JPH04347308A - Exhaust heat recovery device - Google Patents

Exhaust heat recovery device

Info

Publication number
JPH04347308A
JPH04347308A JP11853091A JP11853091A JPH04347308A JP H04347308 A JPH04347308 A JP H04347308A JP 11853091 A JP11853091 A JP 11853091A JP 11853091 A JP11853091 A JP 11853091A JP H04347308 A JPH04347308 A JP H04347308A
Authority
JP
Japan
Prior art keywords
heat
steam
fuel
heat transfer
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11853091A
Other languages
Japanese (ja)
Other versions
JP3029884B2 (en
Inventor
Tadashi Tsuji
正 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP11853091A priority Critical patent/JP3029884B2/en
Publication of JPH04347308A publication Critical patent/JPH04347308A/en
Application granted granted Critical
Publication of JP3029884B2 publication Critical patent/JP3029884B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • F01K23/106Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle with water evaporated or preheated at different pressures in exhaust boiler
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Abstract

PURPOSE:To improve efficiency in a gas turbine/steam turbine combined power generating plant which uses reformed fuel for its operation and form the plant in a compact size by incorporating a heat exchanger for carrying out at least one part of fuel treatment inside a heat exchanger which heats water so as to generate steam. CONSTITUTION:Water is heated by a waste heat source having a high temperature so as to generate steam, while fuel treatment including evaporation of methanol fuel and heat decomposition reaction or steam reforming reaction is carried out by the waste heat source. A heat exchanger for carrying out at least one part of fuel treatment is incorporated inside a heat exchanger which heats water so as to generated steam. It is thus possible to improve efficiency in a gas turbine/steam turbine combined power generating plant which used reformed fuel for its operation to form the plant in a compact size.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、ガスタービンエンジン
、ディーゼル・エンジン、ガス・エンジン等、原動機の
排気から熱回収する装置や、化学プロセスの廃熱を回収
する装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for recovering heat from the exhaust gas of a prime mover such as a gas turbine engine, a diesel engine, or a gas engine, and an apparatus for recovering waste heat from a chemical process.

【0002】0002

【従来の技術】図20はガスタービン排気の廃熱を回収
して蒸気タービンを駆動する従来の複合発電設備の一例
を示す系統図である。
2. Description of the Related Art FIG. 20 is a system diagram showing an example of a conventional combined power generation facility that recovers waste heat from gas turbine exhaust to drive a steam turbine.

【0003】この例では、まず大気からの吸気を圧縮機
(C)で圧縮し、その圧縮空気はガスタービン燃焼器(
CC)で燃料(f)により昇温し、所定のタービン入口
温度でガスタービン(GT)を作動させる。ガスタービ
ン(GT)の発生動力は上記圧縮機(C)の負荷をまか
なったあと、残りを発電機(GEN1)で電力に転換し
発電する。ガスタービン(GT)の排気(a)は500
〜600℃と高温のため、廃熱回収ボイラ(HRSG)
で熱回収し、100〜200℃で煙突(STCK)から
大気中に排出される。廃熱回収ボイラ(HRSG)にお
いて、(LP−ECO)は低圧節炭器、(LP−EVA
)は低圧蒸発器、(HP−ECO)は高圧節炭器、(H
P−EVA)は高圧蒸発器、(SH)は過熱器をそれぞ
れ示す。すなわち本例の廃熱回収ボイラ(HRSG)は
、高圧蒸気(HP−S)と低圧蒸気(LP−S)の複圧
方式である。この蒸気は蒸気タービン(ST)で膨張し
てこれを回転駆動し、さらに発電機(GEN2)を廻し
て発電する。タービン排気(蒸気)は復水器(COND
)で海水等の循環水で冷却され復水となる。この復水を
廃熱回収ボイラ(HRSG)のボイラ給水として再循環
使用するために、給水ポンプ(P)によって移送する。
In this example, first, intake air from the atmosphere is compressed by a compressor (C), and the compressed air is passed through a gas turbine combustor (
CC), the temperature is raised by the fuel (f), and the gas turbine (GT) is operated at a predetermined turbine inlet temperature. After the power generated by the gas turbine (GT) covers the load of the compressor (C), the remaining power is converted into electric power by the generator (GEN1) to generate electricity. Gas turbine (GT) exhaust (a) is 500
Due to the high temperature of ~600℃, a waste heat recovery boiler (HRSG) is used.
The heat is recovered and discharged into the atmosphere from the chimney (STCK) at 100-200°C. In the waste heat recovery boiler (HRSG), (LP-ECO) is a low pressure energy saver, (LP-EVA
) is a low-pressure evaporator, (HP-ECO) is a high-pressure economizer, (H
P-EVA) indicates a high-pressure evaporator, and (SH) indicates a superheater. That is, the waste heat recovery boiler (HRSG) of this example is a double pressure system of high pressure steam (HP-S) and low pressure steam (LP-S). This steam expands in a steam turbine (ST), rotates it, and then rotates a generator (GEN2) to generate electricity. The turbine exhaust (steam) is passed through the condenser (COND).
), it is cooled by circulating water such as seawater and becomes condensate. This condensate is transferred by a feed water pump (P) for recirculation and use as boiler feed water for a waste heat recovery boiler (HRSG).

【0004】複合発電には上記例のようなガスタービン
・蒸気タービン別置タイプのほか、ガスタービン・蒸気
タービン同軸タイプがある。図21は、ガスタービン・
蒸気タービン同軸タイプの従来例を示す系統図であって
、この例ではまた、メタノール燃料処理装置も複合され
ている。
[0004] Combined power generation includes a gas turbine/steam turbine separate type as shown in the above example, as well as a gas turbine/steam turbine coaxial type. Figure 21 shows the gas turbine
FIG. 1 is a system diagram showing a conventional example of a coaxial steam turbine type, and in this example, a methanol fuel processing device is also combined.

【0005】この例では、蒸気タービン(ST)を駆動
する蒸気系とメタノール燃料処理装置へ熱を供給する水
−水蒸気系との両方の伝熱管を同一廃熱回収ボイラ(H
RSG)内に混在させることにより熱回収している。す
なわち、メタノール燃料処理装置の予熱器(PRE−H
TR)、蒸発器(EVA)、反応器(REA)、および
過熱器(MeSH)の加熱媒体として、廃熱回収ボイラ
(HRSG)内の1次加熱器(1−HTR)からの温水
、2次加熱器(2−HTR)からの温水および高々圧節
炭器(VHP−ECO)から高々圧蒸発器(VHP−E
VA)、高々圧過熱器(VHP−SH)を経由した過熱
蒸気(復水を再び超高圧蒸発器(VHP−EVA)へ給
水)を、それぞれ採用している。液体メタノール(Me
OH)は、このようなメタノール燃料処理装置により処
理され、ガス燃料(Gf)となる。一方蒸気タービン駆
動用の蒸気系では、低圧節炭器(LP−ECO)ないし
低圧蒸発器(LP−EVA)を経由する低圧蒸気と、更
に高圧節炭器(HP−ECO)、高圧蒸発器(HP−E
VA)、高圧過熱器(1次および2次)(1−HPSH
),(2−HPSH)を経由する高圧の過熱蒸気とが、
各々蒸気タービン(ST)に供給され、蒸気タービン排
気(蒸気)は復水器(COND)で再び水にもどり、給
水ポンプ(P)で加圧され、ボイラ給水として循環使用
される。
In this example, heat transfer tubes for both the steam system that drives the steam turbine (ST) and the water-steam system that supplies heat to the methanol fuel processing device are connected to the same waste heat recovery boiler (H
Heat is recovered by mixing it in the RSG). That is, the preheater (PRE-H) of the methanol fuel processing equipment
Hot water from the primary heater (1-HTR) in the waste heat recovery boiler (HRSG), the secondary Hot water from heater (2-HTR) and high pressure economizer (VHP-ECO) to high pressure evaporator (VHP-E
VA) and superheated steam via a high-pressure superheater (VHP-SH) (condensed water is fed back to the ultra-high pressure evaporator (VHP-EVA)). Liquid methanol (Me
OH) is processed by such a methanol fuel processing device to become gaseous fuel (Gf). On the other hand, in the steam system for driving a steam turbine, low-pressure steam passes through a low-pressure economizer (LP-ECO) or a low-pressure evaporator (LP-EVA), and a high-pressure economizer (HP-ECO) and a high-pressure evaporator ( HP-E
VA), high pressure superheater (primary and secondary) (1-HPSH
), (2-HPSH) and high-pressure superheated steam,
Each is supplied to a steam turbine (ST), and the steam turbine exhaust (steam) is returned to water in a condenser (COND), pressurized by a feed water pump (P), and circulated as boiler feed water.

【0006】なお、第21図中(C)は圧縮機、(CC
)はガスタービン燃焼器、(GT)はガスタービン、(
GEN)は発電機、(STCK)は煙突をそれぞれ示す
[0006] In Fig. 21, (C) is a compressor, (CC
) is a gas turbine combustor, (GT) is a gas turbine, (
GEN) indicates a generator, and (STCK) indicates a chimney.

【0007】図22はメタノール燃料処理装置の他の例
を示す系統図である。この例では、予熱器(PRE−H
TR)、蒸発器(EVA)、加熱器(HTR)、反応器
(REA)、過熱器(MeSH)の5種類の専用の伝熱
部分が設けられ、それら伝熱部分にそれぞれ熱媒d1 
,d2 ,d3 ,d4 ,d5 により熱が供給され
る。そして液体メタノールは、それら伝熱部分を順次通
過する間に熱媒から必要な熱量を吸収して、ガス燃料(
Gf)となる。
FIG. 22 is a system diagram showing another example of a methanol fuel processing apparatus. In this example, the preheater (PRE-H
TR), evaporator (EVA), heater (HTR), reactor (REA), and superheater (MeSH).
, d2, d3, d4, d5. The liquid methanol then absorbs the necessary amount of heat from the heating medium while passing through these heat transfer parts one after another, and the gas fuel (
Gf).

【0008】上記反応器(REA)と過熱器(MeSH
)には触媒(CATA)が内蔵されている。この触媒(
CATA)は、熱分解反応(Cracking)用、水
蒸気改質反応(Steam Reforming )用
のいずれか、混合使用では両方等の反応仕様により種類
と量をとり決める。各触媒の存在のもとで下記■,■の
反応が進行し、「吸熱量の大きいのは熱分解、水素生成
の多いのは水蒸気改質」の特性を示す。
[0008] The above reactor (REA) and superheater (MeSH
) has a built-in catalyst (CATA). This catalyst (
The type and amount of CATA is determined depending on the reaction specifications, such as for either thermal decomposition reaction (Cracking) or steam reforming reaction (Steam Reforming), or for mixed use of both. In the presence of each catalyst, the following reactions (1) and (2) proceed, exhibiting the characteristics that ``a large amount of heat is absorbed by thermal decomposition, and a large amount of hydrogen is produced by steam reforming.''

【0009】[0009]

【化1】[Chemical formula 1]

【0010】ここで吸熱量QC およびQR は研究者
、文献等によって多少の数値の違いがあるが、水蒸気改
質は熱分解の約70%の吸熱量といえる。(例えばQC
 は 30.6kcal/mol ,QR は 20.
8 kcal/mol )熱分解の場合、主反応では水
(水蒸気)を用いないが、触媒上への炭素析出防止の必
要上、極めて微量の水分を投入することがある。(例え
ばH2 O/CH3OH=0.1 モル比)熱分解と水
蒸気改質では基本的に触媒が異なるが、処理流体の上で
は水分が微量か等モル量かの違いととらえることができ
る。
[0010] Here, the endothermic amounts QC and QR differ somewhat depending on researchers, literature, etc., but it can be said that steam reforming has an endothermic amount that is about 70% of that of thermal decomposition. (For example, QC
is 30.6kcal/mol, QR is 20.
(8 kcal/mol) In the case of thermal decomposition, water (steam) is not used in the main reaction, but a very small amount of water may be added to prevent carbon deposition on the catalyst. (For example, H2O/CH3OH = 0.1 molar ratio) Although the catalysts are fundamentally different between thermal decomposition and steam reforming, the difference can be understood as whether the amount of water in the treated fluid is a trace amount or an equimolar amount.

