水
素原子/炭素原子の原子比(以下H/Cと記す)が0.
50〜0.05 、好ましくは0.35〜0.10の熱
処理物とするとPASが得られる。600m”/g以上
のBET法による比表面積を有するPASの場合、前記
した芳香族系縮合ポリマーに塩化亜鉛、リン酸ナトリウ
ム等の無機塩を混合する。混入する量は、無機塩の種類
及び目的とする電極の形状、性能によって異なるが、重
量比で1071〜1/7が好ましい。
The aromatic condensation polymer is gradually heated to a suitable temperature of 400°C to 1000°C, preferably 600°C to 800°C, in a non-oxidizing atmosphere (including a vacuum state) to form hydrogen atoms/carbon atoms. The atomic ratio (hereinafter referred to as H/C) is 0.
PAS is obtained when the heat-treated product has a molecular weight of 50 to 0.05, preferably 0.35 to 0.10. In the case of PAS having a specific surface area determined by the BET method of 600 m"/g or more, an inorganic salt such as zinc chloride or sodium phosphate is mixed with the aromatic condensation polymer described above. The amount to be mixed depends on the type and purpose of the inorganic salt. Although it varies depending on the shape and performance of the electrode, a weight ratio of 1071 to 1/7 is preferable.

このようにして得られた無機塩と芳香族系縮合ポリマー
の混合物はポリマーの組成、無機塩の種類等によって異
なるが通常50〜180℃の温度で、2〜90分間加熱
することにより硬化゛、かくして得られた硬化体を、次
いで非酸化性雰囲気中で350〜800℃の温度、好ま
しくは400℃〜750℃の温度まで加熱し、得られた
熱処理体を水あるいは希塩酸等で十分洗浄することによ
って、熱処理体中に含まれている無機塩を除去する。
The mixture of inorganic salt and aromatic condensation polymer thus obtained is usually cured by heating at a temperature of 50 to 180°C for 2 to 90 minutes, although it varies depending on the composition of the polymer, the type of inorganic salt, etc. The thus obtained cured body is then heated to a temperature of 350 to 800°C, preferably 400 to 750°C in a non-oxidizing atmosphere, and the resulting heat-treated body is thoroughly washed with water or dilute hydrochloric acid. to remove inorganic salts contained in the heat-treated body.

その後、これを乾燥すると、H/C=0.50〜0.0
5好ましくは0.35〜0.10の600m”78以上
の比表面積を有するPASが得られる。
After that, when this is dried, H/C=0.50~0.0
5 A PAS having a specific surface area of 600 m''78 or more, preferably 0.35 to 0.10, is obtained.

本発明に用いるPASはX線回折(CuKα線)におい
てメインピークの位置が20で24°以下に生じ、且つ
2θで41°〜46℃の間にブロードなピークを示すも
のが好適である。
It is preferable that the PAS used in the present invention has a main peak position of 20° and 24° or less in X-ray diffraction (CuKα ray) and a broad peak at 2θ between 41° and 46°C.

また本発明において、PASが赤外吸収スペクトルから
求められる下記式で表わされる吸光度比(D) D−D 意雫60−1940  /  D Is蟲6−
16411式中、I)t’s。。−2,4゜は赤外吸収
スペクトルにおける2900〜2940カイザーの範囲
の最大吸収ピークから求められる吸光度、Dlsho−
Iha。は赤外吸収スペクトルにおける1560〜16
40カイザーの範囲の最大吸収ピークから求められる吸
光度である、が0.5以下、特に0.3以下のものが好
適である。
In addition, in the present invention, PAS is determined from an infrared absorption spectrum and is expressed by the following formula (D):
16411, where I) t's. . -2,4° is the absorbance determined from the maximum absorption peak in the range of 2900 to 2940 Kaiser in the infrared absorption spectrum, Dlsho-
Iha. is 1560-16 in the infrared absorption spectrum
The absorbance determined from the maximum absorption peak in the range of 40 Kaiser is preferably 0.5 or less, particularly 0.3 or less.

(なお上記吸光度比(D)の算出方法の詳述は、特開昭
59−3806号公報実施例1に記載されている。) PASは芳香族系多環構造が適度に発達し、かつ、平面
ボリアセン系骨格構造の平均距離が比較的大きいことが
示唆され、リチウムを安定に担持することができる。
(Details of the method for calculating the above absorbance ratio (D) are described in Example 1 of JP-A-59-3806.) PAS has a suitably developed aromatic polycyclic structure, and It is suggested that the average distance of the planar boriacene-based skeleton structure is relatively large, and lithium can be stably supported.

