JPH04348267A - Gas sensor - Google Patents

Gas sensor

Info

Publication number
JPH04348267A
JPH04348267A JP4294591A JP4294591A JPH04348267A JP H04348267 A JPH04348267 A JP H04348267A JP 4294591 A JP4294591 A JP 4294591A JP 4294591 A JP4294591 A JP 4294591A JP H04348267 A JPH04348267 A JP H04348267A
Authority
JP
Japan
Prior art keywords
gas
sensitive material
detection
overhang
material layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4294591A
Other languages
Japanese (ja)
Inventor
Shinji Tanigawara
谷川原 進二
Wasaburo Ota
太田 和三郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP4294591A priority Critical patent/JPH04348267A/en
Publication of JPH04348267A publication Critical patent/JPH04348267A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

PURPOSE:To simply detect the leakage of specific gas by using gas responsive substance layers being metal oxide semiconductor films mutually different in particle size and/or density. CONSTITUTION:Detecting regions are provided to the overhangs 2, 3 composed of an electric insulating material on a substrate 1. At least a pair of detecting leads 8, 9, the heater leads 4, 5 arranged in parallel to said leads 8, 9 and metal oxide semiconductor films 6, 7 being the gas responsive substance layers coming into contact with the leads 8, 9 are provided to the detecting regions. The semiconductor films 6, 7 generate the contact reaction of gases and the change of the resistance values thereof is measured to detect the gases. At this time, the semiconductor films 6, 7 on the overhangs 2, 3 are mutually different in particle size and/or density and the gases sensed by said films are detected. By changing only the particle size and/or density of the semiconductor films 6, 7, gas selectivity can be simply provided.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【技術分野】本発明は、雰囲気中にガスが存在すること
を検知するガスセンサに関し、詳しくは、LPガスや都
市ガスのガス漏れ警報器として使用するに適したガスセ
ンサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas sensor for detecting the presence of gas in an atmosphere, and more particularly to a gas sensor suitable for use as a gas leak alarm for LP gas or city gas.

【0002】0002

【従来技術】ガスセンサは、その性質上様々なガス(イ
ソブタン、プロパン、エタン、メタン、エタノール、プ
ロピレン、トルエン、キシレン、メタノール、水素、一
酸化炭素等)に感度を有する。従って、ある特定のガス
を検出したい場合、他のガスによるノイズが大きな問題
になる。例えば、家庭用のガスセンサ(ガス漏れ警報器
)においては、都市ガスの場合には、メタンガスにのみ
反応することが望ましいが、ガス漏れ警報器の設置場所
が多くは天井に近いところに有るため水蒸気や各種蒸気
、雑ガスの影響を受けやすい。雑ガスとして家庭内で最
も発生しやすいのはアルコールであるが、一般のガスセ
ンサはアルコールに対しても高い感度を有する。そうし
たことから、通常はガスセンサにガス選択性を持たせる
ために、フィルターを付加したり、動作温度を変えるな
どしているが、コスト及び確実性において問題がある。
2. Description of the Related Art Gas sensors are sensitive to various gases (isobutane, propane, ethane, methane, ethanol, propylene, toluene, xylene, methanol, hydrogen, carbon monoxide, etc.) due to their nature. Therefore, when it is desired to detect a specific gas, noise caused by other gases becomes a big problem. For example, in the case of city gas, it is desirable for household gas sensors (gas leak alarms) to react only to methane gas, but since most gas leak alarms are installed near the ceiling, they react only to water vapor. It is easily affected by various types of steam and miscellaneous gases. Although alcohol is the miscellaneous gas that is most likely to be generated in the home, general gas sensors have high sensitivity to alcohol as well. For this reason, in order to give gas selectivity to a gas sensor, a filter is usually added or the operating temperature is changed, but this poses problems in terms of cost and reliability.

【0003】0003

【目的】本発明の目的は、従来のごときフィルターを付
加したり、動作温度を変える等の面倒な手段を採ること
なく、特定のガス漏れを検知しうるガスセンサを提供す
る点にある。
[Object] An object of the present invention is to provide a gas sensor that can detect a specific gas leak without adding a conventional filter or taking troublesome measures such as changing the operating temperature.