【0011】さて図22において、まず液体メタノール
を予熱器(PRE−HTR)で、蒸発温度近く、蒸発温
度より若干低目(アプローチポイント温度差分低目)ま
で加熱する。蒸発器(EVA)で生成する気体メタノー
ルは、加熱器(HTR)で反応温度(例えば200℃)
まで昇温してから反応器(REA)に導入される。反応
器(REA)に内蔵されている触媒(CATA)によっ
て前述の■式あるいは■式の吸熱反応が進行し、(CO
+2H2 +その他)あるいは(CO2 +3H2 +
その他)のガス燃料(Gf)に転換される(「その他」
は未反応CH3 OHや副反応生成物である。)。ガス
燃料(Gf)の保有熱量を高める場合は過熱器(MeS
H)で昇温し、顕熱分を付加する。また過熱器(MeS
H)の内部にも予備的に触媒(CATA)を充填してお
くことにより、反応器(REA)内の触媒(CATA)
の能力が低下したときに、更に高温の熱媒d5 のもと
で反応を継続させることも可能となる。
Now, in FIG. 22, first, liquid methanol is heated in a preheater (PRE-HTR) to near the evaporation temperature and slightly lower than the evaporation temperature (lower approach point temperature difference). The gaseous methanol produced in the evaporator (EVA) is heated to a reaction temperature (e.g. 200°C) in the heater (HTR).
After the temperature is raised to 1, the reactor is introduced into the reactor (REA). The above-mentioned endothermic reaction of type ① or type ③ proceeds by the catalyst (CATA) built in the reactor (REA), and (CO
+2H2 + other) or (CO2 +3H2 +
(Others) converted into gas fuel (Gf) (Others)
is unreacted CH3OH and side reaction products. ). When increasing the heat capacity of gas fuel (Gf), use a superheater (MeS).
H) to raise the temperature and add sensible heat. In addition, the superheater (MeS
By preliminarily filling the inside of H) with catalyst (CATA), the catalyst (CATA) in the reactor (REA) can be
When the capacity of d5 decreases, it becomes possible to continue the reaction under a higher temperature heating medium d5.

【0012】メタノール系への水分投入は、符号(Rw
)で示される液相混入、(Rs)で示される気相混入の
いずれでも対応できるが、(加熱器/蒸発器/予熱器)
の熱交換器設計(伝熱バランス、材質、容量、操作性、
二成分系蒸発等)上、気相混入(Rs)の方が好ましい
。熱媒d1 , d2 ,d3 ,d4 ,d5 は、
処理の進行に従って、より高温のものを採用する(d5
 >d4 >d3 >d2 >d1 )。
The addition of water to the methanol system is determined by the sign (Rw
) It is possible to deal with either liquid phase mixture shown by (Rs) or gas phase mixture shown by (Rs), but (heater/evaporator/preheater)
heat exchanger design (heat transfer balance, material, capacity, operability,
(two-component evaporation, etc.), gas phase mixing (Rs) is preferable. The heating medium d1, d2, d3, d4, d5 is
As the process progresses, a higher temperature is adopted (d5
>d4 >d3 >d2 >d1).

【0013】上記図に示されたメタノール燃料系の処理
温度ならびにガスタービン排気系および水・蒸気系の各
部温度を図23の左下部に示す。メタノール燃料系では
5種類の熱交換部を経由する間に温度がMi→Me→M
r→Mgと変化する。蒸発器(EVA)の蒸発潜熱回収
域と反応器(REA)の反応熱の回収域では、温度がフ
ラット特性を持つ(Me,Mrで一定)と考えられるが
、後者については触媒の特性に沿った温度特性を自由に
設定しうる。
The processing temperature of the methanol fuel system shown in the above figure, and the temperatures of each part of the gas turbine exhaust system and water/steam system are shown in the lower left part of FIG. In a methanol fuel system, the temperature changes from Mi→Me→M while passing through five types of heat exchange parts.
Changes from r→Mg. The temperature in the latent heat of vaporization recovery area of the evaporator (EVA) and the reaction heat recovery area of the reactor (REA) is considered to have a flat characteristic (constant for Me and Mr), but the temperature in the latter depends on the characteristics of the catalyst. Temperature characteristics can be freely set.

【0014】またこの図には、熱源のガスタービン排気
系および水・蒸気系の各部温度も示されている。ガスタ
ービン排気系は、廃熱回収ボイラの5つの伝熱部分で、
温度がEi→E1 →E2 →E3 →E4 →Eeと
変化する。水・蒸気系は複圧であって、その温度変化は
Si→Sl→Se→Shとなる。低圧蒸気は温度Sl、
高圧蒸気は温度Seで生成したのち、温度Shまで過熱
した状態で蒸気タービン駆動用等のプロセスに使用され
る。この例では、ガスタービン排気からの回収熱量の約
半分(熱分解の一例では約40%)が燃料処理に利用さ
れ、残りは蒸気(タービン駆動等のプロセス用)として
取り出される。被加熱のMiないしMgを加熱源のSi
ないしShあるいはEiないしEeと組合わせることに
より、多くのシステムが存在する。
This figure also shows the temperature of each part of the gas turbine exhaust system and water/steam system, which are heat sources. The gas turbine exhaust system consists of five heat transfer parts of the waste heat recovery boiler.
The temperature changes as Ei → E1 → E2 → E3 → E4 → Ee. The water/steam system is under double pressure, and the temperature change is Si→Sl→Se→Sh. Low pressure steam has a temperature Sl,
After high-pressure steam is generated at a temperature Se, it is superheated to a temperature Sh and used in processes such as driving a steam turbine. In this example, approximately half of the heat recovered from the gas turbine exhaust (approximately 40% in one example of pyrolysis) is utilized for fuel processing, and the remainder is extracted as steam (for processes such as turbine drive). The heated Mi or Mg is replaced by the heating source Si.
, Sh or Ei to Ee, many systems exist.

【0015】[0015]

【発明が解決しようとする課題】従来は、蒸気発生部分
すなわち廃熱回収ボイラ(HRSG)に、タービン駆動
用蒸気系と燃料処理用熱媒(水−水蒸気)系が混在して
いるため、次の欠点があった。 1)  蒸気発生部分の伝熱面積は、定格条件でとり決
めて製作するので、ガスタービン部分負荷で燃料処理量
が少なくなると、燃料処理熱媒系の回収熱量が低下する
結果、タービン駆動蒸気系高圧蒸発器の入口排気の温度
が比較的高くなり、伝熱面積に見合った蒸気量に若干は
増加するものの、蒸気系と熱媒系との回収熱量の配分割
合が崩れるのに対し、伝熱面積は設計点で一定値のまま
なので、排気からの熱回収効率が悪化する。 2)  廃熱回収ボイラ(HRSG)とメタノール燃料
処理系(MeOH)を循環する熱媒(水−水蒸気)は、
配管からの熱放散を伴なうので、回収熱が燃料処理に利
用される率が低下する。 3)  廃熱回収ボイラ内の伝熱管配置(Tube B
ank )が多数で複雑となり、更にメタノール燃料処
理装置への熱媒配管がタービン駆動蒸気系と錯綜し、製
作が煩雑となる。燃料処理をせず液体メタノールそのま
まで複合発電する場合に比べて、廃熱回収ボイラのスペ
ースが熱媒系の分だけ拡張される上、メタノール燃料処
理装置の設置場所も余分に必要となり、プラント配置上
のデメリットが大きい。 4)  タービン駆動用蒸気系と燃料処理用熱媒系の流
量・温度の制御は基本的には別個に行なわれるが、ガス
タービン排気の伝熱量の配分において相互制御が必要と
なり、煩雑である。5)  熱媒を廃熱回収ボイラとメ
タノール燃料処理装置の間で循環させるために、動力が
別途必要となり、プラントの補機動力が増加する。
[Problems to be Solved by the Invention] Conventionally, the steam generation part, that is, the waste heat recovery boiler (HRSG), contains a turbine drive steam system and a fuel processing heat medium (water-steam) system, so that There was a drawback. 1) The heat transfer area of the steam generation section is determined and manufactured based on the rated conditions, so if the fuel processing amount decreases at partial load of the gas turbine, the amount of heat recovered by the fuel processing heat medium system will decrease, resulting in a reduction in the turbine drive steam system. Although the temperature of the inlet exhaust gas of the high-pressure evaporator becomes relatively high and the amount of steam increases slightly to match the heat transfer area, the distribution ratio of the recovered heat amount between the steam system and the heat medium system collapses, whereas the heat transfer Since the area remains constant at the design point, the efficiency of heat recovery from exhaust air deteriorates. 2) The heat medium (water-steam) circulating between the waste heat recovery boiler (HRSG) and the methanol fuel treatment system (MeOH) is
This involves heat dissipation from the piping, which reduces the rate at which recovered heat is utilized for fuel processing. 3) Heat exchanger tube arrangement in the waste heat recovery boiler (Tube B
Ank) are large and complicated, and furthermore, the heat medium piping to the methanol fuel processing device is complicated with the turbine drive steam system, making the manufacturing complicated. Compared to the case of combined power generation using liquid methanol as it is without fuel processing, the space of the waste heat recovery boiler is expanded by the heat medium system, and additional space is required to install the methanol fuel processing equipment, making the plant layout difficult. The above disadvantages are great. 4) Control of the flow rate and temperature of the turbine driving steam system and the fuel processing heat medium system is basically performed separately, but mutual control is required in the distribution of the heat transfer amount of the gas turbine exhaust, which is complicated. 5) In order to circulate the heat medium between the waste heat recovery boiler and the methanol fuel processing device, additional power is required, increasing the power of the plant's auxiliary equipment.

【0016】[0016]

【課題を解決するための手段】本発明は、前記従来の課
題を解決するために、高温の廃熱源により水を加熱して
蒸気を発生させるとともに、同廃熱源によりメタノール
燃料の蒸発と熱分解反応または水蒸気改質反応とを含む
燃料処理を行なう装置において、上記燃料処理の少なく
とも一部を行なう熱交換器が上記水を加熱して蒸気を発
生する熱交換器の内部に組込まれたことを特徴とする廃
熱回収装置を提案するものである。
[Means for Solving the Problems] In order to solve the above-mentioned conventional problems, the present invention heats water using a high-temperature waste heat source to generate steam, and also evaporates and thermally decomposes methanol fuel using the same waste heat source. In an apparatus that performs fuel processing including a reaction or a steam reforming reaction, a heat exchanger that performs at least a part of the fuel processing is incorporated into a heat exchanger that heats the water to generate steam. This paper proposes a waste heat recovery device with characteristics.