上記平均距離が小さい場合、すなわち黒鉛結晶に近づく
に従い、リチウムを担持したとき、あるいはリチウムを
出し入れしたとき(充放電時)に基体構造に変化を生じ
易くなり、サイクル特性が劣化する。
When the above-mentioned average distance is small, that is, as it approaches the graphite crystal, changes are more likely to occur in the substrate structure when lithium is supported or when lithium is put in and taken out (during charging and discharging), and the cycle characteristics deteriorate.

また芳香族多環構造が発達していない場合、リチウムを
安定に担持させることができず、この様なPASにリチ
ウムを担持させた負極を用いて製造した電池は自己放電
が大きくなる。
Furthermore, if the aromatic polycyclic structure is not developed, lithium cannot be stably supported, and a battery manufactured using a negative electrode in which lithium is supported on such PAS will have a large self-discharge.

本発明に用いる負極は、上記PASにリチウムを3%以
上担持したものである。
The negative electrode used in the present invention is one in which 3% or more of lithium is supported on the above-mentioned PAS.

PASは板状、フィルム状に製造し、そのまま用いるこ
とができる。
PAS can be manufactured in the form of a plate or film and used as is.

また実用的な方法としてはPASを粉体、短繊維状等の
形状に製造又は適当な形状で製造し、粉体、短繊維状等
の形状に加工されたPASを成形して電極として用いる
Further, as a practical method, PAS is manufactured in the form of powder, short fibers, etc., or manufactured in an appropriate shape, and the PAS processed into the shape of powder, short fibers, etc. is molded and used as an electrode.

本発明の負極はPASにリチウムを3%以上担持したも
のであるが、リチウムを担持する前に負極集電体に接着
する方が実用的である。負極集電体はステンレス、ニッ
ケル等リチウムと合金化しない金属を用い、その形態は
板状、メツシュ状。
Although the negative electrode of the present invention has 3% or more of lithium supported on PAS, it is more practical to adhere to the negative electrode current collector before supporting lithium. The negative electrode current collector is made of metal that does not alloy with lithium, such as stainless steel or nickel, and its shape is plate-like or mesh-like.

パンチングメタル等特に限定されない。コイン型電池等
外装材そのものが集電体を兼ねる時には、直接外装材内
面に接着すれば良い。
Punching metal etc. are not particularly limited. When the exterior material itself serves as a current collector, such as in a coin-type battery, it may be directly adhered to the inner surface of the exterior material.

本発明の接着に用いられるNiを主成分とする電導性ペ
ーストはNiの粒子あるいはNiをメツキした粒子を導
電フィラーとし、バインダーとしてシリコン樹脂、フェ
ノール樹脂等、リチウムと接触しても劣化しにくい合成
樹脂を用いたものである。
The electrically conductive paste mainly composed of Ni used for the adhesive of the present invention uses Ni particles or Ni-plated particles as the electrically conductive filler, and the binder is made of silicone resin, phenolic resin, etc., which is a synthetic resin that does not easily deteriorate even when it comes into contact with lithium. It uses resin.

本発明の電導性ペースト以外に、カーボン、グラファイ
ト、銅、銀、アルミニウム等を導電性フィラーとしたも
のが既に市販されているが、その中でもNiを用いたも
のが、負極がリチウム金属に近い電位になった場合にお
いて接着性に優れている。
In addition to the conductive paste of the present invention, products using conductive fillers such as carbon, graphite, copper, silver, and aluminum are already on the market, but among these, those using Ni have a negative electrode with a potential close to that of lithium metal. Excellent adhesion when

リチウムの担持の方法としては、電解法、気相法、液相
法、イオン注入性等公知の方法から適宜選択して行えば
よい0例えば電解法でリチウムを担持する場合は、リチ
ウムイオンを含む電解液中に、PASあるいはPAS成
形体を作用電極として浸漬し、同一電解液中の対極との
間で、電流を流すか、又は電圧を印加する。
The method for supporting lithium may be appropriately selected from known methods such as electrolytic method, gas phase method, liquid phase method, and ion implantation. For example, when supporting lithium by electrolytic method, lithium containing PAS or a PAS molded body is immersed in an electrolytic solution as a working electrode, and a current is passed or a voltage is applied between it and a counter electrode in the same electrolytic solution.

