JPH04348095A - Thermoplastic electrical insulating board - Google Patents

Thermoplastic electrical insulating board

Info

Publication number
JPH04348095A
JPH04348095A JP17908091A JP17908091A JPH04348095A JP H04348095 A JPH04348095 A JP H04348095A JP 17908091 A JP17908091 A JP 17908091A JP 17908091 A JP17908091 A JP 17908091A JP H04348095 A JPH04348095 A JP H04348095A
Authority
JP
Japan
Prior art keywords
parts
mica
weight
molded product
printed wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17908091A
Other languages
Japanese (ja)
Inventor
Motoyoshi Tsujimoto
素芳 辻本
Masamori Miura
三浦 正守
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP17908091A priority Critical patent/JPH04348095A/en
Publication of JPH04348095A publication Critical patent/JPH04348095A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To provide a novel thermoplastic electrical insulating board excellent in heat resistance, fire retardancy, dimensional stability, etc., being indispensable for responding to the problem of mounting parts on a printed wiring board in high density. CONSTITUTION:This is a thermoplastic electrical insulating base material for a printed wiring board which is made by molding a composition which contains 51-500wt. parts of mica alone or both mica and talc to 100wt. parts of polyphenylene sulfite resin.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、プリント配線板として
用いられる耐熱性、耐燃性、寸法安定性等に優れる新規
な熱可塑性電気絶縁基板に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel thermoplastic electrically insulating substrate that is used as a printed wiring board and has excellent heat resistance, flame resistance, dimensional stability, etc.

【0002】0002

【従来の技術】従来より、プリント配線板用絶縁基板と
しては、エポキシ樹脂、フェノール樹脂などの熱硬化性
樹脂と紙、ガラス繊維などの補強材とを複合せしめて成
形されてなるものが広く用いられている。かかる絶縁基
材上には金属層が設けられて積層体とされ、プリント配
線板として、必要に応じた孔が穿設されて、非スルホー
ルメッキプリント配線板、スルホールメッキプリント配
線板、多層プリント配線板等とされる。しかしながら、
プリント配線板の製造工程には上記のごとく穿設工程が
組み込まれ、機械加工作業を伴うことから、その製造工
程を煩雑なものとしている。また、昨今の電気機器、電
気通信機器及び電子機器工業の趨勢はこれら機器の軽薄
短小化及び低コスト化にあり、したがってプリント配線
板もさらに高密度実装化するという課題を担うこととな
り、高耐熱、耐燃性、寸法安定性等の諸物性の一層の向
上が要求されている。しかしながら、上記基板はかかる
要求にはもはや充分に応えうるものではない。
[Prior Art] Conventionally, insulating substrates for printed wiring boards have been widely used, which are formed by combining thermosetting resins such as epoxy resins and phenolic resins with reinforcing materials such as paper and glass fibers. It is being A metal layer is provided on such an insulating base material to form a laminate, and as a printed wiring board, holes are bored as necessary to form a non-through-hole plated printed wiring board, a through-hole plated printed wiring board, and a multilayer printed wiring board. It is considered to be a board etc. however,
The manufacturing process of printed wiring boards incorporates the drilling process as described above, and is accompanied by machining work, making the manufacturing process complicated. In addition, the recent trend in the electrical equipment, telecommunications equipment, and electronic equipment industries is to make these equipment lighter, thinner, shorter, and lower in cost.As a result, printed wiring boards are also required to be mounted in higher density, and are highly heat resistant. Further improvements in physical properties such as flame resistance and dimensional stability are required. However, the above-mentioned substrates are no longer able to fully meet such demands.

【0003】0003

【発明が解決しようとする課題】その目的とするところ
は、プリント配線板を高密度実装するという課題に応え
る際に不可欠な高耐熱、難燃性、寸法安定性等にすぐれ
る新規な熱可塑性電気絶縁基板を提供することにある。
[Problem to be solved by the invention] The purpose is to develop a new thermoplastic material that has excellent heat resistance, flame retardance, and dimensional stability, which are essential for meeting the challenge of high-density mounting of printed wiring boards. The purpose of the present invention is to provide an electrically insulating substrate.

【0004】0004

【課題を解決するための手段】本発明は、ポリフェニレ
ンサルファイド樹脂(PPS)100重量部に対して、
マイカ51〜500重量部を含有する組成物を成形して
なるプリント配線板用熱可塑性電気絶縁基材であり、ま
たはPPS100重量部に対して、マイカとタルクの2
種を合計51〜500重量部を含有する組成物を成形し
てなるプリント配線板用熱可塑性電気絶縁基材である。
[Means for Solving the Problems] The present invention provides that, for 100 parts by weight of polyphenylene sulfide resin (PPS),
A thermoplastic electrical insulating base material for printed wiring boards formed by molding a composition containing 51 to 500 parts by weight of mica, or 2 parts of mica and talc per 100 parts by weight of PPS.
This is a thermoplastic electrically insulating substrate for a printed wiring board formed by molding a composition containing a total of 51 to 500 parts by weight of seeds.