【0004】0004

【構成】本発明は、基板、その基板上に空中に張出して
設けられた電気絶縁性材料からなる張出し部、前記張出
し部上に設けた検出領域にあって互いに所定距離隔離し
て設けられた少なくとも一対の検出用リード、前記張出
し部上にあって前記検出用リードにほぼ並置して設けら
れた少なくとも1個のヒーターリード、及び前記検出領
域にあって前記少なくとも一対の検出用リードの各々に
接触して設けられたガス感応物質層を有しており前記ガ
ス感応物質層がガスと接触反応することによりその抵抗
値の変化を測定してガス検出を行うガスセンサにおいて
、前記張出し部が複数個存在し、それぞれの張出し部上
にあるガス感応物質層が互いに、あるいはそれらのうち
少なくとも1つは他のものと粒径および/または密度を
異にした金属酸化物半導体膜よりなることを特徴とする
ガス選択性を有するガスセンサあるいは1つの前記張出
し部上にガス感応物質層が複数個存在し、それらのうち
少なくとも1つは他のものと粒径および/または密度を
異にした金属酸化物半導体膜よりなることを特徴とする
ガス選択性を有するガスセンサに関する。ちなみに、本
発明者等はガスセンサを複数のガス感応膜で形成すると
共に、それら複数のガス感応膜(金属酸化物半導体膜)
の粒径および/または密度を変えることにより、ガス感
応に選択性がもたらされることを確かめた。本発明はこ
れに基づいてなされたものである。以下に本発明を添付
の図面に従いながらさらに詳細に説明するが、端的に言
えば、本発明のガスセンサは、互いに粒径および/また
は密度を異にした金属酸化物半導体膜を少なくとも二つ
のガス感応物質層として採用し、それぞれのガス感応物
質層によって感知されるガスを検知するようにしている
[Structure] The present invention provides a substrate, a protruding portion made of an electrically insulating material provided on the substrate to protrude into the air, and a detection area provided on the protruding portion separated from each other by a predetermined distance. at least one pair of detection leads, at least one heater lead provided on the overhang and substantially parallel to the detection leads, and at least one heater lead located in the detection area and connected to each of the at least one pair of detection leads. A gas sensor having a gas-sensitive material layer provided in contact with the gas and detecting a gas by measuring a change in resistance value when the gas-sensitive material layer reacts with the gas by contacting the gas sensor, wherein a plurality of the projecting portions are provided. and the gas-sensitive material layers on each overhang are comprised of metal oxide semiconductor films having different grain sizes and/or densities from each other, or at least one of them, from the others. or a metal oxide semiconductor, in which a plurality of gas sensitive material layers are present on one of the overhangs, at least one of which has a different particle size and/or density from the others. The present invention relates to a gas sensor having gas selectivity characterized by being made of a membrane. Incidentally, the present inventors formed a gas sensor with a plurality of gas-sensitive films, and also formed a gas sensor with a plurality of gas-sensitive films (metal oxide semiconductor films).
It was confirmed that by changing the particle size and/or density of the nanoparticles, selectivity in gas sensitivity can be achieved. The present invention has been made based on this. The present invention will be described in more detail below with reference to the accompanying drawings, but to put it simply, the gas sensor of the present invention comprises at least two gas-sensitive metal oxide semiconductor films having different particle sizes and/or densities. The gases sensed by the respective gas-sensitive material layers are detected.