【0017】[0017]

【作用】1)  燃料処理熱媒の配管を使用しないので
、配管からの熱損失が存在せず、回収熱の利用率が高ま
る。 また、熱媒配管の引き回しがなくなり、装置全体が小型
となる。 2)  燃料処理伝熱管を廃熱回収ボイラ各部に組込む
ので、従来の個別配置に比べて、ガスタービン排気ダク
ト配設の廃熱回収ボイラ周辺にコンパクトに配置できる
。 3)  廃熱回収ボイラ側のドラム(あるいはヘダ)か
ら廃熱回収ボイラの伝熱管内部に達する長尺の燃料処理
系伝熱管を内挿することにより、伝熱面積を確保した上
で、その本数を少くすることができ、燃料処理系の配置
をコンパクトにできる。 4)  タービン駆動蒸気と燃料処理熱媒の総熱量が、
廃熱回収ボイラにおいてほぼ一定で回収されるため、燃
料処理系の利用熱が増減しても、常時一定のピンチポイ
ント温度差(蒸発器での熱回収特性)が保たれ、廃熱回
収ボイラとガスタービン排気との熱バランスの変化は極
めて小さい。 5)  燃料処理装置の伝熱管は廃熱回収ボイラ内に収
納されており、周囲がより高圧の水−蒸気系であるため
、もしこの伝熱管が破損した場合でも、燃料中の水分が
増加するだけ(発熱量の低下)であって、蒸気系が燃料
で汚染される危険性は小さく、ガスタービン排気系へ燃
料が漏洩する危険性は全くない。
[Operation] 1) Since piping for fuel processing heat medium is not used, there is no heat loss from the piping, and the utilization rate of recovered heat is increased. Furthermore, there is no need to route heat medium piping, and the entire device becomes smaller. 2) Since the fuel processing heat transfer tubes are incorporated into each part of the waste heat recovery boiler, they can be arranged more compactly around the waste heat recovery boiler in the gas turbine exhaust duct, compared to the conventional individual arrangement. 3) By inserting long fuel processing system heat transfer tubes from the drum (or header) on the waste heat recovery boiler side to the inside of the heat transfer tubes of the waste heat recovery boiler, the heat transfer area is secured and the number of tubes is increased. This allows the fuel processing system to be arranged more compactly. 4) The total amount of heat of the turbine driving steam and fuel processing heat medium is
Since the waste heat recovery boiler recovers the heat almost constantly, even if the heat used in the fuel processing system increases or decreases, a constant pinch point temperature difference (heat recovery characteristics in the evaporator) is maintained at all times. Changes in the heat balance with the gas turbine exhaust are extremely small. 5) The heat transfer tubes of the fuel processing equipment are housed in the waste heat recovery boiler and are surrounded by a high-pressure water-steam system, so even if the heat transfer tubes are damaged, moisture in the fuel will increase. However, the risk of contamination of the steam system with fuel is small, and there is no risk of fuel leaking into the gas turbine exhaust system.

【0018】[0018]

【実施例】図1ないし図5は、いずれも本発明において
、燃料処理を行なう熱交換器が、蒸気を発生する熱交換
器の内部に、一体に組込まれる実施例を示す。(以下燃
料処理は図22のように構成の最も多い場合で説明する
が、例えば蒸発単独として予熱器(PRE−HTR)と
蒸発器(EVA)の2構成、あるいは触媒(CATA)
を内蔵しない過熱器(MeSH)も加えた3構成のよう
に、その一部を実施してもよい。)まず図1は単段蒸発
器システムとして実施された実施例であって、高圧蒸気
の圧力は高圧給水ポンプ(P)およびその圧力調整で実
現する。高圧蒸発器(HP−EVA)のドラム(DR)
や伝熱管の内部に、メタノール燃料系の反応器(REA
)、加熱器(HTR)、蒸発器(EVA)、予熱器(P
RE−HTR)を配置し、過熱器(SH)を出た過熱蒸
気を熱媒とする一次加熱器(HTR(1))において燃
料を過熱する。過熱蒸気は、一次加熱器(HTR(1)
)用以外はバイパスさせて、低圧蒸気とともに蒸気ター
ビン(ST)に供給する。図1中HBは一次加熱器(H
TR(1))バイパスライン、SHBは過熱器(SH)
バイパスラインを示す。また符号※は必要に応じて触媒
(CATA)を内蔵することを示す(図2ないし図5で
も同様)。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIGS. 1 to 5 each show an embodiment in which a heat exchanger for processing fuel is integrated into a heat exchanger for generating steam in accordance with the present invention. (Fuel processing will be explained below based on the case where there are the most configurations as shown in Fig. 22, but for example, evaporation alone may be performed using two configurations: a preheater (PRE-HTR) and an evaporator (EVA), or a catalyst (CATA).
Some of them may also be implemented, such as the three configurations that also include a superheater (MeSH) that does not have a built-in superheater (MeSH). ) First, FIG. 1 shows an embodiment implemented as a single-stage evaporator system, and the pressure of high-pressure steam is realized by a high-pressure feed water pump (P) and its pressure adjustment. High pressure evaporator (HP-EVA) drum (DR)
A methanol-fueled reactor (REA) is installed inside the heat exchanger tube.
), heater (HTR), evaporator (EVA), preheater (P
RE-HTR) is arranged, and the fuel is superheated in a primary heater (HTR (1)) using superheated steam exiting the superheater (SH) as a heat medium. The superheated steam is transferred to the primary heater (HTR (1)
) are bypassed and supplied to the steam turbine (ST) together with low pressure steam. In Figure 1, HB is a primary heater (H
TR (1)) bypass line, SHB is superheater (SH)
Bypass line is shown. Further, the symbol * indicates that a catalyst (CATA) is built in as required (the same applies to FIGS. 2 to 5).

【0019】次に、図2は、二段蒸発器システムとして
実施された実施例を示す。この実施例は、高圧蒸発器(
HP−EVA)のドラムや伝熱管の内部にメタノール燃
料系の反応器(REA)、加熱器(HTR)を、また低
温蒸発器(LP−EVA)のドラムや伝熱管の内部には
メタノール燃料系の蒸発器(EVA)、予熱器(PRE
−HTR)を、それぞれ配置するもので、その他は前記
図1図示の実施例と同じである。
FIG. 2 now shows an embodiment implemented as a two-stage evaporator system. This example uses a high pressure evaporator (
A methanol-fueled reactor (REA) and a heater (HTR) are installed inside the drum and heat exchanger tube of the HP-EVA, and a methanol-fueled reactor (REA) and heater (HTR) are installed inside the drum and heat exchanger tube of the low-temperature evaporator (LP-EVA). evaporator (EVA), preheater (PRE)
-HTR), and the rest is the same as the embodiment shown in FIG.

【0020】次に図3は、二段蒸発器・再熱システムと
して実施された実施例を示す。この実施例では、前記図
2の実施例における廃熱回収ボイラの過熱器(SH)を
2分し、加熱器(HTR(1))で熱媒として用いた過
熱蒸気は減温しているため、第2の過熱器(SH2)で
再熱してから低圧蒸気とともに蒸気タービン(ST)に
供給する。
FIG. 3 now shows an embodiment implemented as a two-stage evaporator/reheat system. In this example, the superheater (SH) of the waste heat recovery boiler in the example of FIG. , and then reheated in the second superheater (SH2) and then supplied to the steam turbine (ST) together with low pressure steam.

【0021】図4は、二段蒸発器・再生/加熱システム
として実施された実施例を示す。この実施例は、前記図
3の実施例に対して高圧節炭器(HP−ECO)の高圧
給水をメタノール燃料系の蒸発器(EVA)の熱媒とし
て用いるもので、第2の加熱器(HTR(2))を併設
している。この場合、第2の加熱器(HTR(2))で
減温した給水を再び昇温するために、第2の高圧節炭器
(HP−ECO2)を使用する。この場合のガスタービ
ン排気系、水−蒸気系、メタノール燃料系の熱回収・熱
利用のバランスを図6に示す。低圧蒸気はQ1 、高圧
蒸気はQ21+Q22+Q23に対応した流量が蒸気タ
ービン(ST)に供給される。
FIG. 4 shows an embodiment implemented as a two-stage evaporator/regeneration/heating system. In this embodiment, unlike the embodiment shown in FIG. HTR (2)) is also available. In this case, the second high-pressure economizer (HP-ECO2) is used to raise the temperature of the water supply whose temperature has been reduced by the second heater (HTR (2)) again. Figure 6 shows the balance of heat recovery and heat utilization in the gas turbine exhaust system, water-steam system, and methanol fuel system in this case. The low pressure steam is supplied to the steam turbine (ST) at a flow rate corresponding to Q1 and the high pressure steam at a flow rate corresponding to Q21+Q22+Q23.

【0022】図5に示される実施例は、三段蒸発器・再
生/加熱システムである。この実施例では、蒸気系の圧
力を3段階とするために、図4の構成に高々圧蒸発器(
VHP−EVA)、高々圧節炭器(VHP−ECO)な
らびに第3圧力に見合った給水ポンプ(P2 )を追加
したものである。この場合、高々圧蒸発器(VHP−E
VA)のドラムや伝熱管内部には、メタノール燃料系の
反応器(REA)、加熱器(HTR)を配置し、高々圧
とすることで得られる更に高温の飽和水・飽和蒸気を、
その熱媒として用いる。この高々圧蒸気は第2の過熱器
(SH2)で過熱し、高圧蒸気・低圧蒸気とともに蒸気
タービン(ST)に供給する。
The embodiment shown in FIG. 5 is a three stage evaporator regeneration/heating system. In this example, in order to set the pressure of the steam system in three stages, a high-pressure evaporator (
VHP-EVA), a high-pressure economizer (VHP-ECO) and a water pump (P2) corresponding to the third pressure. In this case, a high pressure evaporator (VHP-E
A methanol-fueled reactor (REA) and a heater (HTR) are placed inside the drum and heat transfer tube of the VA), and the higher-temperature saturated water and saturated steam obtained by raising the pressure to high
It is used as a heat medium. This high-pressure steam is superheated in a second superheater (SH2) and is supplied to a steam turbine (ST) together with high-pressure steam and low-pressure steam.

【0023】上記実施例において、第1および第2の加
熱器(HTR(1)),(HTR(2))の構成を、後
述のように、廃熱回収ボイラ(HRSG)の伝熱管内に
燃料処理装置の伝熱管を収納する方式にすれば、再熱の
必要性が軽減し、装置を小型、単純にできる。
In the above embodiment, the configuration of the first and second heaters (HTR(1)) and (HTR(2)) is installed in the heat exchanger tube of the waste heat recovery boiler (HRSG) as described later. If the heat transfer tubes of the fuel processing device are housed, the need for reheating will be reduced and the device can be made smaller and simpler.

【0024】上記図1ないし図5に示された各実施例に
おいて、反応器(REA)内の触媒(CATA)は、設
備組み立て時や再充填時に水素還元操作をすることが多
いが、その場合は150〜250℃の低温の熱媒が必要
となる。そのため、ガスタービンを低負荷にして排熱回
収ボイラ(HRSG)入口の排気温度を低くするととも
に、必要に応じて給水ポンプ(P)の吐出圧力つまりド
ラム内圧も低減して、150〜250℃の飽和蒸気が生
成するように操作する。図5の実施例では、2台の給水
ポンプ(P1 ),(P2 )の両方を低圧に制御する
In each of the embodiments shown in FIGS. 1 to 5 above, the catalyst (CATA) in the reactor (REA) is often subjected to hydrogen reduction operation at the time of equipment assembly or refilling. requires a low-temperature heat medium of 150 to 250°C. Therefore, the load on the gas turbine is reduced to lower the exhaust temperature at the inlet of the heat recovery boiler (HRSG), and the discharge pressure of the water pump (P), that is, the drum internal pressure, is also reduced as necessary to achieve a temperature of 150 to 250°C. Operate to produce saturated steam. In the embodiment of FIG. 5, both of the two water supply pumps (P1) and (P2) are controlled to low pressure.