またPASあるいはPAS成形体に適量のリチウム箔を
直接接触させる方法によっても担持されることができる
It can also be supported by a method in which an appropriate amount of lithium foil is brought into direct contact with PAS or a PAS molded body.

気相法を用いる場合には、例えばリチウムの蒸気に、P
ASあるいはPAS成形体を晒す、また液相法を用いる
場合は例えばリチウムイオンを含む錯体とPASあるい
はPAS成形体とを反応せしめる。この反応に用いる錯
体としては、例えばアルカリ金属のナフタレン錯体、ア
ルコキシドなどが挙げられるが、これらに限定されるも
のではない。
When using a gas phase method, for example, lithium vapor is added with P.
The AS or PAS molded body is exposed, or when a liquid phase method is used, a complex containing lithium ions is allowed to react with the PAS or PAS molded body. Examples of the complex used in this reaction include, but are not limited to, alkali metal naphthalene complexes and alkoxides.

上記方法によってPASに担持せしめるリチウムの量は
モル百分率(PA、Sの炭素原子1個に対するリチウム
の数の百分率)で表わして3%以上、好ましくは10%
以上である。リチウムの量はPASの比表面積によって
も異なり、リチウムを担持せしめたPASあるいはPA
S成形体の電位がL i / L i”″に対して1.
0〜0■になる様にリチウムを担持させるのが望ましい
、リチウムの量が少ない場合、本発明の電池の容量が低
下し、多い場合には過剰のリチウムがPASあるいはP
AS成形体表面に析出し、好ましくない。
The amount of lithium supported on PAS by the above method is 3% or more, preferably 10%, expressed as a molar percentage (percentage of the number of lithium to one carbon atom of PA, S).
That's all. The amount of lithium differs depending on the specific surface area of PAS.
The potential of the S molded body is 1.
It is desirable to support lithium in such a way that the amount of lithium is 0 to 0. If the amount of lithium is small, the capacity of the battery of the present invention will be reduced, and if it is large, excess lithium will be supported by PAS or PAS.
It precipitates on the surface of the AS molded body, which is not preferable.

本発明の有機電解質電池の正極としては、例えば後述す
る電気化学的にドーピング及びアンド−ピングできる導
電性高分子体、金属酸化物、金属硫化物、活性炭などを
用いることができる。
As the positive electrode of the organic electrolyte battery of the present invention, for example, conductive polymers, metal oxides, metal sulfides, activated carbon, etc. which can be electrochemically doped and undoped, which will be described later, can be used.

電気化学的にドーピング及びアンド−ピングできる導電
性高分子としては、ポリアセチレン、ポリチオフェン、
ポリアニリン及び芳香族系縮合ポリマーの熱処理物であ
るボリアセン系有機半導体等がある。電極材として用い
る場合、安定性及び成型性が実用上極めて重要であり、
この観点から、ボリアセン系有機半導体及びアニリン類
の重合物が特に好ましい。
Conductive polymers that can be electrochemically doped and undoped include polyacetylene, polythiophene,
Examples include boriacene organic semiconductors, which are heat-treated products of polyaniline and aromatic condensation polymers. When used as an electrode material, stability and formability are extremely important in practical terms.
From this viewpoint, polymers of boriacene-based organic semiconductors and anilines are particularly preferred.

正極として好ましく用いうる金属の酸化物は、リチウム
イオンをインターカレーション又はデインターカレーシ
ョン(本発明においてはドーピング又はアンド−ピング
と呼ぶ)により可逆的に出入れできる、例えばバナジウ
ム、クロム、マンガン、モリブデン、ビスマスのごとき
遷移金属の酸化物である。
Metal oxides that can be preferably used as the positive electrode include vanadium, chromium, manganese, It is an oxide of transition metals such as molybdenum and bismuth.

例えばVzOs、 V&O+s、 CT sos、 M
 n Ox。
For example, VzOs, V&O+s, CT sos, M
n Ox.

M o O,、Cu、Vア01等を一種以上用いる。こ
れら遷移金属酸化物の構造は、結晶質状態であっても、
あるいは加熱処理等により非晶質状態としたものでもよ
い。
One or more types of M o O, Cu, VA01, etc. are used. Even in the crystalline state, the structure of these transition metal oxides is
Alternatively, it may be made into an amorphous state by heat treatment or the like.

