JPH04347407A - Method for controlling combustion in fluidized bed type incinerator - Google Patents
Method for controlling combustion in fluidized bed type incineratorInfo
- Publication number
- JPH04347407A JPH04347407A JP11895591A JP11895591A JPH04347407A JP H04347407 A JPH04347407 A JP H04347407A JP 11895591 A JP11895591 A JP 11895591A JP 11895591 A JP11895591 A JP 11895591A JP H04347407 A JPH04347407 A JP H04347407A
- Authority
- JP
- Japan
- Prior art keywords
- speed
- combustion
- air
- wall body
- fluidized bed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000002485 combustion reaction Methods 0.000 title claims abstract description 49
- 238000000034 method Methods 0.000 title claims description 12
- 239000006185 dispersion Substances 0.000 claims abstract description 16
- 238000005979 thermal decomposition reaction Methods 0.000 abstract description 10
- 239000007789 gas Substances 0.000 abstract description 8
- 238000002156 mixing Methods 0.000 abstract description 5
- 230000001105 regulatory effect Effects 0.000 abstract 1
- 230000000694 effects Effects 0.000 description 6
- 239000002699 waste material Substances 0.000 description 6
- 230000007423 decrease Effects 0.000 description 4
- 239000012530 fluid Substances 0.000 description 4
- 238000005243 fluidization Methods 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 238000000197 pyrolysis Methods 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 230000002411 adverse Effects 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 150000002013 dioxins Chemical class 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 230000001932 seasonal effect Effects 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000004056 waste incineration Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Incineration Of Waste (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は、流動床式焼却炉におけ
る燃焼制御方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a combustion control method in a fluidized bed incinerator.
【0002】0002
【従来の技術】一般に、都市ごみ用の焼却炉において、
ごみの投入量は、ごみの大小・長短・乾湿などの違いに
より、どのような供給装置を使用しても、精度の良い安
定供給(体積または重量においても)を行うことが困難
であった。[Prior Art] Generally, in incinerators for municipal waste,
No matter what kind of feeding device is used, it is difficult to supply accurately and stably (in terms of volume or weight) due to differences in the size, length, dryness and wetness of the garbage.
【0003】このため、焼却炉として流動床式のものを
使用する場合、ごみ質が季節や場所により大きく変化す
るとともに、投入ラインの中でも局所的に大きく変化し
、したがってめ発熱量や必要燃焼空気量が大幅に変化し
て、下記に示すような不都合が生じる。For this reason, when a fluidized bed type incinerator is used, the quality of waste varies greatly depending on the season and location, and also locally within the input line, resulting in a change in calorific value and required combustion air. The amount changes significantly, resulting in the following disadvantages:
【0004】すなわち、上述したような、発熱量や必要
燃焼空気量の変動に対して、流動床における燃焼時間は
1〜2分と速いため、流動層内およびフリーボードの温
度、空気流量および残存酸素が急変(季節的な変動では
定常的なアンバランスが生じる)し、炉内の大きな圧力
変動とともにNOX ・CO(ダイオキシン)などの有
害ガス発生の大要因となっている。[0004] In other words, the combustion time in a fluidized bed is as fast as 1 to 2 minutes despite the above-mentioned fluctuations in calorific value and required amount of combustion air. Rapid changes in oxygen levels (seasonal fluctuations result in steady imbalances) are a major factor in the generation of harmful gases such as NOX and CO (dioxins), along with large pressure fluctuations inside the furnace.
【0005】このため、従来、流動床式焼却炉において
は、ごみの投入量や流動化用の空気量を変化させること
により、対処がなされていた。具体的には、流動層温度
や排ガス酸素濃度により全体の空気量を一括して変化さ
せる外、流動化の悪い箇所にごみを投入して熱分解させ
る部分を流動層の一部に形成させた上で、空気量を変化
させるようにしたものもある。[0005] Conventionally, this problem has been dealt with in fluidized bed incinerators by changing the amount of waste input and the amount of air for fluidization. Specifically, in addition to changing the overall air volume according to the fluidized bed temperature and exhaust gas oxygen concentration, we also created a part of the fluidized bed where waste is thrown into areas where fluidization is poor and where it is thermally decomposed. Some of the above are designed to change the amount of air.