【0025】また前記のとおり、第1の加熱器(HTR
(1))のメタノール燃料系の過熱器(MeSH)内に
は必要に応じて触媒(CATA)を内蔵し、反応器(R
EA)内触媒の性能劣化に備えるものとする。その水素
還元においては、排熱回収ボイラの過熱器(SH)のバ
イパスライン(SHB)でバイパスし、高圧蒸発器(H
P−EVA)からの150〜250℃の蒸気を熱媒に用
いて実施する。
[0025] Also, as mentioned above, the first heater (HTR
The superheater (MeSH) of the methanol fuel system in (1)) is equipped with a catalyst (CATA) as needed, and the reactor (R
EA) Prepare for deterioration of the performance of the internal catalyst. In the hydrogen reduction, a bypass line (SHB) of the superheater (SH) of the exhaust heat recovery boiler is used to bypass the high pressure evaporator (H
The process is carried out using 150-250°C steam from P-EVA) as a heating medium.

【0026】前記図1ないし図5に示された諸実施例に
おける設備一体化の状況をまとめると、表1のとおりで
ある。
Table 1 summarizes the situation of equipment integration in the embodiments shown in FIGS. 1 to 5.

【0027】[0027]

【表1】[Table 1]

【0028】図7および図8は、いずれも燃料処理装置
伝熱管の基本構成を示す縦断面図である。このうち図7
に示されるものは、メタノール系伝熱管(RT)の内部
に内挿管(IT)を挿入して二重管とすることにより、
燃料の投入・払出を同位置で取り扱う、一体方式である
。この方式では、排熱回収ボイラ(HRSG)のドラム
(DR)またはヘッダ(HD)に取り付ける端面は一端
で良いので、伝熱管(RT)、内挿管(IT)の熱伸び
については拘束がない。したがって、■排熱回収ボイラ
伝熱管内へ挿入できる、■取付、取外しを一方向から行
なうことができる、■伝熱管(RT)の取付け姿勢を下
向き、上向き、横方向等自由にとれる、という利点があ
る。
FIG. 7 and FIG. 8 are both longitudinal sectional views showing the basic structure of the heat exchanger tube of the fuel processor. Figure 7
The one shown in Fig. 1 is a double tube by inserting an internal tube (IT) inside a methanol heat transfer tube (RT).
It is an integrated system that handles fuel input and output at the same location. In this method, only one end is attached to the drum (DR) or header (HD) of the waste heat recovery boiler (HRSG), so there is no restriction on thermal expansion of the heat transfer tubes (RT) and the inner tubes (IT). Therefore, the advantages are: ■It can be inserted into the exhaust heat recovery boiler heat transfer tube, ■It can be installed and removed from one direction, and ■The heat transfer tube (RT) can be installed in any direction such as downward, upward, or sideways. There is.

【0029】端面形状としては多くのものが考えられ、
特に限定するものではないが、図7に示す例は最も単純
なものである。すなわち、内挿管(IT)の取付フラン
ジの内挿管(IT)周囲に処理燃料(Gf) の通過用
の通路を設けておき、ボルト(B)で伝熱管(RT)の
取付フランジとともに排熱回収ボイラ(HRSG)のド
ラム(DR)またはヘッダ(HD)に取り付ける。この
場合、まず伝熱管(RT)と内挿管(IT)を一体に組
み立て(フランジ同士を締結)ておき、排熱回収ボイラ
(HRSG)側への締結は別のボルトで行なうものとす
る。
[0029] Many end shapes can be considered,
Although not particularly limited, the example shown in FIG. 7 is the simplest one. In other words, a passage for the treated fuel (Gf) is provided around the mounting flange of the internal tube (IT), and the exhaust heat is recovered together with the mounting flange of the heat transfer tube (RT) using bolts (B). Attach to the drum (DR) or header (HD) of the boiler (HRSG). In this case, first, the heat transfer tube (RT) and the inner tube (IT) are assembled together (the flanges are fastened together), and the connection to the heat recovery boiler (HRSG) is performed using another bolt.

【0030】原燃料(f)は内挿管(IT)によって伝
熱管(RT)の一端部に供給され、他端部で流れ方向を
転換して伝熱管(RT)・内挿管(IT)間の環状断面
領域を流れる間に、周囲の熱媒(d)から熱回収し、処
理燃料(Gf)として端面から取り出す。原燃料(f)
が内挿管(IT)を流れている間に処理燃料(Gf)で
予熱することによって、内挿管(IT)の伝熱を有効利
用し、小型化を促進することができる。
The raw fuel (f) is supplied to one end of the heat transfer tube (RT) by the inner tube (IT), and the flow direction is changed at the other end to flow between the heat transfer tube (RT) and the inner tube (IT). While flowing through the annular cross-sectional area, heat is recovered from the surrounding heating medium (d) and taken out from the end face as treated fuel (Gf). Raw fuel (f)
By preheating with the treated fuel (Gf) while flowing through the internal tube (IT), it is possible to effectively utilize heat transfer through the internal tube (IT) and promote miniaturization.

【0031】一方、図8に示されるものは、排熱回収ボ
イラ(HRSG)の二端面を用いてメタノール系伝熱管
(RT)を保持し、燃料の投入・払出を対向位置で取り
扱う、組立方式である。図8(a) に示される例では
、伝熱管(RT)のフランジを排熱回収ボイラ(HRS
G)のドラム(DR)またはヘッダ(HD)の一端にボ
ルト(B)で固定するとともに、対向端にシール管(S
F)のフランジをボルト(B)で固定して、伝熱管(R
T)とシール管(SF)の相対的なすべりを許容し、熱
伸びに対処する。伝熱管(RT)と排熱回収ボイラ(H
RSG)との間、伝熱管(RT)とシール管(SF)と
の間には、シール材(SL1),(SL2)を充填する
か、その他の適切な機構により流体の漏出を防止する。 原燃料(f)は、伝熱管(RT)内を一方向に流れ、処
理燃料(Gf)となる。この組立方式は、いわゆる熱交
換器のシェルアンドチューブ方式に近いため、上述の熱
伸び対策が解決されれば、シェルアンドチューブ方式の
技術が利用できる。
On the other hand, the assembly method shown in FIG. 8 uses two end faces of a heat recovery steam generator (HRSG) to hold a methanol heat transfer tube (RT), and handles fuel input and discharge at opposing positions. It is. In the example shown in Figure 8(a), the flange of the heat transfer tube (RT) is connected to the heat recovery boiler (HRS).
G) is fixed to one end of the drum (DR) or header (HD) with a bolt (B), and a seal tube (S) is attached to the opposite end.
Fix the flange of F) with bolts (B) and attach the heat exchanger tube (R
T) and the seal tube (SF) are allowed to slide relative to each other to cope with thermal elongation. Heat transfer tube (RT) and exhaust heat recovery boiler (H
RSG), between the heat transfer tube (RT) and the seal tube (SF), sealing materials (SL1) and (SL2) are filled, or other appropriate mechanisms are used to prevent fluid leakage. The raw fuel (f) flows in one direction inside the heat transfer tube (RT) and becomes a processed fuel (Gf). This assembly method is similar to the so-called shell-and-tube method of heat exchangers, so if the above-mentioned measures against thermal expansion are solved, the shell-and-tube method can be used.

【0032】伝熱管(RT)とシール管(SF)の相対
的なすべりに代えて、伸縮継手を適用することもできる
。これは、シール管(SF)と伝熱管(RT)のシール
を優先する結果これらのすべりが不十分になった場合に
、有効である。図8(b)に示されるものはその一例で
あるが、あらゆる方式の伸縮方式を伸縮継手(BE)と
して利用できる。伸縮継手(BE)挿入の結果、伝熱管
(RT)はフランジ側(符号RT1)とシール管側(符
号RT2)の複構成となる。
[0032] Instead of relative sliding between the heat transfer tube (RT) and the seal tube (SF), an expansion joint can also be applied. This is effective when prioritizing the sealing of the seal tube (SF) and heat transfer tube (RT) results in insufficient slippage between them. Although the one shown in FIG. 8(b) is one example, any type of expansion/contraction system can be used as the expansion joint (BE). As a result of inserting the expansion joint (BE), the heat transfer tube (RT) has a dual configuration of a flange side (symbol RT1) and a seal tube side (symbol RT2).

【0033】図9および図10はガスタービン排気から
メタノール燃料へ熱が移動する状況を示す模式図であっ
て、図9は高々圧蒸発器、高圧蒸発器、低圧蒸発器等の
蒸発伝熱管の場合、図10は過熱器や節炭器等の加熱伝
熱管の場合を、それぞれ示す。
FIGS. 9 and 10 are schematic diagrams showing the state in which heat is transferred from the gas turbine exhaust to the methanol fuel. FIG. In this case, FIG. 10 shows the case of a heating heat exchanger tube such as a superheater or an economizer.

【0034】図9(b)の構成例では、通常の排熱回収
ボイラの蒸発伝熱管として排気中に蒸発管(ET)、そ
の上方に気液分離のドラム(DR)を有し、降水管(C
T)によって飽和水(b)は蒸発管(ET)に再循環(
自然循環あるいは循環ポンプによる強制循環等)される
。この構成では、蒸発管(ET)の内側にメタノール燃
料系伝熱管(RT)を内蔵しており、飽和水(b)が蒸
発管(ET)壁面で蒸発して気液二相流となり、激しく
混合し合う乱流熱伝達によって、蒸発管(ET)から伝
熱管(RT)への熱移動が良好に行なわれる。この場合
、伝熱管(RT)の伝熱面積の増減は蒸発管(ET)内
で処理できる。すなわち、排熱回収ボイラ(HRSG)
のガスタービン排気からの熱回収量は一義的に決まるた
め、排ガス回収ボイラ(HRSG)の伝熱面積は所定値
のままで自由に伝熱管(RT)の伝熱設計ができる。ま
た、熱媒である飽和蒸気・飽和水から伝熱管(RT)へ
の伝熱バランスは、常に応答良く維持される。
In the configuration example shown in FIG. 9(b), an evaporation tube (ET) is installed in the exhaust gas as an evaporation heat transfer tube of a normal waste heat recovery boiler, and a drum (DR) for gas-liquid separation is installed above the evaporation tube (ET). (C
The saturated water (b) is recirculated (T) to the evaporator tube (ET) (
(natural circulation or forced circulation using a circulation pump, etc.). In this configuration, a methanol-fueled heat transfer tube (RT) is built inside the evaporation tube (ET), and saturated water (b) evaporates on the wall of the evaporation tube (ET), forming a gas-liquid two-phase flow, resulting in a violent flow. Mixing turbulent heat transfer facilitates heat transfer from the evaporator tube (ET) to the heat transfer tube (RT). In this case, the increase or decrease in the heat transfer area of the heat transfer tube (RT) can be handled within the evaporation tube (ET). In other words, a heat recovery steam generator (HRSG)
Since the amount of heat recovered from the gas turbine exhaust gas is uniquely determined, the heat transfer area of the exhaust gas recovery boiler (HRSG) can be freely designed for the heat transfer tube (RT) while keeping the heat transfer area at a predetermined value. In addition, the heat transfer balance from the heat medium, saturated steam and saturated water, to the heat transfer tube (RT) is always maintained in a responsive manner.