正極として好ましく用いうる金属硫化物の例としてはT
 f St、M OSt、M o 33が挙げられる。
An example of a metal sulfide that can be preferably used as a positive electrode is T.
Examples include f St, M OSt, and M o 33.

これらの金属硫化物の構造は、結晶質状態であっても非
晶質状態であっても良い。
The structure of these metal sulfides may be in a crystalline state or an amorphous state.

上記正極の中で最も好ましいのは、ボリアセン系有機半
導体である(特開昭60−170163号公報)、該半
導体は特に安定性に優れており、該半導体を正極に用い
ることに4.Ovの電圧を有する高電圧の電池を作成す
ることも可能であり、また繰り返し充放電による劣化も
ほとんどなく、サイクル特性に優れる電池が作成可能と
なる。
Among the above positive electrodes, the most preferred is a boriacene organic semiconductor (Japanese Unexamined Patent Publication No. 60-170163). This semiconductor has particularly excellent stability, and 4. It is also possible to create a high-voltage battery having a voltage of Ov, and it is also possible to create a battery with excellent cycle characteristics with almost no deterioration due to repeated charging and discharging.

本発明の電解液としては、リチウム塩を非プロトン性有
機溶媒に溶解したものが用いられる。非プロトン性有機
溶媒としては、例えばエチレンカーボネイト、プロピレ
ンカーボネイト、γ−ブチロラクトン、ジメチルホルム
アミド、ジメチルアセトアミド、ジメチルスルホキシド
、アセトニトリル、ジメトキシエタン、テトラヒドロフ
ラン。
As the electrolytic solution of the present invention, one in which a lithium salt is dissolved in an aprotic organic solvent is used. Examples of the aprotic organic solvent include ethylene carbonate, propylene carbonate, γ-butyrolactone, dimethylformamide, dimethylacetamide, dimethylsulfoxide, acetonitrile, dimethoxyethane, and tetrahydrofuran.

ジオキソラン、塩化メチレン、スルホラン又はこれら非
プロトン性有機溶媒の二種以上の混合液のいずれを使用
しても良い。
Any of dioxolane, methylene chloride, sulfolane, or a mixture of two or more of these aprotic organic solvents may be used.

また、上記の混合又は単一の溶媒に溶解させる電解質は
、リチウムイオンを生成しうる電解質のいずれでも良い
、このような電解質は、例えばLi I、LiCj!O
a、LiAsFi、LiBFn、又はLiHFzである
Further, the electrolyte dissolved in the above mixed or single solvent may be any electrolyte capable of producing lithium ions. Such electrolytes include, for example, Li I, LiCj! O
a, LiAsFi, LiBFn, or LiHFz.

上記の電解質及び溶媒は十分に脱水された状態で混合さ
れ、電解液とするのであるが、電解液中の前期電解質の
濃度は電解液による内部抵抗を小さくするため少なくと
も0.1モル/1以上とするのが望ましく、通常0.2
〜1.5モル/lとするのがより好ましい。
The above electrolyte and solvent are mixed in a sufficiently dehydrated state to form an electrolyte solution, and the concentration of the former electrolyte in the electrolyte solution is at least 0.1 mol/1 or more in order to reduce the internal resistance due to the electrolyte solution. It is desirable to set it as 0.2, usually 0.2
It is more preferable to set it to 1.5 mol/l.

次に図面により本発明の実施態様の一例を説明する。Next, an example of an embodiment of the present invention will be explained with reference to the drawings.

第1図は本発明に係る電池の基本構成を示す説明図であ
る。第1図において(1)は正極、(2)は負極、(3
) 、 (3’)は集電体であり、負極集電体である(
3′)と負極(2)はNiを主成分とする電導性ペース
トで接着されている。正極集電体としてはドーピング剤
及び電解液に対し耐蝕性の導電物質、例えば炭素、白金
、ニッケル、ステンレス等を用いることが出来る。
FIG. 1 is an explanatory diagram showing the basic configuration of a battery according to the present invention. In Figure 1, (1) is the positive electrode, (2) is the negative electrode, (3
), (3') is a current collector, and (3') is a negative electrode current collector.
3') and the negative electrode (2) are bonded together with a conductive paste containing Ni as a main component. As the positive electrode current collector, a conductive material that is resistant to corrosion by the doping agent and the electrolytic solution, such as carbon, platinum, nickel, stainless steel, etc., can be used.