【0006】[0006]
【発明が解決しようとする課題】しかし、上記のような
制御方法によると、例えば空気量の制御を、風箱を複数
に分離して各風箱から吹き出される空気量を異ならせる
ようにしても、その吹き出し量の違いによる流動層内で
の作用、すなわちその役割の分担が明確ではなく、結局
、流動層全体の混合具合も変化して、熱分解速度と循環
混合による燃焼速度とを、それぞれ別個に制御をするこ
とができないという問題があった。[Problem to be Solved by the Invention] However, according to the above-mentioned control method, the amount of air is controlled, for example, by separating the wind box into a plurality of wind boxes and varying the amount of air blown out from each wind box. However, the effects within the fluidized bed due to differences in the amount of blowing, that is, the division of roles, are not clear, and as a result, the mixing condition of the entire fluidized bed also changes, and the rate of thermal decomposition and the combustion rate due to circulation mixing are There was a problem in that it was not possible to control each separately.
【0007】そこで、本発明は上記問題を解消し得る流
動床式焼却炉における燃焼制御方法を提供することを目
的とする。SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a combustion control method in a fluidized bed incinerator that can solve the above problems.
【0008】[0008]
【課題を解決するための手段】上記課題を解決するため
、本発明の流動床式焼却炉における燃焼制御方法は、燃
焼室の水平断面形状を矩形状になし、燃焼室を構成する
四方の壁体の内、少なくとも互いに対向する一方の第1
壁体を垂直に設けるとともに、他方の第2壁体を垂直面
に対して内方に傾斜させ、燃焼室の底部に配置される分
散板を第2壁体側に向かって10〜30度の傾斜角でも
って下向きに傾斜させるとともにこの分散板に設けられ
た空気の噴出穴を第2壁体側に向け、かつ上記分散板の
下方に設けられる風箱を、第1壁体と第2壁体との間に
おいて、複数に分割した流動床式焼却炉の燃焼制御方法
であって、上記分散板を介して各風箱から吹き出される
空気の吹き出し速度を制御して、流動媒体全体量が1回
循環する時間を1〜10分の範囲内で変化させる方法で
ある。[Means for Solving the Problems] In order to solve the above problems, the combustion control method in a fluidized bed incinerator of the present invention is such that the horizontal cross-sectional shape of the combustion chamber is rectangular, and the four walls constituting the combustion chamber are inside the body, at least one of the first ones facing each other
The walls are provided vertically, and the other second wall is inclined inward with respect to the vertical plane, so that the dispersion plate disposed at the bottom of the combustion chamber is inclined 10 to 30 degrees toward the second wall. The air outlet holes provided in this distribution plate are inclined downward at the corners and directed toward the second wall, and the wind box provided below the distribution plate is connected to the first wall and the second wall. A combustion control method for a fluidized bed incinerator divided into a plurality of parts, in which the speed of air blown out from each wind box through the above-mentioned distribution plate is controlled, so that the entire amount of fluidized medium is This is a method in which the circulation time is varied within a range of 1 to 10 minutes.
【0009】[0009]
【作用】上記の制御方法によると、高速で吹き出される
空気により、流動媒体の循環量をすなわち流動層内燃焼
速度を、また低速で吹き出される空気により、熱分解速
度をそれぞれ独立に制御することができる。[Operation] According to the above control method, the air blown out at high speed independently controls the circulation amount of the fluidized medium, that is, the combustion rate in the fluidized bed, and the air blown out at low speed independently controls the thermal decomposition rate. be able to.
【0010】0010
【実施例】以下、本発明の一実施例を図1〜図3に基づ
き説明する。図1において、1は流動床式焼却炉で、炉
本体2の燃焼室3の水平断面形状が矩形状にされるとと
もに、その燃焼室3の四方の壁体4の内1つの壁体、例
えば前後左右の壁体4A〜4Dの内、後部壁体(第2壁
体)4Bが、鉛直面に対して所定の傾斜角(例えば、1
0度〜30度の範囲)(Θ)でもって傾けられるととも
に、少なくともこの後部壁体4Bに対向する前後壁体4
Aが鉛直に設けられている。なお、左右の壁体4C,4
Dについては、鉛直でも、また後部壁体4Bと同様の傾
斜角でもって傾斜させてもよい。Embodiment An embodiment of the present invention will be described below with reference to FIGS. 1 to 3. In FIG. 1, reference numeral 1 denotes a fluidized bed incinerator, in which the horizontal cross section of the combustion chamber 3 of the furnace body 2 is rectangular, and one of the four walls 4 of the combustion chamber 3, e.g. Among the front, left, and right walls 4A to 4D, the rear wall (second wall) 4B has a predetermined inclination angle (for example, 1
The front and rear walls 4 are tilted at an angle of 0 degrees to 30 degrees (Θ) and are opposed to at least the rear wall 4B.