【0005】図1は本発明に係わるガスセンサのうち、
張出し部として架橋構造が採用されたものの例である。 図1のaは平面図、図1のbはX−X′線断面図である
。ここでは、ほぼ正方形の形状をした基板1上に電気絶
縁性材料から成る2個の張出し部2,3が空中に浮いた
格好の架橋構造として設けられている。張出し部の数は
2個以上であれば、幾つであっても良い。基板1にはア
ンダーカットエッチングが容易で高温でも変形しない材
料、例えばSi,Al,Cu,Ni,Cr等が使用され
、好ましくはSi(100)面が用いられる。(100
)面を使用する理由は、アンダーカットエッチングする
際に公知の異方性エッチング液を使用できるためである
。基板1の外形寸法は1〜4mm角程度で、その厚さは
0.1〜1mm位が適当である。この基板1のアンダー
カットエッチングにより形成された張出し部2,3上に
は、ヒーターリード4,5とガス感応物質層である金属
酸化物半導体膜6,7とその検出用リード8,9とが形
成されている。ヒーターリード4,5及び検出用リード
8,9の材料としてはPt,Au等が好ましい。図2は
1つの張出し部上に2個のガス感応物質層が存在するも
のの例であり、ガス感応物質層の数は2個以上であれば
、幾つであっても良い。金属酸化物半導体膜6,7は同
じ金属酸化物であるが、粒径あるいは密度が互いに異な
っている。本発明での金属酸化物半導体としては、スズ
、亜鉛、鉄、チタン、インジウム、ニッケル、タングス
テン、カドミウム、バナジウム等の酸化物が挙げられる
が、中でもスズの酸化物の使用が最も望ましい。図3は
張出し部2,3が片持ち梁構造となっていること以外は
図1の物と同様な構成が採られている。図4も張出し部
が片持ち梁構造となっていること以外は図2の物と同様
である。
FIG. 1 shows a gas sensor according to the present invention.
This is an example of a structure in which a crosslinked structure is adopted as an overhang. 1A is a plan view, and FIG. 1B is a sectional view taken along the line X-X'. Here, two projecting parts 2 and 3 made of an electrically insulating material are provided on a substantially square-shaped substrate 1 as a floating bridge structure. The number of overhangs may be any number as long as it is two or more. For the substrate 1, a material that can be easily undercut etched and does not deform even at high temperatures, such as Si, Al, Cu, Ni, Cr, etc., is used, and preferably a Si (100) plane is used. (100
) is used because a known anisotropic etching solution can be used when performing undercut etching. The outer dimensions of the substrate 1 are approximately 1 to 4 mm square, and the appropriate thickness is approximately 0.1 to 1 mm. On the overhanging parts 2 and 3 formed by undercut etching of the substrate 1, heater leads 4 and 5, metal oxide semiconductor films 6 and 7 which are gas sensitive material layers, and their detection leads 8 and 9 are disposed. It is formed. Preferable materials for the heater leads 4 and 5 and the detection leads 8 and 9 are Pt, Au, and the like. FIG. 2 shows an example in which two gas-sensitive material layers are present on one overhang, and the number of gas-sensitive material layers may be any number as long as it is two or more. The metal oxide semiconductor films 6 and 7 are made of the same metal oxide, but have different grain sizes or densities. Examples of the metal oxide semiconductor in the present invention include oxides of tin, zinc, iron, titanium, indium, nickel, tungsten, cadmium, vanadium, etc. Among them, it is most desirable to use tin oxide. The structure shown in FIG. 3 is similar to that shown in FIG. 1 except that the overhanging portions 2 and 3 have a cantilever structure. 4 is similar to the one in FIG. 2 except that the overhang portion has a cantilever structure.