(4)は電解液であり、ドーピングされうるイオンを生
成しうる前述の化合物が非プロトン性有機溶媒に溶解さ
れている。電解液は°通常液状であるが漏液を防止する
ためゲル状又は固体状にして用いることもできる。(5
)は正負両極の接触を阻止する事及び電解液を保持する
事を目的として配置されたセパレーターである。
(4) is an electrolytic solution in which the above-mentioned compound that can generate ions that can be doped is dissolved in an aprotic organic solvent. The electrolyte is usually in liquid form, but it can also be used in gel or solid form to prevent leakage. (5
) is a separator placed for the purpose of preventing contact between the positive and negative electrodes and retaining the electrolyte.

該セパレーターは、電解液或は電極活物質に対し、該セ
パレータは電解液或はドーピング剤やアルカリ金属等の
電極活物質に対し耐久性のある連通気孔を有する電子伝
導性のない多孔体であり、通常ガラス繊維、ポリエチレ
ン或はポリプロピレン等からなる布、不織布或は多孔体
が用いられる。
The separator is a porous body with no electronic conductivity and has continuous pores that are durable to the electrolytic solution or electrode active material such as a doping agent or an alkali metal. Generally, cloth, nonwoven fabric, or porous material made of glass fiber, polyethylene, polypropylene, or the like is used.

セパレータの厚さは電池の内部゛抵抗を小さくするため
薄い方が好ましいが、電解液の保持量、流通性1強度等
を勘案して決定される。正負極及びセパレータは電池ケ
ース(6)内に実用上問題が生じないように固定される
。電極の形状、大きさ等は目的とする電池の形状5性能
により適宜法められる。
The thickness of the separator is preferably thinner in order to reduce the internal resistance of the battery, but it is determined by taking into account the amount of electrolyte retained, flowability, strength, etc. The positive and negative electrodes and the separator are fixed in the battery case (6) so as not to cause any practical problems. The shape, size, etc. of the electrodes are determined as appropriate depending on the shape and performance of the intended battery.

(発明の効果) 本発明の有機電解質電池は、リチウムを担持させたポリ
アセン系骨格構造を含有した不溶不融性基体より成る負
極と負極集電体とをNiを主成分とする電導性ペースト
で接着している為、内部抵抗の小さい二次電池である。
(Effects of the Invention) In the organic electrolyte battery of the present invention, a negative electrode made of an insoluble and infusible substrate containing a polyacene skeleton structure on which lithium is supported and a negative electrode current collector are formed using a conductive paste mainly composed of Ni. Because it is bonded, it is a secondary battery with low internal resistance.

以下実施例により本発明を具体的に説明する。The present invention will be specifically explained below using Examples.

実施例 (IIPAsの作成 水溶性レゾール(約60%濃度)、塩化亜鉛及び水を重
量比でlO:2S:4の割合で混合した水溶液をフィル
ムアプリケーターでガラス板上に成膜した0次に成膜し
た水溶液上にガラス板を被せ水分が蒸発しない様にした
後、約100℃の温度で1時間加熱して硬化させた。
Example (Preparation of IIPAs) Zero-order formation was performed by forming a film on a glass plate using a film applicator using an aqueous solution containing a water-soluble resol (approximately 60% concentration), zinc chloride, and water mixed in a weight ratio of lO:2S:4. After covering the filmed aqueous solution with a glass plate to prevent moisture from evaporating, it was heated at a temperature of about 100° C. for 1 hour to harden it.

該フェノール樹脂フィルムをシリコニット電気炉中に入
れ窒素気流下で10℃/時間の速度で昇温しで550℃
まで熱処理を行なった。
The phenolic resin film was placed in a siliconite electric furnace and heated to 550°C at a rate of 10°C/hour under a nitrogen stream.
Heat treatment was performed until.

次に該熱処理物を希塩酸で洗った後、水洗し、その後乾
燥することにより厚さ500μのPASフィルムを得た
(PAS−1)、このフィルムのH/Cは0.22、B
ET法による比表面積値は2000m2/gであった。
Next, the heat-treated product was washed with dilute hydrochloric acid, water, and then dried to obtain a PAS film with a thickness of 500 μm (PAS-1). The H/C of this film was 0.22, and the B
The specific surface area value determined by the ET method was 2000 m2/g.