【0005】本発明において、PPSは一般式  (−
C6H5−S−)nで示される構成単位を70モル%以
上含むものが好ましく、その量が70モル%未満では優
れた特性の組成物は得難い。このポリマーの重合方法と
しては、N−メチルピロリドリン、ジメチルアセトアミ
ド等のアミド系溶媒やスルホランなどのスルホン系溶媒
中で硫化ナトリウムとp−ジクロロベンゼンを反応させ
る方法が適当である。
In the present invention, PPS has the general formula (-
Those containing 70 mol% or more of the structural unit represented by C6H5-S-)n are preferred; if the amount is less than 70 mol%, it is difficult to obtain a composition with excellent properties. A suitable method for polymerizing this polymer is a method in which sodium sulfide and p-dichlorobenzene are reacted in an amide solvent such as N-methylpyrrolidrine or dimethylacetamide, or a sulfone solvent such as sulfolane.

【0006】この際重合度を調節するためにカルボン酸
やスルホン酸のアルカリ金属塩を添加したり、水酸化ア
ルカリ、アルカリ金属炭酸塩、アルカリ土類金属酸化物
を添加する。共重合成分として30モル%未満であれば
メタ結合、オルト結合、エーテル結合、スルホン結合、
ビフェニル結合、置換フェニレンスルフィド結合(ここ
で置換基としてはアルキル基、ニトロ基、フェニル基、
アルコキシ基、カルボン酸基またはカルボン酸の金属塩
基)、3官能結合などを含有していても、ポリマーの結
晶性に大きく影響しない範囲で構わないが、好ましくは
共重合成分は10モル%以下がよい。溶融粘度に関して
は、マイカまたはマイカ及びタルクを高充填するので低
粘度のものが好ましい。
At this time, in order to adjust the degree of polymerization, an alkali metal salt of carboxylic acid or sulfonic acid, or an alkali hydroxide, an alkali metal carbonate, or an alkaline earth metal oxide is added. If it is less than 30 mol% as a copolymerization component, meta bonds, ortho bonds, ether bonds, sulfone bonds,
Biphenyl bond, substituted phenylene sulfide bond (here, substituents include alkyl group, nitro group, phenyl group,
Alkoxy groups, carboxylic acid groups, or metal bases of carboxylic acids), trifunctional bonds, etc. may be included as long as they do not significantly affect the crystallinity of the polymer, but preferably the copolymerization component is 10 mol% or less. good. Regarding the melt viscosity, a low viscosity one is preferable since it is highly filled with mica or mica and talc.

【0007】一方、マイカとしてはマスコバイト系マイ
カ(白雲母)、フロゴパイト系マイカ(金雲母)が好ま
しく用いられ、形状を特定する因子としてのアスペクト
比が30以上のものが機械強度及び反りなどの寸法安定
性を良好に保つのに望ましく用いられる。ここで、アス
ペクト比とは平均直径/平均厚みで表されるものである
。更に、タルクとしては、平均粒子径が0.5〜20μ
mのものが機械強度を良好に保つのに好ましく、このよ
うなタルクは天然産の滑石(含水ケイ酸マグネシウム)
を粉砕して微粉末としたものであり、特に不純物として
の鉄及びアルミニウムの合計量が0.9重量%以下であ
る中国産の滑石を微粉砕、分級して得られたものは良好
である。また、マイカ及びタルクは表面処理をせずに用
いても差し支えないが、各種表面処理剤によって表面処
理をしたものを用いることもできる。表面処理剤として
は低分子量ポリエチレン、低分子量ポリプロピレンなど
のワックス類、ステアリン酸、パルチミン酸などの飽和
高級脂肪酸、ステアリン酸マグネシウムなどの飽和高級
脂肪酸金属塩、オレイン酸などの不飽和高級脂肪酸、オ
レイン酸マグネシウムなどの不飽和高級脂肪酸金属塩、
イソプロピルトリイソステアリックチタネートなどのチ
タネート系カップリング剤、シランカップリング剤、ポ
リオキシエチレンアルキルエーテルなどの各種界面活性
剤などを用いることができる。
On the other hand, as the mica, muscovite-based mica (muscovite) and phlogopite-based mica (phlogopite) are preferably used, and those with an aspect ratio of 30 or more, which is a factor that specifies the shape, have good mechanical strength and warpage. It is preferably used to maintain good dimensional stability. Here, the aspect ratio is expressed as average diameter/average thickness. Furthermore, talc has an average particle diameter of 0.5 to 20μ.
talc is preferable to maintain good mechanical strength, and such talc is a natural talc (hydrated magnesium silicate).
It is a fine powder obtained by pulverizing and classifying talc from China, which has a total content of iron and aluminum as impurities of 0.9% by weight or less, and is particularly good. . Further, mica and talc may be used without any surface treatment, but they may also be surface treated with various surface treatment agents. Surface treatment agents include waxes such as low molecular weight polyethylene and low molecular weight polypropylene, saturated higher fatty acids such as stearic acid and palmitic acid, saturated higher fatty acid metal salts such as magnesium stearate, unsaturated higher fatty acids such as oleic acid, and oleic acid. unsaturated higher fatty acid metal salts such as magnesium,
Titanate coupling agents such as isopropyl triisostearic titanate, silane coupling agents, various surfactants such as polyoxyethylene alkyl ether, etc. can be used.