【0006】金属酸化物半導体膜6,7の成膜方法とし
ては、スパッタリング法、真空蒸着法などいろいろ考え
られるが、本発明者の一人である太田が先に提案した『
薄膜蒸着装置』(特許第1571203号)を用いて行
うのが有利である。そこで今、この薄膜蒸着装置を用い
てガス感応膜としての酸化スズ膜の形成方法について述
べれば、次のとおりである。酸化スズ膜を形成する場合
は蒸発物質としてSn,SnO,SnO2のいずれかが
蒸発物質とされる。即ち、例えばSnを蒸発物質として
選び、これを蒸発源に保持し、真空槽内の真空度を予め
1/104Paのオーダーにし、酸素ガスを真空槽内に
導入し、その圧力を例えば0.1Pa程度に保つ。この
状態において、例えば対電極をゼロ電位にし、グリッド
に100Vの電位を与え、フィラメントに400Wの電
力を与える。希望する成膜速度に応じ、蒸発源に電力を
印加すると蒸発したSnの一部がイオン化され、酸素と
強く化合し、酸化スズ膜が基板上に形成される。この方
法により形成した酸化スズ膜のメタン及びエチルアルコ
ールに対するガス感度と成膜速度との関係を図5に示す
。ガス濃度は空気に対しそれぞれ3000ppm,10
00ppmであり、ガス感応膜の温度は450℃である
。図中、Raはガス感応膜の空気中抵抗値、Rgはガス
感応膜のガス中抵抗値である。次に、メタンとエチルア
ルコールに対し選択性を持たせる方法について述べる。 ガス感応膜6の成膜速度を5Å/secで、ガス感応膜
7の成膜速度を30Å/secで形成する。その後酸素
雰囲気中で、700℃のアニールを施す。5Å/sec
で形成したガス感応膜6はメタンとエチルアルコールの
両方に感度を有するが、30Å/secで形成したガス
感応膜7はエチルアルコールにしか感度を有しない。つ
まり、ガス感応膜6,7が共に抵抗値変化を生じた場合
にはエチルアルコールが存在し、ガス感応膜6のみ抵抗
値変化を生じた場合にはメタンのみが存在していること
になる。前記酸化スズ半導体膜6,7の断面及び表面の
電子顕微鏡写真を図6および7に示す。5Å/secで
形成した酸化スズ膜は微粒子の集合体であり、粒径は数
百Å程度であり、その密度は比較的小さい。30Å/s
ecで形成した酸化スズ膜の粒径は1000Å程度と大
きく、その密度も比較的大きい。このように成膜速度に
より粒径あるいは密度が非常に異なることが判る。これ
は蒸発材料であるSnの蒸発速度を変化させることによ
り、酸素との反応を制御することができるためである。 金属酸化物半導体膜6,7の形成方法は、成膜速度を変
えることだけに限らず、例えば金属酸化物半導体膜6の
蒸発材料としてSnO2を用い、金属酸化物半導体膜7
の蒸発材料としてSnを用いるなどして、金属酸化物半
導体膜6,7のそれぞれのスズと酸素との反応を制御し
ても構わない。あるいは真空槽内の酸素導入量をそれぞ
れで変えて、反応を制御しても構わない。
Various methods can be considered for forming the metal oxide semiconductor films 6 and 7, such as sputtering and vacuum evaporation.
It is advantageous to use a thin film deposition apparatus (Japanese Patent No. 1,571,203). Now, the method for forming a tin oxide film as a gas-sensitive film using this thin film deposition apparatus will be described as follows. When forming a tin oxide film, one of Sn, SnO, and SnO2 is used as the evaporation substance. That is, for example, Sn is selected as the evaporation substance, it is held as an evaporation source, the degree of vacuum in the vacuum chamber is set in advance to the order of 1/104 Pa, oxygen gas is introduced into the vacuum chamber, and the pressure is set to, for example, 0.1 Pa. Keep it at a moderate level. In this state, for example, the counter electrode is brought to zero potential, a potential of 100 V is applied to the grid, and a power of 400 W is applied to the filament. When power is applied to the evaporation source in accordance with a desired film formation rate, a portion of the evaporated Sn is ionized and strongly combines with oxygen, forming a tin oxide film on the substrate. FIG. 5 shows the relationship between the gas sensitivity of the tin oxide film formed by this method to methane and ethyl alcohol and the film formation rate. The gas concentration is 3000 ppm and 10 ppm, respectively, relative to air.
00 ppm, and the temperature of the gas sensitive membrane is 450°C. In the figure, Ra is the in-air resistance value of the gas-sensitive membrane, and Rg is the in-gas resistance value of the gas-sensitive membrane. Next, a method for imparting selectivity to methane and ethyl alcohol will be described. The gas sensitive film 6 is formed at a deposition rate of 5 Å/sec, and the gas sensitive film 7 is formed at a deposition rate of 30 Å/sec. Thereafter, annealing is performed at 700° C. in an oxygen atmosphere. 5Å/sec
The gas sensitive film 6 formed at 30 Å/sec is sensitive to both methane and ethyl alcohol, but the gas sensitive film 7 formed at 30 Å/sec is sensitive only to ethyl alcohol. That is, if both the gas sensitive membranes 6 and 7 change in resistance value, ethyl alcohol is present, and if only the gas sensitive membrane 6 causes a change in resistance value, only methane exists. Electron micrographs of the cross section and surface of the tin oxide semiconductor films 6 and 7 are shown in FIGS. 6 and 7. The tin oxide film formed at a rate of 5 Å/sec is an aggregate of fine particles, the particle size is approximately several hundred Å, and the density thereof is relatively small. 30Å/s
The grain size of the tin oxide film formed by EC is as large as about 1000 Å, and its density is also relatively large. It can thus be seen that the particle size or density varies greatly depending on the film formation rate. This is because the reaction with oxygen can be controlled by changing the evaporation rate of Sn, which is the evaporation material. The method for forming the metal oxide semiconductor films 6 and 7 is not limited to changing the film formation rate. For example, using SnO2 as the evaporation material of the metal oxide semiconductor film 6,
The reaction between tin and oxygen in each of the metal oxide semiconductor films 6 and 7 may be controlled by using Sn as an evaporation material. Alternatively, the reaction may be controlled by varying the amount of oxygen introduced into the vacuum chamber.