A is provided vertically. In addition, the left and right walls 4C, 4
D may be vertical or may be inclined at the same angle of inclination as the rear wall 4B.
【0011】上記前部壁体4Aにはごみの投入口5が設
けられ、また後部壁体4Bには焼却残渣の排出口6が設
けられている。また、炉本体2の燃焼室3の底部には、
分散板7が前部壁体4Aから後部壁体4Bに向かって約
10度の傾斜角でもって下向きに傾斜して設けられると
ともに、この分散板7に形成される多数の流動化用空気
の噴出穴7aの噴出方向が、図2に示すように、ほぼ水
平方向でかつ後部壁体4B側に向かって設けられている
。The front wall 4A is provided with a garbage inlet 5, and the rear wall 4B is provided with an incineration residue outlet 6. In addition, at the bottom of the combustion chamber 3 of the furnace body 2,
A dispersion plate 7 is provided to be inclined downward at an inclination angle of about 10 degrees from the front wall 4A to the rear wall 4B, and a large number of fluidizing air jets are formed on the dispersion plate 7. As shown in FIG. 2, the ejection direction of the hole 7a is substantially horizontal and is provided toward the rear wall 4B side.
【0012】そして、上記分散板7の下方には、流動化
用の空気を供給するための風箱8が設けられている。こ
の風箱8は、傾斜されていない前部壁体4Aと傾斜され
た後部壁体4Bとの間において、前部風箱8A、中央部
風箱8Bおよび後部風箱8Cとの3つに分割して設けら
れている。A wind box 8 is provided below the dispersion plate 7 for supplying air for fluidization. This wind box 8 is divided into three parts, a front wind box 8A, a central wind box 8B, and a rear wind box 8C, between the unslanted front wall 4A and the inclined rear wall 4B. It is provided.
【0013】なお、上記分散板7の下面でかつ噴出穴7
aに対応する位置には、流動媒体の落下防止用の受け板
9がそれぞれ取り付けられ、また燃焼室3内のフリーボ
ードに対応する各壁体4には、燃焼用の2次空気の供給
管10が接続されている。It should be noted that on the lower surface of the dispersion plate 7 and the ejection hole 7
A receiving plate 9 for preventing the fluid medium from falling is installed at the position corresponding to a, and a secondary air supply pipe for combustion is installed on each wall 4 corresponding to the free board in the combustion chamber 3. 10 are connected.
【0014】そして、さらに上記各風箱8から吹き出さ
れる空気の速度は、ごみの投入口5が設けられた前部壁
体4A側から焼却残渣の排出口6が設けられた後部壁体
4Bに向かって順次大きく、具体的には、流動開始速度
をUとすると、前部風箱8Aからの空気速度はU/2〜
U,中央部風箱8Bからの空気速度は3×U〜5×Uの
範囲,後部風箱8Cからの空気速度は5×U〜10×U
の範囲とされる。Further, the speed of the air blown out from each of the air boxes 8 is varied from the front wall 4A side where the garbage inlet 5 is provided to the rear wall 4B where the incineration residue outlet 6 is provided. Specifically, if the flow start speed is U, the air speed from the front wind box 8A is U/2~
U, the air velocity from the central wind box 8B is in the range of 3 x U to 5 x U, the air velocity from the rear wind box 8C is in the range of 5 x U to 10 x U
The range of
【0015】このように、後部壁体4B側では速い速度
でもって空気が吹き出されているので、図1に示すよう
に、流動媒体Aは後部壁体4Bに沿って上昇した後、逆
に前部壁体4A側に降り注がれて落下する。In this way, the air is blown out at a high speed on the rear wall 4B side, so as shown in FIG. It rains down on the wall 4A side and falls.