【0035】図9(a)に熱伝達の様子を示す。蒸発管
(ET)とメタノール燃料系伝熱管(RT)の間に流れ
る熱媒(b)は、飽和水(I)と飽和蒸気(II)の乱
流混合流体である。伝熱管(RT)近傍の水(III 
)や蒸気(IV)は、伝熱管(RT)への伝熱(h1 
)で減温するが、気液二相流の強い乱流混合によって温
度が回復する。すなわち、減温した水(III )は符
号(III1)の位置に拡散して、飽和蒸気(III2
)の潜熱で回復し、また蒸気(IV)は減温して飽和水
になるとともに、飽和蒸気(IV1 )が置換する。伝
熱(h1 )で低くなった熱媒の熱量は、直ちにガスタ
ービン排気(a)からの入熱(h2 )の増分で補われ
る。このように、図9(a)に示された蒸発伝熱管の伝
熱では、熱媒(b)の温度は一定であり、メタノール燃
料系伝熱管(RT)への伝熱で移動する熱は、即座に熱
媒(飽和蒸気)の潜熱で補給される。また蒸発管(ET
)内ではガスタービン排気からの熱回収で飽和蒸気が激
しく補給される。蒸気ドラム(DR)内でも同様の伝熱
状況にある。
FIG. 9(a) shows the state of heat transfer. The heat medium (b) flowing between the evaporator tube (ET) and the methanol-fueled heat transfer tube (RT) is a turbulent mixed fluid of saturated water (I) and saturated steam (II). Water near the heat transfer tube (RT) (III
) and steam (IV) transfer heat (h1) to the heat transfer tube (RT).
), but the temperature recovers due to strong turbulent mixing of gas-liquid two-phase flow. That is, the water (III) whose temperature has been reduced diffuses to the position of code (III1) and becomes saturated steam (III2).
), and the steam (IV) is cooled down to become saturated water and replaced by saturated steam (IV1). The amount of heat in the heat medium that has decreased due to heat transfer (h1) is immediately compensated for by the increase in heat input (h2) from the gas turbine exhaust (a). In this way, in the heat transfer through the evaporative heat transfer tube shown in FIG. 9(a), the temperature of the heat medium (b) is constant, and the heat transferred to the methanol fuel-based heat transfer tube (RT) is , is immediately replenished by the latent heat of the heating medium (saturated steam). In addition, the evaporation tube (ET
), saturated steam is intensively replenished by heat recovery from the gas turbine exhaust. A similar heat transfer situation exists within the steam drum (DR).

【0036】次に、過熱器や高圧節炭器等の加熱伝熱管
の場合は、図10(b),(c)に示されるように、廃
熱回収ボイラの昇温管(WT)とヘダ(HD)で構成さ
れ、熱媒(過熱蒸気(SS)、高温給水(w))からメ
タノール燃料系伝熱管(RT)への移動熱は、その顕熱
でまかなわれるため、熱媒(WまたはSS)の温度が低
下する。すなわち、図10(a)に示されるように、伝
熱管(RT)の近傍領域の水(III )または蒸気(
IV)は伝熱(h1 )で減温する。しかし、ガスター
ビン排気(a)と上記水(III )との温度差が大き
くなるため(h2 )が増大し、直ちに熱補給が行なわ
れる。なお、図10(b)のように熱移動(h1 ),
(h2 )が同時に行なわれる場合に対し、図10(c
)のように別個の場所で行なわれる場合は、熱移動(h
1 )の吸熱で減温した熱媒(WまたはSS)は排熱回
収ボイラ(HRSG)で再熱する必要が出てくる。(前
記図3ないし図5参照)このように燃料処理装置の伝熱
管を排熱回収ボイラに収納する場合、加熱伝熱管内配置
は小型化・簡単化のメリットが大きい。
Next, in the case of heating heat exchanger tubes such as superheaters and high-pressure economizers, as shown in FIGS. (HD), and the heat transferred from the heating medium (superheated steam (SS), high temperature feed water (W)) to the methanol fuel system heat transfer tube (RT) is covered by its sensible heat. SS) temperature decreases. That is, as shown in FIG. 10(a), water (III) or steam (
IV) is cooled by heat transfer (h1). However, since the temperature difference between the gas turbine exhaust (a) and the water (III) increases, (h2) increases, and heat replenishment is immediately performed. In addition, as shown in Fig. 10(b), heat transfer (h1),
(h2) is performed at the same time, Fig. 10(c
), heat transfer (h
The heat medium (W or SS) whose temperature has decreased due to heat absorption in 1) needs to be reheated in a heat recovery boiler (HRSG). (See FIGS. 3 to 5 above) When the heat transfer tubes of the fuel processing device are housed in the exhaust heat recovery boiler in this way, the arrangement within the heating heat transfer tubes has the great advantage of being compact and simple.

【0037】図11は一体型熱交換器の垂直姿勢組立状
況を示すもので、図11(a)は側面図、図11(b)
は正面図である。これは一体方式伝熱管を竪向きに配列
し、廃熱回収ボイラ伝熱管内にも挿入できるようにした
もので、取外しは蒸気ドラム(DR)またはヘダ(HD
)の上方引き抜きとなる。メタノール燃料系の短尺伝熱
管(RT1 )と長尺伝熱管(RT2 )の混用で廃熱
回収ボイラの蒸気ドラム、ヘダ、伝熱管内に効率良く配
分する。長尺伝熱管RT2 を使用することにより■ 
 RT総本数減少、 ■  ■によるメンテナンスの簡略化、■  ■による
配管システムの簡略化、■  1本の中に燃料処理プロ
セス(図22)を多く内包させることにより処理管理が
しやすい、■  ガスタービン排気から処理燃料への伝
熱が良好、等の利点がある。
FIG. 11 shows the integrated heat exchanger assembled in a vertical position, with FIG. 11(a) being a side view and FIG. 11(b) being a side view.
is a front view. This is a vertically arranged integrated type heat transfer tube that can be inserted into the waste heat recovery boiler heat transfer tube, and can be removed from the steam drum (DR) or header (HD).
) is pulled upward. Mixed use of methanol fuel-based short heat transfer tubes (RT1) and long heat transfer tubes (RT2) enables efficient distribution within the steam drum, header, and heat transfer tubes of a waste heat recovery boiler. By using long heat transfer tube RT2, ■
Reduced total number of RTs, ■ Simplified maintenance due to ■ ■ Simplified piping system due to ■ ■ Easier process management by incorporating many fuel treatment processes (Figure 22) into one gas turbine, ■ Gas turbine It has advantages such as good heat transfer from exhaust gas to treated fuel.

【0038】排熱回収ボイラの構成(例えば図5)にお
ける蒸発器と第2加熱器・節炭器と第1加熱器・過熱器
の各構成では熱媒がそれぞれ飽和蒸気・飽和水、高温水
、過熱蒸気と異なる。蒸発器は、蒸発伝熱管(ET)と
気液分離のドラム(DR)ならびに降水管(CT)(図
9(b))で構成され、第2加熱器・節炭器は昇温管(
WT)とヘダ(HD)の組合わせ(図10(b),(c
))、第1加熱器・過熱器は昇温管(SH)とヘダ(H
D)の組み合せとなる。第1加熱器・過熱器の組立にお
いては、図1ないし図5の過熱器バイパス制御およびそ
の配管を省略できる。
In the configuration of the exhaust heat recovery boiler (for example, FIG. 5), the heating medium is saturated steam, saturated water, and high-temperature water in each configuration of the evaporator, second heater, economizer, and first heater/superheater, respectively. , different from superheated steam. The evaporator is composed of an evaporative heat transfer tube (ET), a gas-liquid separation drum (DR), and a downcomer tube (CT) (Fig. 9(b)), and the second heater and economizer are composed of a heating tube (
Combination of WT) and header (HD) (Fig. 10(b),(c)
)), the first heater/superheater is a heating tube (SH) and a header (H
D) is the combination. In assembling the first heater/superheater, the superheater bypass control and its piping shown in FIGS. 1 to 5 can be omitted.

【0039】図12も一体型熱交換器の水平姿勢組立状
況を示すもので、図12(a)は側面図、図12(b)
は正面図である。これは排熱回収ボイラの蒸気ドラム(
DR)またはヘダ(HD)内に一体方式伝熱管を横方向
に配列したものである。鏡板D1 間の長さに対する長
尺伝熱管(RT3 )と短尺伝熱管(RT1 )を効率
良く配分する。鏡板への取付けは一端で行なう。燃料マ
ニホルド(D3 )から供給される原燃料(f)は、処
理後その燃料マニホルド(D3 )の内側の空間に送り
出されるので、蓋(D2 )のノズルからシステムに処
理燃料(Gf)として払い出す。この例の利点は燃料の
投入・払出が鏡板に対応して両端で行なうことができる
点である。
FIG. 12 also shows the integrated heat exchanger assembled in a horizontal position, with FIG. 12(a) being a side view and FIG. 12(b) being a side view.
is a front view. This is the steam drum of the exhaust heat recovery boiler (
DR) or a header (HD) in which integrated heat exchanger tubes are arranged laterally. The long heat transfer tubes (RT3) and the short heat transfer tubes (RT1) are efficiently distributed with respect to the length between the end plates D1. Attachment to the mirror plate is done at one end. The raw fuel (f) supplied from the fuel manifold (D3) is sent to the inner space of the fuel manifold (D3) after being processed, so it is discharged to the system from the nozzle of the lid (D2) as processed fuel (Gf). . The advantage of this example is that fuel can be charged and discharged at both ends corresponding to the head plate.

【0040】図13は一体型熱交換器の重層配置組立状
況を示す図である。この例では、燃料処理側の伝熱面積
を増やすために、蒸気ドラムまたはヘダを複数個重層配
置して、伝熱管の取り付け場所を確保し、熱媒を連通さ
せる。すなわち、図12の横方向配置を二段とし、蒸発
器の熱媒をドラム(D1 )内では飽和水と飽和蒸気、
ドラム(D2 )内では飽和蒸気とする。
FIG. 13 is a diagram showing how the integrated heat exchanger is assembled in a multilayer arrangement. In this example, in order to increase the heat transfer area on the fuel processing side, a plurality of steam drums or headers are arranged in layers to secure a place for installing heat transfer tubes and to communicate the heat medium. That is, the horizontal arrangement in Fig. 12 is made into two stages, and the heating medium of the evaporator is saturated water and saturated steam in the drum (D1).
There is saturated steam in the drum (D2).

【0041】図14は組立方式伝熱管の組立状況を示す
図である。この方式では、鏡板(D1 )への取付けは
両端で行なうため、伝熱管タイプは全て長尺の伝熱管(
RT4 )となる。原燃料(f)を一端から投入し、他
端から処理燃料(Gf)を払い出す。各伝熱管への個別
の燃料配分は不要であり、その分、図12のものよりも
構造を簡略化できる。
FIG. 14 is a diagram showing the assembly state of the assembly type heat exchanger tube. In this method, the attachment to the end plate (D1) is done at both ends, so all heat exchanger tube types are long heat exchanger tubes (
RT4). Raw fuel (f) is input from one end, and processed fuel (Gf) is discharged from the other end. Separate fuel distribution to each heat exchanger tube is not necessary, and the structure can be made simpler than that in FIG. 12 to that extent.

【0042】図15は、図14の組立方式の伝熱管を図
13のように重層配置とした例を示す。
FIG. 15 shows an example in which the heat exchanger tubes of the assembly method shown in FIG. 14 are arranged in layers as shown in FIG. 13.