【0008】マイカまたはマイカ及びタルクの配合割合
はPPSに対して51〜500重量部を含有するのが好
ましく、さらに好ましくは100〜300重量部である
。ここで、500重量部を越える配合では成形が困難と
なるため、適当ではない。逆に50重量部以下ではかか
る組成物より成形される絶縁基材は寸法精度が低くしか
も反りも大きくなり、目的を達し得ないものとなる。
The blending ratio of mica or mica and talc is preferably 51 to 500 parts by weight, more preferably 100 to 300 parts by weight, based on PPS. Here, if the amount exceeds 500 parts by weight, molding becomes difficult and is therefore not appropriate. On the other hand, if the amount is less than 50 parts by weight, the insulating base material formed from such a composition will have low dimensional accuracy and large warpage, making it impossible to achieve the intended purpose.

【0009】本発明における組成物は絶縁基材の成形に
好適となしうるように、予め、例えばペレットなどの任
意の形態の成形材として調製される。即ち、混練方法と
しては通常の公知の方法が適用されるが、一般には押出
混練機で溶融混練してペレット化して行われる。なお、
本発明における組成物には、他成分、例えば、顔料、熱
安定剤、酸化防止剤、耐候剤、結晶化促進剤、滑剤等を
適量添加してもよい。
The composition of the present invention is prepared in advance as a molding material in any form, such as pellets, so that it can be made suitable for molding an insulating substrate. That is, as a kneading method, a usual known method is applied, but generally the mixture is melt-kneaded using an extrusion kneader and then pelletized. In addition,
Appropriate amounts of other components such as pigments, heat stabilizers, antioxidants, weathering agents, crystallization promoters, lubricants, etc. may be added to the composition of the present invention.

【0010】このようにして得られたペレット状の成形
材は、通常広く用いられている熱可塑性樹脂の成形機、
例えば射出成形機、圧縮成形機、射出圧縮成形機あるい
は押出成形機などによって、絶縁基材としての所望の形
状に成形される。成形方法における成形条件は特に限定
されることなく、通常の成形条件で行われる。かくして
所望のプリント基板用熱可塑性電気絶縁基板を得ること
ができる。
[0010] The pellet-shaped molded material thus obtained is processed by a commonly used thermoplastic resin molding machine,
For example, it is molded into a desired shape as an insulating base material using an injection molding machine, a compression molding machine, an injection compression molding machine, an extrusion molding machine, or the like. The molding conditions in the molding method are not particularly limited, and the molding is carried out under normal molding conditions. In this way, a desired thermoplastic electrically insulating substrate for printed circuit boards can be obtained.

【0011】このようにして得られる本発明の熱可塑性
電気絶縁基板に導電回路を形成する方法は種々の方法が
提案されているが、例えばアディティブ法、セミアディ
ティブ法が例示される。また、スクリーン印刷機を用い
て導電ペーストで回路を形成する方法やフィルム上に導
電ペーストを用いて回路パターンを印刷し、それを転写
印刷する方法等もある。
Various methods have been proposed for forming a conductive circuit on the thus obtained thermoplastic electrically insulating substrate of the present invention, examples of which include an additive method and a semi-additive method. There are also methods of forming a circuit using conductive paste using a screen printer, and methods of printing a circuit pattern on a film using conductive paste and then transfer-printing the circuit pattern.

【0012】次に実施例により本発明を更に具休的に説
明するが、これら実施例にのみに限定されないことは勿
論である。
Next, the present invention will be explained in more detail with reference to Examples, but it is needless to say that the present invention is not limited to these Examples.

【0013】[0013]