【0007】[0007]

【効果】本発明によれば、複数個のガス感応膜のそれぞ
れの粒径および/または密度を変えるだけで簡単にガス
選択性を有するガスセンサが得られる。
[Effects] According to the present invention, a gas sensor having gas selectivity can be easily obtained by simply changing the particle size and/or density of each of a plurality of gas-sensitive membranes.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明のガスセンサの第1の例を示し、(a)
はその平面図、(b)は(a)のX−X′線断面図であ
る。
FIG. 1 shows a first example of a gas sensor of the present invention, (a)
is a plan view thereof, and (b) is a sectional view taken along line X-X' of (a).

【図2】本発明のガスセンサの第2の例を示し、(a)
はその平面図、(b)は(a)のX−X′線断面図であ
る。
FIG. 2 shows a second example of the gas sensor of the present invention, (a)
is a plan view thereof, and (b) is a sectional view taken along line X-X' of (a).

【図3】本発明のガスセンサの第3の例を示し、(a)
はその平面図、(b)は(a)のX−X′線断面図であ
る。
FIG. 3 shows a third example of the gas sensor of the present invention, (a)
is a plan view thereof, and (b) is a sectional view taken along line X-X' of (a).

【図4】本発明のガスセンサの第4の例を示し、(a)
はその平面図、(b)は(a)のX−X′線断面図であ
る。
FIG. 4 shows a fourth example of the gas sensor of the present invention, (a)
is a plan view thereof, and (b) is a sectional view taken along line X-X' of (a).

【図5】ガス感応膜のメタン及びエチルアルコールに対
するガス感度と成膜速度との関係を表したグラフである
FIG. 5 is a graph showing the relationship between the gas sensitivity of the gas-sensitive film to methane and ethyl alcohol and the film formation rate.

【図6】5Å/secで成膜した酸化スズ膜(アニール
後)の電子顕微鏡写真である。
FIG. 6 is an electron micrograph of a tin oxide film (after annealing) formed at 5 Å/sec.

【図7】30Å/secで成膜した酸化スズ膜(アニー
ル後)の電子顕微鏡写真である。
FIG. 7 is an electron micrograph of a tin oxide film (after annealing) formed at 30 Å/sec.

【符号の説明】[Explanation of symbols]

1  基板 2  張出し部 3  張出し部 4  ヒーターリード 5  ヒーターリード 6  金属酸化物半導体膜 7  金属酸化物半導体膜 8  検出リード 9  検出リード 10  絶縁膜 0  空洞 1 Board 2 Overhang part 3 Overhang part 4 Heater lead 5 Heater lead 6 Metal oxide semiconductor film 7 Metal oxide semiconductor film 8 Detection lead 9 Detection lead 10 Insulating film 0 Hollow