【0043】図16は、前記図7に基本構成が示された
一体方式の燃料処理装置伝熱管の具体的構成例を例示す
るものである。まず図16(a)に示される例では、原
燃料(f)を内挿管(IT)で供給し、伝熱管(RT)
からの熱入力で処理して処理燃料(Gf)として払い出
す。内挿管(IT)内を流れる原燃料(f)は、処理燃
料(Gf)の保有する熱により一部加熱され、単純な一
方向流れ(後記図17(a))よりも有効伝熱面積を大
きくとれる。また転向流(g′)で伝熱境界層が薄くな
る分、符号(RT′)で示される領域の伝熱量が高く確
保できる。
FIG. 16 illustrates a specific example of the structure of the integral type fuel processing device heat exchanger tube whose basic structure is shown in FIG. 7. First, in the example shown in FIG. 16(a), the raw fuel (f) is supplied through the internal tube (IT), and the heat transfer tube (RT)
It is processed using heat input from the fuel and discharged as processed fuel (Gf). The raw fuel (f) flowing inside the internal tube (IT) is partially heated by the heat possessed by the processed fuel (Gf), and has a larger effective heat transfer area than simple unidirectional flow (see Figure 17(a) below). It can be taken in large quantities. Furthermore, since the heat transfer boundary layer becomes thinner due to the diverted flow (g'), a high amount of heat transfer can be ensured in the region indicated by the symbol (RT').

【0044】次に図16(b)に示される例では、内挿
管(IT)に多くの噴射孔(i)を設け、伝熱管(RT
)内面への噴射流(j)を均一に分布させる。噴射流(
j)は伝熱管(RT)面で蒸発し、その他は薄い液膜(
k)となって伝熱管(RT)内面全面で蒸発する。
Next, in the example shown in FIG. 16(b), many injection holes (i) are provided in the inner tube (IT), and the heat transfer tube (RT
) Uniform distribution of the jet flow (j) on the inner surface. Jet flow (
j) is evaporated on the surface of the heat transfer tube (RT), and the rest is a thin liquid film (
k) and evaporates on the entire inner surface of the heat transfer tube (RT).

【0045】図16(c)に示される例は、上記図16
(a),(b)に示された各伝熱管を合成した形式で、
処理燃料(Gf)による原燃料(f)の予熱も積極的に
取り入れている。
The example shown in FIG. 16(c) is the same as that shown in FIG.
In the form of combining each heat exchanger tube shown in (a) and (b),
Preheating of the raw fuel (f) using the processed fuel (Gf) is also being actively incorporated.

【0046】図16(d)の例では、投入燃料(f)が
内挿管(IT)の管内と伝熱管(RT)の加熱器(HT
R)部で反応温度まで加熱されたのち、反応器(REA
)部に充填された触媒(CATA)の領域で伝熱管(R
T)外部のガスタービン排気から吸熱しながら熱分解や
水蒸気改質等の反応をして処理燃料(Gf)となる。
In the example shown in FIG. 16(d), the input fuel (f) is inside the inner tube (IT) and the heater (HT) of the heat transfer tube (RT).
After being heated to the reaction temperature in the R) section, the reactor (REA) is heated to the reaction temperature.
) in the region of the catalyst (CATA) filled in the heat exchanger tube (R
T) It undergoes reactions such as thermal decomposition and steam reforming while absorbing heat from the external gas turbine exhaust gas to become treated fuel (Gf).

【0047】前記図11や図12中の長尺の伝熱管(R
T2 ),(RT3 )としては、上記図16(a)な
いし図16(d)の伝熱管を単純に長尺としたものを用
いることもできるが、次の図16(e)に示される例は
、予熱器から過熱器までの全プロセスを伝熱管に内蔵し
ている。反応器(REA)まで含む伝熱管は、反応条件
に合致する熱媒温度を選定するため、過熱器(SH)で
顕熱分を加熱するには、更に高温の熱媒が必要となる。 但し、若干熱的に余裕のある熱媒を用いる場合は、過熱
器(SH)域で加熱量の一部を賄うことができる。
[0047] The long heat exchanger tube (R
As T2 ) and (RT3 ), the heat exchanger tubes shown in FIGS. 16(a) to 16(d) may be simply made longer, but the example shown in FIG. 16(e) below may be used. The entire process from preheater to superheater is built into the heat transfer tube. Since the heat transfer tube including the reactor (REA) selects a heat medium temperature that matches the reaction conditions, a higher temperature heat medium is required to heat the sensible heat in the superheater (SH). However, if a heat medium with some thermal margin is used, part of the heating amount can be covered by the superheater (SH) region.

【0048】前記図16(a)ないし図16(e)の一
体方式伝熱管のうち、図16(a),(b)は単能伝熱
管、図16(c)ないし(e)は多能伝熱管であるが、
これらの用途はおよそ次のとおりである。すなわち、過
熱器には図16(a),(e)に示されたもの、反応器
には図(d),(e)に示されたもの、加熱器には図1
6(a),(c),(d),(e)、蒸発器には図16
(b),(c),(e)、予熱器には図16(a),(
c),(e)に示されたものを、それぞれ用いることが
できる。そして、伝熱条件、収納スペースの兼ね合いを
考慮して、好適な構造を選定する。
Of the integrated type heat transfer tubes shown in FIGS. 16(a) to 16(e), FIGS. 16(a) and 16(b) are single-function heat transfer tubes, and FIGS. 16(c) to 16(e) are multi-function heat transfer tubes. Although it is a heat exchanger tube,
These uses are approximately as follows. In other words, the superheater is shown in Figures 16(a) and (e), the reactor is shown in Figures (d) and (e), and the heater is shown in Figure 16.
6(a),(c),(d),(e),Fig. 16 for the evaporator.
(b), (c), (e), and the preheater is shown in Figs.
Those shown in c) and (e) can be used, respectively. Then, a suitable structure is selected in consideration of heat transfer conditions and storage space.

【0049】次に図17は、前記図8(a)に基本構成
が示された組立方式の燃料処理装置伝熱管の具体的構成
を例示するものである。まず図17(a)に示される例
では、原燃料(f)をシール管(SF)側から供給して
、伝熱管(RT)からの熱入力で処理し、処理燃料(G
f)として払い出す。
Next, FIG. 17 shows an example of the specific structure of the assembly type fuel processing device heat transfer tube whose basic structure is shown in FIG. 8(a). First, in the example shown in FIG. 17(a), raw fuel (f) is supplied from the seal tube (SF) side, processed by heat input from the heat transfer tube (RT), and processed fuel (G
f).

【0050】次に図17(b)に示される例では、シー
ル管(SF)の内側に内挿管(IT)を設ける。そして
その内挿管(IT)には多くの噴射孔(i)を設け、伝
熱管(RT)内面への燃料の噴射流(j)を均一に分布
させる。噴射流(j)は伝熱管(RT)面で蒸発し、そ
の他は薄い液膜(k)となって伝熱管(RT)内面全面
で蒸発する。
Next, in the example shown in FIG. 17(b), an inner tube (IT) is provided inside the seal tube (SF). The inner tube (IT) is provided with many injection holes (i) to uniformly distribute the injection flow (j) of the fuel onto the inner surface of the heat transfer tube (RT). The jet stream (j) evaporates on the surface of the heat transfer tube (RT), and the rest becomes a thin liquid film (k) and evaporates over the entire inner surface of the heat transfer tube (RT).

【0051】また図17(c)に示される例では、伝熱
管(RT)内に充填した触媒(CATA)において、ガ
スタービン排気からの入熱で原燃料(f)の熱分解や水
蒸気改質等の反応を行ない、蒸発・加熱処理後の燃料(
Gf)を払い出す。
In the example shown in FIG. 17(c), the heat input from the gas turbine exhaust causes thermal decomposition and steam reforming of the raw fuel (f) in the catalyst (CATA) packed in the heat transfer tube (RT). After evaporation and heat treatment, the fuel (
Pay out Gf).

【0052】図17(d)に示される例では、蒸発後の
燃料(f)を供給して、加熱(HTR部)・反応(RE
A部)処理を行ない、処理燃料(Gf)として払い出す
In the example shown in FIG. 17(d), the evaporated fuel (f) is supplied, and the heating (HTR section) and reaction (RE
Part A) Process and discharge as processed fuel (Gf).

【0053】前記図14中の長尺の伝熱管(RT4 )
としては、上記図17(a)ないし図17(d)に示さ
れた伝熱管を単純に長尺としたものを用いることもでき
るが、次の図17(e)に示される例は、蒸発(EVA
)、加熱(HTR)、反応(REA)、過熱(SH)を
含む全プロセスを内蔵する長尺伝熱管である。反応器(
REA)まで含む伝熱管は反応条件に合致する熱媒温度
を選定する。過熱器(SH)で顕熱分を加熱するには、
更に高温の熱媒を採用する。但し、若干熱的に余裕のあ
る熱媒を用いる場合は、過熱器(SH)域で加熱量の一
部を賄うことができる。
[0053] The long heat transfer tube (RT4) in FIG.
Although it is also possible to use a simple elongated heat exchanger tube shown in FIGS. 17(a) to 17(d), the example shown in FIG. 17(e) (EVA
), heating (HTR), reaction (REA), and superheating (SH). Reactor (
For the heat transfer tubes including REA), select a heat medium temperature that matches the reaction conditions. To heat sensible heat with a superheater (SH),
Furthermore, a high-temperature heating medium is used. However, if a heat medium with some thermal margin is used, part of the heating amount can be covered by the superheater (SH) region.

【0054】前記図17(a)ないし図17(c)の組
立方式伝熱管は単能伝熱管、図17(d)および図17
(e)は多能伝熱管である。これらの用途はおよそ次の
とおりである。すなわち、過熱器には図17(a),(
e)の伝熱管、反応器には図17(c),(d),(e
)の伝熱管、加熱器には図17(a),(d),(e)
の伝熱管、蒸発器には図17(b),(e)の伝熱管、
予熱器には図17(a)の伝熱管を、それぞれ用いるこ
とができる。そして、伝熱条件、収納スペースの兼ね合
いを考慮して、好適な構造を選定する。
The assembled heat exchanger tubes shown in FIGS. 17(a) to 17(c) are single-function heat exchanger tubes, FIGS. 17(d) and 17
(e) is a multifunctional heat exchanger tube. These uses are approximately as follows. In other words, the superheater is equipped with Figures 17(a) and (
Figures 17(c), (d), and (e) are shown in Fig. 17(c), (d), and (e) for the heat exchanger tube and reactor.
17(a), (d), (e) for heat exchanger tubes and heaters.
17(b) and (e) in the evaporator,
The heat exchanger tube shown in FIG. 17(a) can be used for each preheater. Then, a suitable structure is selected in consideration of heat transfer conditions and storage space.

【0055】図18および図19は、一体型熱交換器の
組立外観の例を示す斜視図である。ガスタービン排気ダ
クト(ED)に配置される排熱回収ボイラの伝熱管(E
T),(HT)は、群毎にドラム(DR)あるいはヘダ
(HD)に統合される。
FIGS. 18 and 19 are perspective views showing an example of the assembled appearance of the integrated heat exchanger. Heat exchanger tube (E) of the exhaust heat recovery boiler placed in the gas turbine exhaust duct (ED)
T) and (HT) are integrated into a drum (DR) or header (HD) for each group.

【0056】ドラムやヘダを円筒シェルとする場合は、
その中心線がガスタービン排気aと垂直となる横配置(
図18(a))、平行となる縦配置(図18(b))の
いずれかとする。伝熱管の取り外しは、図示した5方向
で可能である。
[0056] When the drum or header is a cylindrical shell,
Horizontal arrangement where its center line is perpendicular to the gas turbine exhaust a (
18(a)) or parallel vertical arrangement (FIG. 18(b)). The heat exchanger tubes can be removed in the five directions shown.

【0057】図18(c)は、燃料処理装置伝熱管の配
置・取り付けを容易にするために、箱形のドラム(ヘダ
)としたもので、伝熱管の群分割は隔壁で行なう。この
隔壁は断熱構造とし、一方から他方への伝熱を防止する
。外部は、リブ等の補強材を使用するなど、内圧耐殻構
造とする。
In FIG. 18(c), a box-shaped drum (header) is used to facilitate the arrangement and attachment of the heat transfer tubes of the fuel processor, and the heat transfer tubes are divided into groups by partition walls. This partition wall has a heat insulating structure to prevent heat transfer from one side to the other. The exterior will have a shell structure that can withstand internal pressure by using reinforcing materials such as ribs.