【実施例】【Example】

《実施例1》PPS(東レ・フィリプスペトローリアム
社製  品番E2480)100重量部に対してマイカ
(クラレ製、スゾライトマイカ  品番200HK)3
00重量部を溶融混練し、該組成物を射出成形機により
シリンダー温度350℃、射出圧力1000kg/cm
2で、金型温度150℃の条件で成形して、図1に示す
ような厚さ1.6mm、30cm×30cmの板状成形
品を得た。該板状成形品の両面に厚さ35μmの接着付
銅箔をそれぞれ1枚ずつ配設後、成形圧力20kg/c
m2、145℃で30分間加熱加圧して金属張板状成形
品を得、該金属張板状成形品に図1のように1mmφの
穴(a、b、c)をa−b間:25cm、b−c間:2
5cmの3カ所にあけた。更にエッチングして表面に回
路を形成してプリント配線板を得た。
<<Example 1>> Mica (manufactured by Kuraray, Suzolite Mica, part number 200HK) 3 to 100 parts by weight of PPS (manufactured by Toray Phillips Petroleum Co., Ltd., part number E2480)
00 parts by weight were melt-kneaded, and the composition was molded using an injection molding machine at a cylinder temperature of 350°C and an injection pressure of 1000 kg/cm.
2, molding was performed at a mold temperature of 150° C. to obtain a plate-shaped molded product having a thickness of 1.6 mm and a size of 30 cm×30 cm as shown in FIG. After placing one piece of adhesive copper foil with a thickness of 35 μm on each side of the plate-shaped molded product, a molding pressure of 20 kg/c was applied.
m2, heated and pressurized at 145°C for 30 minutes to obtain a metal clad plate-like molded product, and holes (a, b, c) of 1 mmφ were drilled in the metal clad plate-like molded product as shown in Fig. 1 between a and b: 25 cm. , between b and c: 2
I made three 5cm holes. Further etching was performed to form a circuit on the surface to obtain a printed wiring board.

【0014】《実施例2》高粘度PPS(東レ・フィリ
プスペトローリアム社製品番E0780)100重量部
に対してマイカ(クラレ製、スゾライトマイカ  品番
200HK)300重量部を溶融混練し、該組成物を射
出成形機によりシリンダー温度350℃、射出圧力15
00kg/cm2で、金型温度150℃の条件で成形し
て実施例1と同様の板状成形品を得た。該板状成形品の
両面に厚さ35μmの接着付銅箔をそれぞれ1枚ずつ配
設後、成形圧力20kg/cm2、145℃で30分間
加熱加圧して金属張板状成形品を得、更にエッチングし
て表面に回路を形成してプリント配線板を得た。
<<Example 2>> 100 parts by weight of high-viscosity PPS (Toray Phillips Petroleum Co., Ltd. product number E0780) was melted and kneaded with 300 parts by weight of mica (Suzolite Mica, product number 200HK, manufactured by Kuraray Co., Ltd.) to obtain the composition. The product is molded using an injection molding machine at a cylinder temperature of 350℃ and an injection pressure of 15℃.
A plate-shaped molded product similar to that of Example 1 was obtained by molding at a pressure of 00 kg/cm2 and a mold temperature of 150°C. One piece of adhesive copper foil with a thickness of 35 μm was placed on each side of the plate-shaped molded product, and then heated and pressed at a molding pressure of 20 kg/cm2 and 145°C for 30 minutes to obtain a metal-clad plate-shaped molded product. A printed wiring board was obtained by etching and forming a circuit on the surface.

【0015】《実施例3》PPS(東レ・フィリプスペ
トローリアム社製  品番E2480)100重量部に
対してマイカ(クラレ製、スゾライトマイカ  品番2
00HK)100重量部を溶融混練し、該組成物を射出
成形機によりシリンダー温度350℃、射出圧力800
kg/cm2で、金型温度150℃の条件で成形して実
施例1と同様の板状成形品を得た。該板状成形品の両面
に厚さ35μmの接着付銅箔をそれぞれ1枚ずつ配設後
、成形圧力20kg/cm2で、145℃で30分間加
熱加圧して金属張板状成形品を得、更にエッチングして
表面に回路を形成してプリント配線板を得た。
<<Example 3>> Mica (manufactured by Kuraray, Susolite Mica, product number 2) to 100 parts by weight of PPS (manufactured by Toray Phillips Petroleum Co., Ltd., product number E2480)
00HK) was melt-kneaded, and the composition was molded using an injection molding machine at a cylinder temperature of 350°C and an injection pressure of 800°C.
kg/cm2 and a mold temperature of 150° C. to obtain a plate-shaped molded product similar to that of Example 1. After disposing one piece of adhesive copper foil with a thickness of 35 μm on each side of the plate-shaped molded product, heat and press at a molding pressure of 20 kg/cm 2 at 145° C. for 30 minutes to obtain a metal-clad plate-shaped molded product, Further etching was performed to form a circuit on the surface to obtain a printed wiring board.