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  基板、その基板上に空中に張出して設
けられた電気絶縁性材料からなる張出し部、前記張出し
部上に設けた検出領域にあって互いに所定距離隔離して
設けられた少なくとも一対の検出用リード、前記張出し
部上にあって前記検出用リードにほぼ並置して設けられ
た少なくとも1個のヒーターリード、及び前記検出領域
にあって前記少なくとも一対の検出用リードの各々に接
触して設けられたガス感応物質層を有しており前記ガス
感応物質層がガスと接触反応することによりその抵抗値
の変化を測定してガス検出を行うガスセンサにおいて、
前記張出し部が複数個存在し、それぞれの張出し部上に
あるガス感応物質層が互いに、あるいはそれらのうち少
なくとも1つは他のものと粒径および/または密度を異
にした金属酸化物半導体膜よりなることを特徴とするガ
ス選択性を有するガスセンサ。
1. A substrate, an overhang made of an electrically insulating material provided on the substrate to extend into the air, and at least a pair of overhangs provided at a detection area provided on the overhang and separated from each other by a predetermined distance. a detection lead, at least one heater lead located on the overhang and provided substantially parallel to the detection lead, and a heater lead located in the detection area and in contact with each of the at least one pair of detection leads. A gas sensor having a gas-sensitive material layer provided with a gas-sensitive material layer and detecting a gas by measuring a change in resistance value when the gas-sensitive material layer contacts and reacts with a gas,
A metal oxide semiconductor film in which a plurality of the overhangs exist, and the gas-sensitive material layers on each overhang have different particle sizes and/or densities from each other or at least one of them from the others. A gas sensor having gas selectivity characterized by the following.
【請求項2】  基板、その基板上に空中に張出して設
けられた電気絶縁性材料からなる張出し部、前記張出し
部上に設けた検出領域にあって互いに所定距離隔離して
設けられた少なくとも一対の検出用リード、前記張出し
部上にあって前記検出用リードにほぼ並置して設けられ
た少なくとも1個のヒーターリード、及び前記検出領域
にあって前記少なくとも一対の検出用リードの各々に接
触して設けられたガス感応物質層を有しており前記ガス
感応物質層がガスと接触反応することによりその抵抗値
の変化を測定してガス検出を行うガスセンサにおいて、
1つの前記張出し部上にガス感応物質層が複数個存在し
、それらのうち少なくとも1つは他のものと粒径および
/または密度を異にした金属酸化物半導体膜よりなるこ
とを特徴とするガス選択性を有するガスセンサ。
2. A substrate, a protruding portion made of an electrically insulating material provided on the substrate and protruding into the air, and at least a pair of protruding portions provided on the protruding portion and separated from each other by a predetermined distance. a detection lead, at least one heater lead located on the overhang and provided substantially parallel to the detection lead, and a heater lead located in the detection area and in contact with each of the at least one pair of detection leads. A gas sensor having a gas-sensitive material layer provided with a gas-sensitive material layer and detecting a gas by measuring a change in resistance value when the gas-sensitive material layer contacts and reacts with a gas,
A plurality of gas-sensitive material layers are present on one of the overhangs, and at least one of them is made of a metal oxide semiconductor film having a different grain size and/or density from the others. Gas sensor with gas selectivity.
JP4294591A 1991-02-15 1991-02-15 Gas sensor Pending JPH04348267A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4294591A JPH04348267A (en) 1991-02-15 1991-02-15 Gas sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4294591A JPH04348267A (en) 1991-02-15 1991-02-15 Gas sensor

Publications (1)

Publication Number Publication Date
JPH04348267A true JPH04348267A (en) 1992-12-03

Family

ID=12650153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4294591A Pending JPH04348267A (en) 1991-02-15 1991-02-15 Gas sensor

Country Status (1)

Country Link
JP (1) JPH04348267A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990057110A (en) * 1997-12-29 1999-07-15 구자홍 Hydrocarbon Gas Sensor Manufacturing Method
JP2008128868A (en) * 2006-11-22 2008-06-05 Nagaoka Univ Of Technology Element for organic matter sensor and manufacturing method therefor
US7418855B2 (en) * 2004-09-03 2008-09-02 Honda Motor Co., Ltd. Gas sensor and control method therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990057110A (en) * 1997-12-29 1999-07-15 구자홍 Hydrocarbon Gas Sensor Manufacturing Method
US7418855B2 (en) * 2004-09-03 2008-09-02 Honda Motor Co., Ltd. Gas sensor and control method therefor
JP2008128868A (en) * 2006-11-22 2008-06-05 Nagaoka Univ Of Technology Element for organic matter sensor and manufacturing method therefor

Similar Documents

Publication Publication Date Title
US5012671A (en) Gas detecting device
US5767388A (en) Methane sensor and method for operating a sensor
JP4195609B2 (en) Thin layer metal hydride hydrogen sensor
JPH0663992B2 (en) Gas sensor device
JP2004508535A (en) MIS hydrogen sensor
JP5352049B2 (en) Hydrogen sensor
US4016524A (en) Sensor for a gas detector, in particular for smoke detection
JP3815041B2 (en) Gas identification device
US20170363556A1 (en) Gas sensor
JPH04348267A (en) Gas sensor
RU2132551C1 (en) Gas sensor operating process
CN116018515A (en) Hydrogen detection sensor and method for manufacturing same
JPH053539B2 (en)
CN116165255A (en) Structure, preparation method and application mode of multipurpose hydrogen sensor
JPH02134551A (en) Gas detector having gas selectivity
JP4010738B2 (en) Gas sensor, gas detector and gas detection method
JPH053540B2 (en)
JPH02165034A (en) Hydrogen gas sensor
JPH04164243A (en) Gas sensor
JP4315992B2 (en) Gas sensor, gas detector and gas detection method
JP3845937B2 (en) Gas sensor
JP2877822B2 (en) Multi-gas identification gas detector
KR102616701B1 (en) Gas sensor with improved contact resistance and the fabrication method thereof
CN113109402B (en) Capacitive hydrogen sensor core, preparation method thereof and capacitive hydrogen sensor
JPS63313047A (en) Gas sensor and its production