【0016】そして、前部壁体4A側に落下された流動
媒体は、各風箱8から吹き出される空気により、順次後
部壁体4B側に移動される。すなわち、流動媒体が燃焼
室3内を一巡することになる。The fluid medium that has fallen onto the front wall 4A is sequentially moved toward the rear wall 4B by the air blown out from each air box 8. That is, the fluid medium makes one round inside the combustion chamber 3.
【0017】そして、さらにこの流動媒体の一巡の時間
が、1〜10分となるように、風箱8A〜6Cから吹き
出される空気速度(すなわち空気量)が調節される。こ
のように、流動媒体の一巡の時間の下限を1分としたの
は、従来型流動床焼却炉における最高の燃焼速度に相当
する値であり、例えばこれ以上速くすると、たとえ一定
投入される均質ごみの場合でも、燃焼が充分に行われな
いためであり、またその上限を10分としたのは、特に
問題となる数分程度内のごみの量およびごみの質が変動
した場合でも、燃焼変動をを充分に抑えることができる
からである。[0017] Furthermore, the speed of air (that is, the amount of air) blown out from the wind boxes 8A to 6C is adjusted so that the time for one round of the fluid medium is 1 to 10 minutes. In this way, the lower limit of the time for one round of the fluidized medium to be 1 minute corresponds to the maximum combustion speed in a conventional fluidized bed incinerator. This is because even in the case of garbage, combustion does not take place sufficiently, and the reason why the upper limit was set at 10 minutes is that even if the amount and quality of garbage changes within a few minutes, which is a particular problem, combustion will not take place. This is because fluctuations can be sufficiently suppressed.
【0018】なお、流動媒体の循環時間と高速側流動化
用空気量との関係は、図3に示すような関係となる。こ
こで、具体的な制御方法について説明する。The relationship between the circulation time of the fluidized medium and the amount of fluidizing air on the high-speed side is as shown in FIG. Here, a specific control method will be explained.
【0019】すなわち、炉本体2内に設けられたビデオ
カメラ12などで、燃焼室3内を監視するとともに内部
の状態を検知し、そしてごみ質により変化するが、例え
ば流動層の温度(TB )が700℃程度、フリーボー
ドの温度(TF )が900℃程度となるように各風箱
8A〜8Cから吹き出す空気量を調節する。That is, a video camera 12 installed inside the furnace body 2 monitors the inside of the combustion chamber 3 and detects the internal state, and the temperature (TB) of the fluidized bed, for example, changes depending on the quality of the waste. The amount of air blown out from each wind box 8A to 8C is adjusted so that the temperature of the free board (TF) is about 700°C and about 900°C.
【0020】例えば、短時間レベルでの制御としては、
下記のような制御が行われる。
TB が上昇気配とすると、中間部風箱8Bの空気量→
増大,後部風箱8Cの空気量→減少
TB が下降気配とすると、中間部風箱8Bの空気量→
減少,後部風箱8Cの空気量→増大
TF が上昇気配とすると、前部風箱8Aの空気量→減
少,2次空気量→増大
TF が下降気配とすると、前部風箱8Aの空気量→増
大,2次空気量→減少
その他、全体空気量の増減少や水噴霧量の増減も考慮し
て(これらは、燃焼室内の圧力変動を伴うため、あまり
急激な変化をさせることはできないが)制御が行われる
。For example, for short-term control,
The following control is performed. If TB is rising, the air volume in the middle wind box 8B →
Increase, air volume in rear wind box 8C → decrease TB If TB is a downward trend, air volume in middle wind box 8B →
If the air volume in the front wind box 8A → decrease, secondary air volume → increase TF indicates a downward trend, then the air volume in the front wind box 8A →increase, secondary air volume →decrease, and also take into account increases and decreases in the total air volume and water spray volume. ) control is performed.
【0021】なお、前部風箱8Aからの空気量の増大は
、混合・攪拌効果増大による熱分解速度の増大につなが
るが、そこでの燃焼量が増大して温度の上昇を通じて、
さらに熱分解が進むことになる。Incidentally, an increase in the amount of air from the front air box 8A leads to an increase in the rate of thermal decomposition due to an increase in the mixing and stirring effect, but the amount of combustion there increases and the temperature rises.