【0016】《実施例4》PPS(東レ・フィリプスペ
トローリアム社製  品番E2480)100重量部に
対しアミノシラン表面処理マイカ(クラレ製  品番2
00KI)300重量部を溶融混練し、該組成物を射出
成形機によりシリンダー温度350℃、射出圧力100
0kg/cm2で、金型温度150℃の条件で成形して
実施例1と同様の板状成形品を得た。該板状成形品の両
面に厚さ35μmの接着付銅箔をそれぞれ1枚ずつ配設
後、成形圧力20kg/cm2、145℃で30分間加
熱加圧して金属張板状成形品を得、更にエッチングして
表面に回路を形成してプリント配線板を得た。
<<Example 4>> Aminosilane surface-treated mica (manufactured by Kuraray, product number 2) was added to 100 parts by weight of PPS (manufactured by Toray Phillips Petroleum Co., Ltd., product number E2480).
00KI) was melt-kneaded and the composition was molded using an injection molding machine at a cylinder temperature of 350°C and an injection pressure of 100°C.
A plate-shaped molded product similar to that of Example 1 was obtained by molding at a pressure of 0 kg/cm2 and a mold temperature of 150°C. One piece of adhesive copper foil with a thickness of 35 μm was placed on each side of the plate-shaped molded product, and then heated and pressed at a molding pressure of 20 kg/cm2 and 145°C for 30 minutes to obtain a metal-clad plate-shaped molded product. A printed wiring board was obtained by etching and forming a circuit on the surface.

【0017】《実施例5》PPS(東レ・フィリプスペ
トローリアム社製  品番E2480)100重量部に
対してマイカ(クラレ製、スゾライトマイカ  品番2
00HK)300重量部を溶融混練し、該組成物を射出
成形機によりシリンダー温度350℃、射出圧力100
0kg/cm2で、金型温度150℃の条件で成形して
実施例1と同様の板状成形品を得た。該板状成形品を更
に145℃で120分間加熱処理して後、該板状成形品
の両面にスクリーン印刷機を用い導電ペーストで所要回
路を形成してプリント配線板を得た。
<<Example 5>> Mica (manufactured by Kuraray, Suzolite Mica, product number 2) to 100 parts by weight of PPS (manufactured by Toray Phillips Petroleum Co., Ltd., product number E2480)
00HK) was melt-kneaded, and the composition was molded using an injection molding machine at a cylinder temperature of 350°C and an injection pressure of 100°C.
A plate-shaped molded product similar to that of Example 1 was obtained by molding at a pressure of 0 kg/cm2 and a mold temperature of 150°C. The plate-shaped molded product was further heat-treated at 145° C. for 120 minutes, and then required circuits were formed on both sides of the plate-shaped molded product with conductive paste using a screen printer to obtain a printed wiring board.

【0018】《比較例1》PPS(東レ・フィリプスペ
トローリアム社製  品番E2480)100重量部に
対してマイカ(クラレ製、スゾライトマイカ  品番2
00HK)50重量部を溶融混練し、該組成物を射出成
形機によりシリンダー温度350℃、射出圧力800k
g/cm2で、金型温度150℃の条件で成形して実施
例1と同様の板状成形品を得た。該板状成形品の両面に
厚さ35μmの接着付銅箔をそれぞれ1枚ずつ配設後、
成形圧力20kg/cm2、145℃で30分間加熱加
圧して金属張板状成形品を得、更にエッチングして表面
に回路を形成してプリント配線板を得た。
<Comparative Example 1> Mica (manufactured by Kuraray, Suzolite Mica, product number 2) per 100 parts by weight of PPS (manufactured by Toray Phillips Petroleum Co., Ltd., product number E2480)
00HK) was melt-kneaded and the composition was molded using an injection molding machine at a cylinder temperature of 350°C and an injection pressure of 800k.
g/cm2 and a mold temperature of 150° C. to obtain a plate-shaped molded product similar to that in Example 1. After placing one piece of adhesive copper foil with a thickness of 35 μm on each side of the plate-shaped molded product,
A metal clad plate-like molded product was obtained by heating and pressing at a molding pressure of 20 kg/cm 2 and 145° C. for 30 minutes, and was further etched to form a circuit on the surface to obtain a printed wiring board.

【0019】《比較例2》厚さ1.6mmのガラス布基
材エポキシ樹脂銅張積層板(JIS−C6484、GE
2F適合品)から30cm×30cmの板状成形品を得
、図1のように穴をあけて、更にエッチングして表面に
回路を形成してプリント配線板を得た。
Comparative Example 2 Glass cloth base epoxy resin copper clad laminate (JIS-C6484, GE
A plate-shaped molded product of 30 cm x 30 cm was obtained from the 2F compatible product), holes were made as shown in FIG. 1, and a circuit was formed on the surface by etching to obtain a printed wiring board.