【0058】図19は、排熱回収ボイラの節炭器ヘダ、
蒸発器ドラム、過熱器ヘダを箱形とした例を示す斜視図
である。排熱回収ボイラの要素配列は図4を例に用いて
いる。隔壁Wの向き(排ガスaに対して垂直あるいは平
行)は自由に選べるから、図中の斜線W以外にも、例え
ば節炭器(ECO)・蒸発器(EVA)間や蒸発器(E
VA)・過熱器(SH)間にも隔壁を設け、これら3要
素を一体とした一個の構造体とすることもできる。図示
例ではドラム(ヘダ)は排熱回収ボイラ伝熱管と一体と
なった3部分構成である。
FIG. 19 shows the economizer header of the exhaust heat recovery boiler,
FIG. 3 is a perspective view showing an example in which the evaporator drum and superheater header are box-shaped. FIG. 4 is used as an example of the element arrangement of the exhaust heat recovery boiler. Since the direction of the partition wall W (perpendicular or parallel to the exhaust gas a) can be freely selected, it can be used in addition to the diagonal line W in the figure, for example, between the economizer (ECO) and the evaporator (EVA), or between the evaporator (E
It is also possible to provide a partition wall between the VA) and the superheater (SH) to form a single structure that integrates these three elements. In the illustrated example, the drum (header) has a three-part structure that is integrated with the exhaust heat recovery boiler heat exchanger tube.

【0059】この方式によって、図3および図4の(S
H1),(SH2),(HP−ECO1),(HP−E
CO2)についての群分割が容易となり、群伝熱管間の
隙間(例えば図18(a)の符号CL)を無くすことが
でき、コンパクト設計ができる。図19では、排熱回収
ボイラの流体の流れを、低温蒸発器(LP−EVA)か
らの高温水(w1 )を下部ヘダ(L−HD1)に供給
し過熱蒸気(SS)を過熱器(SH2)から取り出すま
での間で、示す。高温水(w1 )は第1節炭器(EC
O1)伝熱管を上昇して、例えば図11の一体方式伝熱
管RT2 へ伝熱した後、高温水(w2 )として取り
出す。 この高温水(w2 )は下部ヘダ(L−HD2)に供給
され、第2節炭器(ECO2)伝熱管を上昇して昇温す
る。節炭器出口水(w3 )は蒸発器(EVA)ドラム
内の飽和水と混合した後、降水管(CT)で下部ヘダに
到達したあと、蒸発器(EVA)伝熱管を上昇して蒸気
を発生する。例えばRT2 を内挿している場合は、飽
和水・飽和蒸気の気液二相流下でRT2 に伝達を行な
う。ドラムからの飽和蒸気(S1)を第1過熱器(SH
1)の下部ヘダ(L−HD1)に供給し、第1過熱器(
SH1)伝熱管を上昇しながら例えば伝熱管(RT2 
)へ伝熱を行なったのち、(S2)として取り出す。(
S2)は下部ヘダに到達したあと、第2過熱器(SH2
)伝熱管を上昇して昇温し、過熱蒸気(SS)として取
り出す。
By this method, (S
H1), (SH2), (HP-ECO1), (HP-E
CO2) can be easily divided into groups, and gaps between the group heat transfer tubes (for example, reference numeral CL in FIG. 18(a)) can be eliminated, allowing for a compact design. In Figure 19, the fluid flow of the exhaust heat recovery boiler is changed by supplying high temperature water (w1) from the low temperature evaporator (LP-EVA) to the lower header (L-HD1) and supplying superheated steam (SS) to the superheater (SH2). ) until it is taken out. The high temperature water (w1) is passed through the first economizer (EC
O1) After moving up the heat transfer tube and transferring heat to, for example, the integrated type heat transfer tube RT2 in FIG. 11, it is taken out as high temperature water (w2). This high temperature water (w2) is supplied to the lower header (L-HD2), rises through the second economizer (ECO2) heat exchanger tube, and is heated up. The economizer outlet water (W3) mixes with the saturated water in the evaporator (EVA) drum, reaches the lower header through the downcomer tube (CT), and then ascends through the evaporator (EVA) heat transfer tube to produce steam. Occur. For example, when RT2 is interpolated, transmission to RT2 is performed under a gas-liquid two-phase flow of saturated water and saturated steam. The saturated steam (S1) from the drum is transferred to the first superheater (SH
1) to the lower header (L-HD1) and the first superheater (
SH1) For example, heat transfer tube (RT2) while ascending the heat transfer tube.
) and then taken out as (S2). (
S2) reaches the lower header, then the second superheater (SH2
) The heat transfer tube is raised to raise the temperature and taken out as superheated steam (SS).

【0060】[0060]

【発明の効果】1)  廃熱回収ボイラのドラム、ヘダ
、伝熱管等の内部に燃料処理装置の伝熱管が組込まれて
いるので、■装置配列がコンパクトである。■蒸発器で
は、燃料処理に利用した残余の熱を主蒸気として取り出
すことができ、従来のような熱媒配管とその制御を省略
できる。 2)  廃熱回収ボイラ・燃料処理系・熱媒が同一系内
にあるので、ボイラと燃料処理系が別系で熱媒が両者を
循環する従来方式に比べ、■系外熱媒搬送動力が不要で
、その分、所内動力が軽減できる。■循環配管からの熱
損失が無い分、ボイラ回収熱の利用率が高い。 3)  ボイラの蒸発器では、熱媒が飽和水と飽和蒸気
の二相流で、燃料処理に反応熱を消費しても熱媒温度は
一定であるから、■反応器の触媒の熱条件を設計通りに
維持でき、しかも一定温度の領域が広いので、触媒の性
能・寿命の管理がしやすい。■燃料処理負荷(反応吸熱
量)が増減しても、蒸気量がバランス因子となってボイ
ラ伝熱管での熱負荷は一定で、ガスタービン排気の熱回
収量を高く維持でき、排気温度分布を乱すことが少ない
。 4)  触媒性能寿命(経時的劣化他)による能力低下
に対しては、蒸発器のドラム内圧を高めて、熱媒温度を
高くするか、過熱器内に充填した触媒(高温雰囲気)を
作動させることにより、容易に対応できる。 5)  ボイラの蒸発器内の、燃料処理伝熱管は二層流
(飽和水・飽和蒸気)の激しい乱流熱伝達下で使用され
るため、伝熱面積が節約(最適化)されコンパクト化に
有利である。 6)  燃料処理系の伝熱管の周囲を、より高圧の水・
蒸気系の熱媒とすることにより、噴破に際する熱媒の汚
損、さらにはガスタービン排気に可燃流体が漏洩すると
いう事態を予防できる。 7)  燃料処理伝熱管をボイラのドラムやヘダ内に配
列する場合は、従来の円筒形耐圧容器を使用するが、ボ
イラの伝熱管群の中にも燃料処理伝熱管を内挿する場合
は、その取り付けおよび配置設計の便宜のためにドラム
やヘダ上部に平坦部を設ける。円筒形容器の平坦部に比
べて、箱形容器として上面・側面を平板とすることによ
り、更に配置設計(配管ピッチ等)が容易となる。
[Effects of the Invention] 1) Since the heat transfer tubes of the fuel processing device are incorporated inside the drum, header, heat transfer tubes, etc. of the waste heat recovery boiler, (1) the device arrangement is compact; ■The evaporator can extract the residual heat used in fuel processing as main steam, eliminating the need for conventional heat medium piping and its control. 2) Since the waste heat recovery boiler, fuel processing system, and heating medium are in the same system, compared to the conventional system in which the boiler and fuel processing system are separate systems and the heating medium circulates between them, the power for transporting the heating medium outside the system is reduced. This is not necessary, and the on-site power consumption can be reduced accordingly. ■Since there is no heat loss from circulation piping, the utilization rate of boiler recovery heat is high. 3) In the boiler evaporator, the heating medium is a two-phase flow of saturated water and saturated steam, and the heating medium temperature remains constant even if the reaction heat is consumed for fuel processing. Since it can be maintained as designed and has a wide constant temperature range, it is easy to manage the performance and life of the catalyst. ■Even if the fuel processing load (reaction heat absorption amount) increases or decreases, the amount of steam becomes a balancing factor and the heat load on the boiler heat exchanger tubes remains constant, making it possible to maintain a high amount of heat recovery from the gas turbine exhaust and improve the exhaust temperature distribution. It is less likely to be disturbed. 4) To reduce the capacity due to catalyst performance life (degradation over time, etc.), increase the internal pressure of the evaporator drum to raise the heating medium temperature, or activate the catalyst (high temperature atmosphere) packed in the superheater. This makes it easy to respond. 5) The fuel processing heat transfer tube in the boiler evaporator is used under highly turbulent heat transfer in a two-layer flow (saturated water and saturated steam), which saves (optimizes) the heat transfer area and makes it more compact. It's advantageous. 6) Surround the heat transfer tubes of the fuel treatment system with higher pressure water.
By using a steam-based heating medium, it is possible to prevent contamination of the heating medium at the time of a blowout and furthermore prevent leakage of combustible fluid into the gas turbine exhaust gas. 7) When arranging fuel processing heat transfer tubes in the drum or header of a boiler, a conventional cylindrical pressure-resistant vessel is used, but when the fuel processing heat transfer tubes are also inserted into a group of boiler heat transfer tubes, A flat part is provided on the top of the drum or header for convenience in mounting and layout design. Compared to the flat portion of a cylindrical container, by making the top and side surfaces of a box-shaped container flat, layout design (piping pitch, etc.) becomes easier.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】図1は、燃料処理を行なう熱交換器が蒸気を発
生する熱交換器の内部に、単段蒸発器システムとして一
体に組込まれた、本発明の第1の実施例を示す図である
FIG. 1 shows a first embodiment of the invention in which a heat exchanger for processing fuel is integrated into a heat exchanger for generating steam as a single-stage evaporator system; It is.

【図2】図2は、燃料処理を行なう熱交換器が蒸気を発
生する熱交換器の内部に、二段蒸発器システムとして一
体に組込まれた、本発明の第2の実施例を示す図である
FIG. 2 shows a second embodiment of the invention in which a heat exchanger for processing fuel is integrated into a heat exchanger for generating steam as a two-stage evaporator system; It is.

【図3】図3は、燃料処理を行なう熱交換器が蒸気を発
生する熱交換器の内部に、二段蒸発器・再生システムと
して一体に組込まれた、本発明の第3の実施例を示す図
である。
FIG. 3 shows a third embodiment of the present invention in which a heat exchanger for processing fuel is integrated into a heat exchanger for generating steam as a two-stage evaporator/regeneration system. FIG.

【図4】図4は、燃料処理を行なう熱交換器が蒸気を発
生する熱交換器の内部に、二段蒸発器・再生/加熱シス
テムとして一体に組込まれた、本発明の第4の実施例を
示す図である。
FIG. 4 shows a fourth embodiment of the invention in which the heat exchanger for fuel processing is integrated as a two-stage evaporator/regeneration/heating system inside the heat exchanger for generating steam; It is a figure which shows an example.

【図5】図5は、燃料処理を行なう熱交換器が蒸気を発
生する熱交換器の内部に、三段蒸発器・再生/加熱シス
テムとして一体に組込まれた、本発明の第5の実施例を
示す図である。
FIG. 5 shows a fifth embodiment of the present invention in which a heat exchanger for processing fuel is integrated into a heat exchanger for generating steam as a three-stage evaporator/regeneration/heating system; It is a figure which shows an example.