Thermal decomposition will proceed further.
【0022】このように、上記の実施例の制御方法によ
ると、流動層に吹き出される空気の速度を3段階に分け
て、高速で吹き出される空気により、流動媒体の循環量
をすなわち流動層内燃焼速度を、また低速で吹き出され
る空気により、熱分解速度をそれぞれ独立に制御するこ
とができる。As described above, according to the control method of the above embodiment, the speed of the air blown into the fluidized bed is divided into three stages, and the circulating amount of the fluidized medium is controlled by the air blown out at high speed, that is, the flow rate of the fluidized bed is increased. The internal combustion rate and the thermal decomposition rate can be controlled independently by the air blown out at low speed.
【0023】勿論、循環量の増大により低速側への循環
量が増して、多少の熱分解速度への悪影響を与えるが、
その悪影響を充分打ち消す効果を低速側における流動速
度の変化で補うことができる。[0023] Of course, an increase in the amount of circulation increases the amount of circulation to the low-speed side, which has a negative effect on the thermal decomposition rate to some extent;
The effect of sufficiently negating this adverse effect can be compensated for by changing the flow velocity on the low velocity side.
【0024】また、分散板の有する流動層下部の一方向
の移動機構は、最低燃焼速度レベルすなわち高速側にお
ける空気の速度を最低レベルに落とした際に、フリーボ
ードの上部、すなわち一次燃焼室の上部を介しての循環
量がゼロになった場合でも、最小の循環量を維持できる
(一方向移動ではないが、流動層内の上下部分の移動だ
けによって維持できる)という役割を果たす。[0024] Furthermore, the unidirectional movement mechanism of the lower part of the fluidized bed included in the dispersion plate moves the upper part of the freeboard, that is, the primary combustion chamber, when the air velocity on the high speed side is reduced to the lowest level. Even if the circulation amount through the upper part becomes zero, the minimum circulation amount can be maintained (it is not unidirectional movement, but it can be maintained only by the movement of the upper and lower parts in the fluidized bed).
【0025】この両者、すなわち熱分解速度と流動層内
の燃焼速度の独立制御により、炉全体の燃焼速度場を完
全に支配することができる(なお、熱分解速度はその熱
分解ガスがフリーボードで燃える速度に大きな影響を与
えている)。[0025] By independent control of both of them, that is, the pyrolysis rate and the combustion rate in the fluidized bed, it is possible to completely control the combustion rate field of the entire furnace. (which has a large effect on the burning rate).
【0026】ところで、都市ごみ焼却の場合、特にガス
成分が多いため、フリーボードでの燃焼が増大するが、
熱分解ガスの発生速度を制御することができるので、高
速側の余剰空気またはフリーボードに供給される2次空
気を変化させることによって、そのフリーボードにおけ
る燃焼を制御することができるとともに、高速側での循
環量の制御、すなわち中速域での混合・攪拌の制御が高
速側の流動速度により制御することができ、したがって
フリーボードおよび流動層内の燃焼速度が一応独立して
制御でき、炉内全体の制御を通じて流動層およびフリー
ボードの温度並びに有害ガスの炉内での燃えきりを支配
することができる。[0026] By the way, in the case of municipal waste incineration, since the gas component is particularly large, combustion in freeboard increases.
Since the generation rate of pyrolysis gas can be controlled, by changing the surplus air on the high-speed side or the secondary air supplied to the freeboard, it is possible to control the combustion on the freeboard, and also to control the combustion on the freeboard. The circulation rate in the furnace can be controlled by the flow rate on the high speed side, that is, the mixing and stirring in the medium speed range can be controlled by the flow rate on the high speed side. Therefore, the combustion speed in the freeboard and fluidized bed can be controlled independently, The temperature of the fluidized bed and freeboard as well as the burning off of harmful gases within the furnace can be controlled through overall control of the furnace.
【0027】また、極低カロリーごみの場合、高速側の
空気を絞り、1次燃焼室の上部を経由する循環量をゼロ
にするとともに、低速側を少し流動化する程度まで空気
量を増加させて燃焼させるような制御を行ってもよい。In the case of extremely low-calorie waste, the air on the high-speed side is throttled to zero the amount of circulation passing through the upper part of the primary combustion chamber, and the amount of air on the low-speed side is increased to the extent that it becomes slightly fluidized. Control may also be performed to cause the fuel to burn.