【0020】《実施例6》PPS(東レ・フィリプスペ
トローリアム社製  品番E2480)100重量部に
対してマイカ(クラレ製、スゾライトマイカ  品番2
00HK)100重量部、タルク(日本タルク製)20
0重量部を溶融混練し、該組成物を射出成形機によりシ
リンダー温度350℃、射出圧力1000kg/cm2
、金型温度150℃の条件で成形して、図1に示すよう
な厚さ1.6mm、30cm×30cmの板状成形品を
得た。該板状成形品の両面に厚さ35μmの接着付銅箔
をそれぞれ1枚ずつ配設後、成形圧力20kg/cm2
、145℃で30分間加熱加圧して金属張板状成形品を
得、実施例1と同様に穴をあけ、更にエッチングして表
面に回路を形成してプリント配線板を得た。
<<Example 6>> Mica (manufactured by Kuraray, Susolite Mica, product number 2) to 100 parts by weight of PPS (manufactured by Toray Phillips Petroleum Co., Ltd., product number E2480)
00HK) 100 parts by weight, talc (manufactured by Nippon Talc) 20
0 parts by weight were melt-kneaded, and the composition was molded using an injection molding machine at a cylinder temperature of 350°C and an injection pressure of 1000 kg/cm2.
The molded product was molded at a mold temperature of 150° C. to obtain a plate-shaped molded product having a thickness of 1.6 mm and a size of 30 cm×30 cm as shown in FIG. After placing one piece of adhesive copper foil with a thickness of 35 μm on each side of the plate-shaped molded product, a molding pressure of 20 kg/cm2 was applied.
The molded product was heated and pressed at 145° C. for 30 minutes to obtain a metal-clad plate-like molded product, holes were made in the same manner as in Example 1, and circuits were formed on the surface by etching to obtain a printed wiring board.

【0021】《実施例7》PPS(東レ・フィリプスペ
トローリアム社製  品番E2480)100重量部に
対してマイカ(クラレ製、スゾライトマイカ  品番2
00HK)200重量部、タルク(日本タルク製)10
0重量部を溶融混練し、該組成物を射出成形機によりシ
リンダー温度350℃、射出圧力1500kg/cm2
で、金型温度150℃の条件で成形して実施例6と同様
の板状成形品を得た。該板状成形品の両面に厚さ35μ
mの接着付銅箔をそれぞれ1枚ずつ配設後、成形圧力2
0kg/cm2、145℃で30分間加熱加圧して金属
張板状成形品を得、更にエッチングして表面に回路を形
成してプリント配線板を得た。
<<Example 7>> Mica (manufactured by Kuraray, Suzolite Mica, product number 2) to 100 parts by weight of PPS (manufactured by Toray Phillips Petroleum Co., Ltd., product number E2480)
00HK) 200 parts by weight, talc (manufactured by Nippon Talc) 10
0 parts by weight were melt-kneaded, and the composition was molded using an injection molding machine at a cylinder temperature of 350°C and an injection pressure of 1500 kg/cm2.
Then, molding was performed at a mold temperature of 150° C. to obtain a plate-shaped molded product similar to that in Example 6. Thickness 35μ on both sides of the plate-shaped molded product
After arranging one adhesive copper foil of m each, the molding pressure was 2.
The product was heated and pressed at 0 kg/cm2 and 145° C. for 30 minutes to obtain a metal-clad plate-like molded product, and further etched to form a circuit on the surface to obtain a printed wiring board.

【0022】《実施例8》PPS(東レ・フィリプスペ
トローリアム社製  品番E2480)100重量部に
対してマイカ(クラレ製、スゾライトマイカ  品番2
00HK)を50重量部、タルク(日本タルク製)50
重量部を溶融混練し、該組成物を射出成形機によりシリ
ンダー温度350℃、射出圧力800kg/cm2で、
金型温度150℃の条件で成形して実施例6と同様の板
状成形品を得た。該板状成形品の両面に厚さ35μmの
接着付銅箔をそれぞれ1枚ずつ配設後、成形圧力20k
g/cm2、145℃で30分間加熱加圧して金属張板
状成形品を得、更にエッチングして表面に回路を形成し
てプリント配線板を得た。
<<Example 8>> Mica (manufactured by Kuraray, Suzolite Mica, product number 2) to 100 parts by weight of PPS (manufactured by Toray Phillips Petroleum Co., Ltd., product number E2480)
50 parts by weight of 00HK), 50 parts of talc (manufactured by Nippon Talc)
Parts by weight were melt-kneaded, and the composition was molded using an injection molding machine at a cylinder temperature of 350°C and an injection pressure of 800 kg/cm2.
A plate-shaped molded product similar to that of Example 6 was obtained by molding at a mold temperature of 150°C. After placing one piece of adhesive copper foil with a thickness of 35 μm on each side of the plate-shaped molded product, a molding pressure of 20 k was applied.
g/cm2 at 145° C. for 30 minutes to obtain a metal clad plate-like molded product, which was further etched to form a circuit on the surface to obtain a printed wiring board.