【図6】図6は上記図4に示された実施例における熱回
収・熱利用のバランスを例示する図である。
FIG. 6 is a diagram illustrating the balance between heat recovery and heat utilization in the embodiment shown in FIG. 4 above.

【図7】図7は本発明における燃料処理装置の一体方式
伝熱管の基本構成を示す図である。
FIG. 7 is a diagram showing the basic configuration of an integrated type heat transfer tube of a fuel processing device according to the present invention.

【図8】図8は本発明における燃料処理装置の組立方式
伝熱管の基本構成を示す図である。
FIG. 8 is a diagram showing the basic configuration of an assembled heat exchanger tube of a fuel processing device according to the present invention.

【図9】図9は本発明の蒸発伝熱管においてガスタービ
ン排気からメタノール燃料へ熱が移動する状況を示す模
式図である。
FIG. 9 is a schematic diagram showing a situation in which heat is transferred from gas turbine exhaust to methanol fuel in the evaporative heat transfer tube of the present invention.

【図10】図10は本発明の加熱伝熱管においてガスタ
ービン排気からメタノール燃料へ熱が移動する状況を示
す模式図である。
FIG. 10 is a schematic diagram showing a situation in which heat is transferred from gas turbine exhaust to methanol fuel in the heating heat exchanger tube of the present invention.

【図11】図11は本発明における一体型熱交換器の第
1の構造例を示す図である。
FIG. 11 is a diagram showing a first structural example of an integrated heat exchanger according to the present invention.

【図12】図12は本発明における一体型熱交換器の第
2の構造例を示す図である。
FIG. 12 is a diagram showing a second structural example of an integrated heat exchanger according to the present invention.

【図13】図13は本発明における一体型熱交換器の第
3の構造例を示す図である。
FIG. 13 is a diagram showing a third structural example of an integrated heat exchanger according to the present invention.

【図14】図14は本発明における組立型熱交換器の第
1の構造例を示す図である。
FIG. 14 is a diagram showing a first structural example of an assembled heat exchanger according to the present invention.

【図15】図15は本発明における組立型熱交換器の第
2の構造例を示す図である。
FIG. 15 is a diagram showing a second structural example of an assembled heat exchanger according to the present invention.

【図16】図16は本発明における一体方式伝熱管の構
造例を示す図である。
FIG. 16 is a diagram showing a structural example of an integral type heat exchanger tube according to the present invention.

【図17】図17は本発明における組立方式伝熱管の構
造例を示す図である。
FIG. 17 is a diagram showing a structural example of an assembled heat exchanger tube according to the present invention.

【図18】図18は本発明における一体型熱交換器の組
立外観の第1ないし第3の例を示す斜視図である。
FIG. 18 is a perspective view showing first to third examples of the assembled appearance of the integrated heat exchanger according to the present invention.

【図19】図19は本発明における一体型熱交換器の組
立外観の第4の例を示す斜視図である。
FIG. 19 is a perspective view showing a fourth example of the assembled appearance of the integrated heat exchanger according to the present invention.

【図20】図20はガスタービン排気の廃熱を回収して
蒸気タービンを駆動する従来の複合発電設備の一例を示
す系統図である。
FIG. 20 is a system diagram showing an example of a conventional combined power generation facility that recovers waste heat from gas turbine exhaust to drive a steam turbine.

【図21】図21はガスタービン、蒸気タービンに加え
て燃料処理装置も複合した従来の設備の一例を示す系統
図である。
FIG. 21 is a system diagram showing an example of conventional equipment that includes a fuel processing device in addition to a gas turbine and a steam turbine.

【図22】図22はメタノールを例に燃料の流れを中心
とした燃料処理プロセスの例を示す系統図である。
FIG. 22 is a system diagram showing an example of a fuel treatment process focusing on the flow of fuel using methanol as an example.

【図23】図23は燃料処理装置における熱回収・熱利
用のバランスを例示する図である。
FIG. 23 is a diagram illustrating the balance between heat recovery and heat utilization in a fuel processing device.

【符号の説明】[Explanation of symbols]

(C)                      
            圧縮機(CC)      
                         
 燃焼器(GT)                 
               ガスタービン (GEN),(GEN1),(GEN2)  発電機(
ST)                      
          蒸気タービン (COND)                   
         復水器(P),(P1 ),(P2
 )              給水ポンプ(STC
K)                       
     煙突(HRSG)            
                ボイラ、廃熱回収ボ
イラ (LP−ECO)                 
       低圧節炭器(LP−EVA)     
                   低圧蒸発器(
HP−ECO)                  
      高圧節炭器(HP−EVA)      
                  高圧蒸発器(S
H)                       
         過熱器(1−HPSH)     
                   1次高圧過熱
器 (2−HPSH)                 
       2次高圧過熱器 (1−HTR)                  
        1次加熱器(2−HTR)     
                     2次加熱
器(VHP−ECO)               
       高々圧節炭器 (VHP−EVA)                
      高々圧蒸発器 (VHP−SH)                 
       高々圧過熱器 (MeOH)                   
         液体メタノール、メタノール燃料処
理系 (PRE−HTR)                
      予熱器(EVA)           
                   蒸発器(HT
R)                       
       加熱器(REA)          
                    反応器(M
eSH)                     
       過熱器(CATA)         
                   触媒(a) 
                         
        ガスタービン排気 (b)                      
            飽和水(d)       
                         
  熱媒(f)                  
                燃料、原燃料 (Gf)                     
           ガス燃料、処理燃料 (S)                      
            プロセス側送り出し蒸気 (HP−S)                   
         高圧蒸気(LP−S)      
                      低圧蒸
気(Rs),(Rw)               
       反応用蒸気、反応用水 (HB),(SHB)               
     バイパスライン (ET)                     
           HRSG伝熱管(蒸発管) (WT)                     
           HRSG伝熱管(昇温管) (RT)                     
           MeOH伝熱管 (CT)                     
           降水管(ED)       
                         
ガスタービン排気ダクト
(C)
Compressor (CC)

Combustor (GT)
Gas turbine (GEN), (GEN1), (GEN2) Generator (
ST)
Steam turbine (COND)
Condenser (P), (P1), (P2
) Water supply pump (STC
K)
Chimney (HRSG)
Boiler, waste heat recovery boiler (LP-ECO)
Low pressure energy saver (LP-EVA)
Low pressure evaporator (
HP-ECO)
High pressure energy saver (HP-EVA)
High pressure evaporator (S
H)
Superheater (1-HPSH)
Primary high pressure superheater (2-HPSH)
Secondary high pressure superheater (1-HTR)
Primary heater (2-HTR)
Secondary heater (VHP-ECO)
High-pressure economizer (VHP-EVA)
High pressure evaporator (VHP-SH)
High pressure superheater (MeOH)
Liquid methanol, methanol fuel processing system (PRE-HTR)
Preheater (EVA)
Evaporator (HT
R)
Heater (REA)
Reactor (M
eSH)
Superheater (CATA)
Catalyst (a)

Gas turbine exhaust (b)
saturated water (d)

Heat medium (f)
Fuel, raw fuel (Gf)
Gas fuel, processed fuel (S)
Process side delivery steam (HP-S)
High pressure steam (LP-S)
Low pressure steam (Rs), (Rw)
Reaction steam, reaction water (HB), (SHB)
Bypass line (ET)
HRSG heat transfer tube (evaporation tube) (WT)
HRSG heat transfer tube (heating tube) (RT)
MeOH heat transfer tube (CT)
Downpipe (ED)

gas turbine exhaust duct

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  高温の廃熱源により水を加熱して蒸気
を発生させるとともに、同廃熱源によりメタノール燃料
の蒸発と熱分解反応または水蒸気改質反応とを含む燃料
処理を行なう装置において、上記燃料処理の少なくとも
一部を行なう熱交換器が上記水を加熱して蒸気を発生す
る熱交換器の内部に組込まれたことを特徴とする廃熱回
収装置。
Claim 1. An apparatus for heating water to generate steam using a high-temperature waste heat source, and for performing fuel processing including evaporation of methanol fuel and a thermal decomposition reaction or a steam reforming reaction using the waste heat source, wherein the fuel A waste heat recovery device characterized in that a heat exchanger that performs at least part of the treatment is incorporated inside the heat exchanger that heats the water to generate steam.
JP11853091A 1991-05-23 1991-05-23 Waste heat recovery equipment Expired - Fee Related JP3029884B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11853091A JP3029884B2 (en) 1991-05-23 1991-05-23 Waste heat recovery equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11853091A JP3029884B2 (en) 1991-05-23 1991-05-23 Waste heat recovery equipment

Publications (2)

Publication Number Publication Date
JPH04347308A true JPH04347308A (en) 1992-12-02
JP3029884B2 JP3029884B2 (en) 2000-04-10

Family

ID=14738883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11853091A Expired - Fee Related JP3029884B2 (en) 1991-05-23 1991-05-23 Waste heat recovery equipment

Country Status (1)

Country Link
JP (1) JP3029884B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000047874A1 (en) * 1999-02-11 2000-08-17 Bp Amoco Corporation Method of generating power using an advanced thermochemical recuperation cycle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000047874A1 (en) * 1999-02-11 2000-08-17 Bp Amoco Corporation Method of generating power using an advanced thermochemical recuperation cycle
US6223519B1 (en) 1999-02-11 2001-05-01 Bp Amoco Corporation Method of generating power using an advanced thermal recuperation cycle

Also Published As

Publication number Publication date
JP3029884B2 (en) 2000-04-10

Similar Documents

Publication Publication Date Title
US11939915B2 (en) Raw material fluid treatment plant and raw material fluid treatment method
US6367258B1 (en) Method and apparatus for vaporizing liquid natural gas in a combined cycle power plant
AU2004267168B2 (en) Method for increasing the efficiency of a gas turbine system, and gas turbine system suitable therefor
JP5086064B2 (en) Heat exchanger having an array of tubes
US7900431B2 (en) Process and plant for power generation
JP4718910B2 (en) Hydrogen production apparatus and hydrogen production method
US7493764B2 (en) Electric power generation/hydrogen production combination plant
JP7114764B2 (en) radiative syngas cooler
US20200095984A1 (en) Solar system for energy production
JP2554060B2 (en) Combined generation system
WO2023193477A1 (en) Thermoelectric decoupling system used for heat supply unit, and method
JPH04347308A (en) Exhaust heat recovery device
JP2004022230A (en) Fuel cell compound gas turbine system
JP7190079B2 (en) Fuel cell system with combined fuel vaporization and cathode gas heater unit and method of use and operation
DK2920834T3 (en) Cooled fuel cell plant comprising an absorption heater
JP5925105B2 (en) Saturator and natural gas reforming system having the same
KR101528222B1 (en) Mixed type steam generator and nuclear power plant having the same
Martelli et al. Design criteria and optimization of heat recovery steam cycles for high-efficiency, coal-fired, Fischer-Tropsch plants
JP2000133295A (en) Solid electrolyte fuel cell composite power generation plant system
CN114413245B (en) IGCC power plant heat accumulation, oxygen storage, energy storage and heat supply peak regulation system
JPH04366303A (en) Waste heat recovery boiler of natural circulation type
RU2166102C2 (en) Combined-cycle cogeneration process and combined- cycle plant implementing it
CN115585061B (en) All-weather cold-heat-power poly-generation system and method based on ammonia synthesis and cracking
CN217031144U (en) IGCC power plant heat-storage oxygen-storage energy-storage heat supply peak regulation system
RU2715073C1 (en) Combined cycle gas turbine with cooled diffuser

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000106

LAPS Cancellation because of no payment of annual fees