【0028】さらに、低速側での熱分解を促進させかつ
その部分での燃焼を抑制するために、低速側へ燃焼排ガ
スを循環させるような制御を行ってもよい。Furthermore, in order to promote thermal decomposition on the low speed side and suppress combustion at that portion, control may be performed to circulate the combustion exhaust gas toward the low speed side.
【0029】[0029]
【発明の効果】以上のように本発明の構成によると、互
いに対向する壁体の内、一方の壁体を内方に傾斜して設
けるとともに、分散板も傾斜された壁体側に向かって下
向きに傾斜させ、さらに分散板の下方に設けられる風箱
を両壁体の間において、複数に分割するとともに、それ
ぞれ分割された風箱から吹き出される空気速度を変化さ
せることにより、燃焼室内の流動媒体の循環時間を1〜
10分間の範囲となるように制御させるので、低速部で
行われる熱分解の速度と、高速部に依存する燃焼速度と
を別個に制御することができ、したがって炉全体におけ
る有害ガスの燃焼を支配することができる。As described above, according to the structure of the present invention, one of the walls facing each other is provided so as to be inclined inwardly, and the dispersion plate is also provided so as to face downward toward the inclined wall. Furthermore, the wind box installed below the dispersion plate is divided into multiple parts between the two walls, and the air velocity blown out from each divided wind box is changed to improve the flow inside the combustion chamber. Medium circulation time from 1 to
Since it is controlled within a range of 10 minutes, the rate of thermal decomposition that occurs in the low-speed section and the combustion rate that depends on the high-speed section can be controlled separately, and therefore the combustion of harmful gases in the entire furnace is controlled. can do.
【図1】本発明の一実施例に係る流動床式焼却炉の概略
断面図である。FIG. 1 is a schematic cross-sectional view of a fluidized bed incinerator according to an embodiment of the present invention.
【図2】同実施例における焼却炉の要部断面図である。FIG. 2 is a sectional view of essential parts of the incinerator in the same embodiment.
【図3】同実施例の焼却炉における高速側空気量と層内
循環時間との関係を示すグラフである。FIG. 3 is a graph showing the relationship between the high-speed side air amount and the intralayer circulation time in the incinerator of the same example.
1 流動床式焼却炉2
炉本体
3 燃焼室
4 壁体
4A 前部壁体
4B 後部壁体
7 分散板
7a 噴出穴
8 風箱
8A 前部風箱
8B 中間部風箱
8C 後部風箱1 Fluidized bed incinerator 2
Furnace body 3 Combustion chamber 4 Wall 4A Front wall 4B Rear wall 7 Dispersion plate 7a Spout hole 8 Wind box 8A Front wind box 8B Intermediate wind box 8C Rear wind box
Claims (1)
焼室を構成する四方の壁体の内、少なくとも互いに対向
する一方の第1壁体を垂直に設けるとともに、他方の第
2壁体を垂直面に対して内方に傾斜させ、燃焼室の底部
に配置される分散板を第2壁体側に向かって10〜30
度の傾斜角でもって下向きに傾斜させるとともにこの分
散板に設けられた空気の噴出穴を第2壁体側に向け、か
つ上記分散板の下方に設けられる風箱を、第1壁体と第
2壁体との間において、複数に分割した流動床式焼却炉
の燃焼制御方法であって、上記分散板を介して各風箱か
ら吹き出される空気の吹き出し速度を制御して、流動媒
体全体量が1回循環する時間を1〜10分の範囲内で変
化させることを特徴とする流動床式焼却炉における燃焼
制御方法。Claim 1: The horizontal cross-sectional shape of the combustion chamber is rectangular, and among the four walls constituting the combustion chamber, at least one first wall facing each other is provided vertically, and the other second wall is provided vertically. The body is tilted inward with respect to the vertical plane, and the dispersion plate placed at the bottom of the combustion chamber is tilted inward toward the second wall side.