【0023】《実施例9》PPS(東レ・フィリプスペ
トローリアム社製  品番E2480)100重量部に
対してアミノシラン表面処理マイカ(クラレ製、スゾラ
イトマイカ  品番200KI)100重量部、アミノ
シラン表面処理タルク(土屋カオリン工業製)200重
量部を溶融混練し、該組成物を射出成形機によりシリン
ダー温度350℃、射出圧力1000kg/cm2で、
金型温度150℃の条件で成形して実施例6と同様の板
状成形品を得た。該板状成形品の両面に厚さ35μmの
接着付銅箔をそれぞれ1枚ずつ配設後、成形圧力20k
g/cm2、145℃で30分間加熱加圧して金属張板
状成形品を得、更にエッチングして表面に回路を形成し
てプリント配線板を得た。
<<Example 9>> 100 parts by weight of PPS (manufactured by Toray Phillips Petroleum Co., Ltd., product number E2480), 100 parts by weight of aminosilane surface-treated mica (manufactured by Kuraray, product number 200KI), aminosilane surface-treated talc (manufactured by Kuraray, product number 200KI), 200 parts by weight (manufactured by Tsuchiya Kaolin Kogyo) were melt-kneaded, and the composition was molded using an injection molding machine at a cylinder temperature of 350°C and an injection pressure of 1000 kg/cm2.
A plate-shaped molded product similar to that of Example 6 was obtained by molding at a mold temperature of 150°C. After placing one piece of adhesive copper foil with a thickness of 35 μm on each side of the plate-shaped molded product, a molding pressure of 20 k was applied.
g/cm2 at 145° C. for 30 minutes to obtain a metal clad plate-like molded product, which was further etched to form a circuit on the surface to obtain a printed wiring board.

【0024】《実施例10》PPS(東レ・フィリプス
ペトローリアム社製  品番E2480)100重量部
に対してマイカ(クラレ製  スゾライトマイカ  品
番200HK)100重量部、タルク(日本タルク製)
200重量部を溶融混練し、該組成物を射出成形機によ
りシリンダー温度350℃、射出圧力1000kg/c
m2で、金型温度150℃の条件で成形して実施例6と
同様の板状成形品を得た。該板状成形品を更に145℃
で120分間加熱処理して後、該板状成形品の両面にス
クリーン印刷機を用い導電ペーストで所要回路を形成し
てプリント配線板を得た。
<<Example 10>> 100 parts by weight of PPS (product number E2480, manufactured by Toray Phillips Petroleum Co., Ltd.), 100 parts by weight of mica (product number 200HK, manufactured by Kuraray), talc (manufactured by Nippon Talc)
200 parts by weight were melt-kneaded, and the composition was molded using an injection molding machine at a cylinder temperature of 350°C and an injection pressure of 1000 kg/c.
m2 and a mold temperature of 150° C. to obtain a plate-shaped molded product similar to that in Example 6. The plate-shaped molded product is further heated to 145°C.
After heat treatment for 120 minutes, necessary circuits were formed on both sides of the plate-shaped molded product with conductive paste using a screen printer to obtain a printed wiring board.

【0025】《比較例3》PPS(東レ・フィリプスペ
トローリアム社製  品番E2480)100重量部に
対してマイカ(クラレ製  品番200HK)20重量
部、タルク(日本タルク製)30重量部を溶融混練し、
該組成物を射出成形機によりシリンダー温度350℃、
射出圧力800kg/cm2で、金型温度150℃の条
件で成形して実施例6と同様の板状成形品を得た。該板
状成形品の両面に厚さ35μmの接着付銅箔をそれぞれ
1枚ずつ配設後、成形圧力20kg/cm2、145℃
で30分間加熱加圧して金属張板状成形品を得、更にエ
ッチングして表面に回路を形成してプリント配線板を得
た。
<Comparative Example 3> 100 parts by weight of PPS (manufactured by Toray Phillips Petroleum Co., Ltd., product number E2480), 20 parts by weight of mica (product number 200HK, manufactured by Kuraray) and 30 parts by weight of talc (manufactured by Nippon Talc) were melt-kneaded. death,
The composition was molded using an injection molding machine at a cylinder temperature of 350°C.
A plate-shaped molded product similar to that of Example 6 was obtained by molding at an injection pressure of 800 kg/cm 2 and a mold temperature of 150°C. After placing one piece of adhesive copper foil with a thickness of 35 μm on each side of the plate-shaped molded product, molding pressure was 20 kg/cm2 and 145°C.
The product was heated and pressed for 30 minutes to obtain a metal clad plate-like molded product, which was further etched to form a circuit on the surface to obtain a printed wiring board.

【0026】《比較例4》厚さ1.6mmのガラス布基
材エポキシ樹脂銅張積層板(JIS  C6484、G
E2F適合品)から30cm×30cmの板状成形品を
得、図1のように穴をあけて、更にエッチングして表面
に回路を形成してプリント配線板を得た。
Comparative Example 4 Glass cloth base epoxy resin copper clad laminate (JIS C6484, G
A plate-shaped molded product of 30 cm x 30 cm was obtained from the E2F compliant product, a hole was made as shown in FIG. 1, and a circuit was formed on the surface by etching to obtain a printed wiring board.

【0027】上記各実施例で得たプリント配線基板の諸
物性を、従来の銅張りプリント配線板と比較対照して表
1及び表2に示す。尚試験方法については表3に示す。
The physical properties of the printed wiring boards obtained in each of the above examples are shown in Tables 1 and 2 in comparison with those of conventional copper-clad printed wiring boards. The test method is shown in Table 3.