さらに熱処理温度を750°Cとする以外はまったく同
様にして厚さ500μのPASフィルムを得た( P 
A S −2)。
Furthermore, a PAS film with a thickness of 500μ was obtained in exactly the same manner except that the heat treatment temperature was changed to 750°C (P
AS-2).

このフィルムのH/C=0.11、比表面積は1850
m”/gであった。
The H/C of this film is 0.11, and the specific surface area is 1850.
m”/g.

PAS 1−2をディスクミルにて粉砕してPAS粉を
得、このPAS粉100部に対してポリ四フッ化エチレ
ン粉末10部を加え、十分に混練した後ローラーで成形
し厚さ500μのPASフィルムを得た。(PAS2) (2)  電池の作成 (1)で得られたPASあるいはPAS成形体をNi板
に第1表に示す電導性ペーストにて接着、引き続いて真
空下250℃で4時間乾燥した後ドライボックス中にて
リチウムを20%電気化学的にドーピングすることによ
りPASにリチウムを担持させた。この時電解液は1 
m o l / ILiCj!O,−プロピレンカーボ
ネート溶液とし、対極にはリチウムを用い、1 m A
 / c m ”の1を流密度で行なった。
PAS 1-2 was ground in a disc mill to obtain PAS powder, 10 parts of polytetrafluoroethylene powder was added to 100 parts of this PAS powder, and after thorough kneading, it was molded with a roller to form a PAS powder with a thickness of 500μ. Got the film. (PAS2) (2) Preparation of battery The PAS or PAS molded body obtained in (1) was adhered to a Ni plate with the conductive paste shown in Table 1, and then dried under vacuum at 250°C for 4 hours and then dried. Lithium was supported on PAS by electrochemically doping 20% lithium in the box. At this time, the electrolyte is 1
m o l / ILiCj! O,-propylene carbonate solution, lithium was used as the counter electrode, 1 mA
/cm'' at a flow density of 1.

次に正極にPASI−1、正極集電体に5US304メ
ツシユ、セパレーターとしてはガラス繊維からなるフェ
ルトを用い、上述の負極と組み合せ第1図のように電池
を組んだ、また電解液としては、1moffi/j! 
 LiCj!O,−プロピレンカーボネートを用いた0
作成した電池の内部抵抗を1 kHz時の交流インピー
ダンスとして測定した。結果を第1表に示す。
Next, using PASI-1 as the positive electrode, 5US304 mesh as the positive electrode current collector, and felt made of glass fiber as the separator, a battery was assembled as shown in Figure 1 by combining with the above-mentioned negative electrode. /j!
LiCj! 0 using O,-propylene carbonate
The internal resistance of the produced battery was measured as AC impedance at 1 kHz. The results are shown in Table 1.

また比較として負極の接着にカーボンを主成分とする電
導性ペーストを用いた場合、リチウムをNi板に圧着し
たものを負極に用いた場合、電導性ペーストを用いない
で負極とした場合についてNal〜6において接着しな
い場合に比べ電池の内部抵抗が約1/2となった。
For comparison, when a conductive paste containing carbon as the main component was used to bond the negative electrode, when lithium was bonded to a Ni plate for the negative electrode, and when the negative electrode was made without using a conductive paste, Na~ In No. 6, the internal resistance of the battery was approximately 1/2 that of the case without adhesion.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る電池の基本構成を示す説明図であ
り、(1)は正極、(2)は負極、(3) 、 (3’
)は集電体、(4)は電解液、(5)はセパレーター、
(6)は電池ケース、(7) 、 (7’)は外部端子
を表わす。
FIG. 1 is an explanatory diagram showing the basic configuration of a battery according to the present invention, in which (1) is a positive electrode, (2) is a negative electrode, (3), (3'
) is a current collector, (4) is an electrolyte, (5) is a separator,
(6) represents a battery case, and (7) and (7') represent external terminals.