The dispersion plate is tilted downward at an inclination angle of 100°, and the air ejection holes provided in the dispersion plate are directed toward the second wall, and the wind box provided below the dispersion plate is connected to the first wall and the second wall. A combustion control method for a fluidized bed incinerator divided into a plurality of parts between the wall and the fluidized bed incinerator. 1. A method for controlling combustion in a fluidized bed incinerator, characterized in that the time for one circulation of the incinerator is varied within a range of 1 to 10 minutes.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11895591A JPH04347407A (en) | 1991-05-24 | 1991-05-24 | Method for controlling combustion in fluidized bed type incinerator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11895591A JPH04347407A (en) | 1991-05-24 | 1991-05-24 | Method for controlling combustion in fluidized bed type incinerator |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04347407A true JPH04347407A (en) | 1992-12-02 |
Family
ID=14749408
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11895591A Pending JPH04347407A (en) | 1991-05-24 | 1991-05-24 | Method for controlling combustion in fluidized bed type incinerator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04347407A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH074630A (en) * | 1993-06-11 | 1995-01-10 | Takuma Co Ltd | Refuse incinerator |
WO2012066802A1 (en) * | 2010-11-19 | 2012-05-24 | 荏原環境プラント株式会社 | Fluidized bed furnace and method for processing waste |
WO2012132279A1 (en) * | 2011-03-31 | 2012-10-04 | 株式会社神鋼環境ソリューション | Fluidized bed furnace |
-
1991
- 1991-05-24 JP JP11895591A patent/JPH04347407A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH074630A (en) * | 1993-06-11 | 1995-01-10 | Takuma Co Ltd | Refuse incinerator |
WO2012066802A1 (en) * | 2010-11-19 | 2012-05-24 | 荏原環境プラント株式会社 | Fluidized bed furnace and method for processing waste |
JP5744904B2 (en) * | 2010-11-19 | 2015-07-08 | 荏原環境プラント株式会社 | Fluidized bed furnace and waste treatment method |
WO2012132279A1 (en) * | 2011-03-31 | 2012-10-04 | 株式会社神鋼環境ソリューション | Fluidized bed furnace |
JP2012215307A (en) * | 2011-03-31 | 2012-11-08 | Kobelco Eco-Solutions Co Ltd | Fluidized bed furnace |
CN103384796A (en) * | 2011-03-31 | 2013-11-06 | 株式会社神钢环境舒立净 | Fluidized bed furnace |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100355505B1 (en) | Operating method of fluidized-bed incinerator and the incinerator | |
EP0766041B1 (en) | Fluidized bed thermal reaction apparatus | |
US4303023A (en) | Fluidized bed fuel burning | |
US4777889A (en) | Fluidized bed mass burner for solid waste | |
US6709636B1 (en) | Method and apparatus for gasifying fluidized bed | |
US6789487B2 (en) | Fluidized bed incinerator and combustion method in which generation of NOx, CO and dioxine are suppressed | |
FI94170C (en) | Fluidized bed boiler with internal circulation and method for controlling this | |
JPH04347407A (en) | Method for controlling combustion in fluidized bed type incinerator | |
CA1290988C (en) | Method of combustion for fluidized bed incinerators | |
JP3913229B2 (en) | Circulating fluid furnace | |
EP0028458A2 (en) | Fluidised-bed boilers | |
AU552679B2 (en) | Particle entrainment combustion | |
JP3034865B1 (en) | Method and apparatus for recovering heat from a fluidized bed | |
JP3030016B2 (en) | Operating method of fluidized bed incinerator and its incinerator | |
JP2941789B1 (en) | Fluidized bed incinerator | |
JP2941785B1 (en) | Operating method of fluidized bed incinerator and its incinerator | |
JP3030025B1 (en) | Operating method of fluidized bed incinerator and its incinerator | |
JP2002195534A (en) | Method and system for controlling combustion of refuse incinerator | |
JP2937737B2 (en) | Fluidized bed combustion method and apparatus with partial combustion | |
JPH02290402A (en) | Heat recovery control method for fluidized bed boiler | |
SK48798A3 (en) | Method and apparatus for controlling the temperature of the bed of a bubbling bed boiler | |
JPH0814507A (en) | Fluidized-bed boiler | |
JPS6020018A (en) | Fluidizing method for waste incinerating fluidized-bed furnace and device thereof | |
JPH04198604A (en) | Burner with fluidized bed | |
JPS62225808A (en) | Layer height stabilizing device for fluidized layer combustion device |