【0028】[0028]

【0029】[0029]

【0030】[0030]

【0031】[0031]

【発明の効果】本発明の電気絶縁基板は表に示したよう
にPPS樹脂とその樹脂構造内に含有されたマイカまた
はマイカ及びタルクとの各々の特性が相乗し、従来のガ
ラス布基材エポキシ樹脂銅張積層板に比べ、電子、電気
機器等の軽薄短小化及び低コスト化という動勢に好適に
対応し得る。
Effects of the Invention As shown in the table, the electrically insulating substrate of the present invention has the synergistic properties of the PPS resin and the mica or mica and talc contained in the resin structure, and is superior to the conventional glass cloth base epoxy. Compared to resin copper-clad laminates, it can better respond to the trend toward smaller, lighter, thinner, and lower costs in electronic and electrical equipment.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】図1は、本発明の実施例における板状成形品を
説明する図である。
FIG. 1 is a diagram illustrating a plate-shaped molded product in an embodiment of the present invention.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  ポリフェニレンサルファイド樹脂10
0重量部に対して、マイカを51〜500重量部含有す
る組成物を成形してなることを特徴とする熱可塑性電気
絶縁基板。
[Claim 1] Polyphenylene sulfide resin 10
1. A thermoplastic electrically insulating substrate formed by molding a composition containing 51 to 500 parts by weight of mica to 0 parts by weight.
【請求項2】  ポリフェニレンサルファイド樹脂10
0重量部に対して、マイカとタルクの2種を合計51〜
500重量部含有する組成物を成形してなる熱可塑性電
気絶縁基板。
[Claim 2] Polyphenylene sulfide resin 10
For 0 parts by weight, the total amount of mica and talc is 51~
A thermoplastic electrically insulating substrate formed by molding a composition containing 500 parts by weight.
JP17908091A 1991-04-19 1991-04-19 Thermoplastic electrical insulating board Pending JPH04348095A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17908091A JPH04348095A (en) 1991-04-19 1991-04-19 Thermoplastic electrical insulating board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17908091A JPH04348095A (en) 1991-04-19 1991-04-19 Thermoplastic electrical insulating board

Publications (1)

Publication Number Publication Date
JPH04348095A true JPH04348095A (en) 1992-12-03

Family

ID=16059739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17908091A Pending JPH04348095A (en) 1991-04-19 1991-04-19 Thermoplastic electrical insulating board

Country Status (1)

Country Link
JP (1) JPH04348095A (en)

Similar Documents

Publication Publication Date Title
US6228467B1 (en) Heat-resistant insulating film, raw substrate for printed wiring board using the same and method for producing the substrate
JP4645726B2 (en) Laminated board, prepreg, metal foil clad laminated board, circuit board, and circuit board for LED mounting
WO2012150661A1 (en) Thermosetting resin composition, prepreg, laminate, metal foil-clad laminate, and circuit board
CN102485804A (en) Manufacturing method of magnesium oxide powder, manufacturing method of thermoset resin composition, manufacturing method of prepreg and overlapped plate
KR20140032707A (en) Composition for fpcb coverlay and method for producing the same
JP4788799B2 (en) Thermosetting resin composition, prepreg, composite laminate, metal foil-clad laminate, circuit board, and circuit board for LED mounting
KR100835785B1 (en) Resine composition for printed circuit board and composite substrate and copper laminates using the same
JPS607796A (en) Copper-lined laminated board for printed circuit and method of producing same
WO2010147083A1 (en) Prepreg comprising high-dielectric-constant resin composition, and copper-clad laminate sheet
JPS6059795A (en) Laminated board for printed circuit
JPH04348095A (en) Thermoplastic electrical insulating board
KR100954996B1 (en) Resin Composition Having Low Dielectric Loss
JPH04348096A (en) Thermoplastic electrical insulating board
US20060093805A1 (en) Dielectric constant adjustable resin composition, prepreg and copper clad laminate utilizing the same
JP2011102394A (en) Thermosetting resin composition, prepreg, composite laminate, metal foil-clad laminate, circuit board, and circuit board for mounting led
JPH0598157A (en) Thermoplastic electrically insulating substrate
JPH04356991A (en) Thermoplastic electric insulating board
CN115838533B (en) Thermosetting resin composition and application thereof
JP2008010858A (en) Multilayer printed circuit board with cavity portion
JPH04356992A (en) Thrmoplastic electric insulating board
JPS597044A (en) Laminated board
JPH047374B2 (en)
CN112824451B (en) Low dielectric resin composition, prepreg, and copper-clad laminate
WO2010147082A1 (en) High-dielectric-constant resin composition, high-dielectric-constant resin sheet comprising same, and copper foil having high-dielectric-constant resin attached thereto
JPH07142829A (en) Printed circuit laminated board and prepreg