Claims (1)

【特許請求の範囲】[Claims]  正極、負極、並びにリチウム塩を非プロトン性有機溶
媒に溶解した溶液を含む電解液を備えた有機電解質電池
において、負極が炭素、水素および酸素から成る芳香族
系縮合ポリマーの熱処理物であり、該熱処理物の水素原
子/炭素原子の原子比が0.50〜0.05であるポリ
アセン系骨格構造を含有する不溶不融性基体にリチウム
をモル百分率で3%以上担持したものより成り、該負極
が負極集電体にNiを主成分とする電導性ペーストにて
接着されていることを特徴とする有機電解質電池。
In an organic electrolyte battery comprising a positive electrode, a negative electrode, and an electrolytic solution containing a solution of a lithium salt dissolved in an aprotic organic solvent, the negative electrode is a heat-treated product of an aromatic condensation polymer consisting of carbon, hydrogen, and oxygen; The negative electrode is made of an insoluble and infusible substrate containing a polyacene skeleton structure in which the atomic ratio of hydrogen atoms/carbon atoms of the heat-treated product is 0.50 to 0.05, and lithium is supported in a molar percentage of 3% or more. An organic electrolyte battery characterized in that the electrode is bonded to a negative electrode current collector with a conductive paste containing Ni as a main component.
JP2140263A 1990-05-29 1990-05-29 Organic electrolyte battery Expired - Fee Related JP2632427B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2140263A JP2632427B2 (en) 1990-05-29 1990-05-29 Organic electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2140263A JP2632427B2 (en) 1990-05-29 1990-05-29 Organic electrolyte battery

Publications (2)

Publication Number Publication Date
JPH0434870A true JPH0434870A (en) 1992-02-05
JP2632427B2 JP2632427B2 (en) 1997-07-23

Family

ID=15264713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2140263A Expired - Fee Related JP2632427B2 (en) 1990-05-29 1990-05-29 Organic electrolyte battery

Country Status (1)

Country Link
JP (1) JP2632427B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8080335B2 (en) 2006-06-09 2011-12-20 Canon Kabushiki Kaisha Powder material, electrode structure using the powder material, and energy storage device having the electrode structure
US8715855B2 (en) 2007-09-06 2014-05-06 Canon Kabushiki Kaisha Method of producing lithium ion-storing/releasing material, lithium ion-storing/releasing material, and electrode structure and energy storage device using the material
CN104505514A (en) * 2014-11-17 2015-04-08 宁波维科电池股份有限公司 Polyacene conductive agent and lithium ion battery by using polyacene conductive agent

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8080335B2 (en) 2006-06-09 2011-12-20 Canon Kabushiki Kaisha Powder material, electrode structure using the powder material, and energy storage device having the electrode structure
US8715855B2 (en) 2007-09-06 2014-05-06 Canon Kabushiki Kaisha Method of producing lithium ion-storing/releasing material, lithium ion-storing/releasing material, and electrode structure and energy storage device using the material
CN104505514A (en) * 2014-11-17 2015-04-08 宁波维科电池股份有限公司 Polyacene conductive agent and lithium ion battery by using polyacene conductive agent

Also Published As

Publication number Publication date
JP2632427B2 (en) 1997-07-23

Similar Documents

Publication Publication Date Title
JP2574730B2 (en) Organic electrolyte battery
JPH0434870A (en) Organic electrolyte battery
JP3403856B2 (en) Organic electrolyte battery
JP2968097B2 (en) Organic electrolyte battery
JP2920079B2 (en) Organic electrolyte battery
JPH08162161A (en) Organic electrolytic battery
JP3618714B2 (en) Organic electrolyte battery
JP2574731B2 (en) Organic electrolyte battery
JP2869354B2 (en) Organic electrolyte battery
JP2869355B2 (en) Organic electrolyte battery
JPH08162159A (en) Organic elctrolytic battery
JP2619842B2 (en) Organic electrolyte battery
JP2912517B2 (en) Organic electrolyte battery
JP2646461B2 (en) Organic electrolyte battery
JP2781725B2 (en) Organic electrolyte battery
JP2646462B2 (en) Organic electrolyte battery
JP2601784B2 (en) Organic electrolyte battery
JP2920070B2 (en) Organic electrolyte battery
JP2920069B2 (en) Organic electrolyte battery
JPH05325972A (en) Organic electrolyte battery
JP2588404B2 (en) Organic electrolyte battery
JPS63301465A (en) Organic electrolyte battery with composite matter of aniline as positive electrode
JP2522662B2 (en) Organic electrolyte battery with polythiophene as positive electrode
JP2869191B2 (en) Organic electrolyte battery
JP2923424B2 (en) Organic electrolyte battery

Legal Events

Date Code Title Description
S202 Request for registration of non-exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R315201

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100425

Year of fee payment: 13

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees