JPH0434700B2 - - Google Patents

Info

Publication number
JPH0434700B2
JPH0434700B2 JP58173834A JP17383483A JPH0434700B2 JP H0434700 B2 JPH0434700 B2 JP H0434700B2 JP 58173834 A JP58173834 A JP 58173834A JP 17383483 A JP17383483 A JP 17383483A JP H0434700 B2 JPH0434700 B2 JP H0434700B2
Authority
JP
Japan
Prior art keywords
liquid
degassing
flow path
deaeration
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58173834A
Other languages
Japanese (ja)
Other versions
JPS6064256A (en
Inventor
Osamu Oono
Hiroshi Umetsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP17383483A priority Critical patent/JPS6064256A/en
Publication of JPS6064256A publication Critical patent/JPS6064256A/en
Publication of JPH0434700B2 publication Critical patent/JPH0434700B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の利用分野〕 本発明は自動分析装置用脱気処理装置に係り、
特に脱気流路系からの脱気液を消費系へ供給する
ための脱気処理装置に関する。 〔発明の背景〕 自動分析装置においては、試料分注系や試薬分
注系を洗浄液で洗浄する必要がある。 第1図に洗浄水消費系の1つである従来の試薬
分注系の一例を示す。第1図における多連流路切
換弁(以下多連弁と略す)28は、シリンジ27
の吐出側流路と各退避チユーブ26a〜26hの
中のどれか1つとを選択的に導通する機能と、各
退避チユーブ26a〜26hへ導通する前にシリ
ンジ27の入口から弁の摺合せ面までの共通流路
を洗浄するときの廃液の機能とを有している。 シリンジ機構は、シリンジ27,駆動用ラツク
機構29および駆動用パルモータ30より構成し
てある。保冷庫31は、一点鎖線で示してあり、
保冷庫31の中に、各試薬瓶10a〜10hとス
イツチバツク式分注流路の大部分を収納してあ
る。3a〜3hは、試料および試薬を受け入れる
反応容器である。分注流路は、三方切換弁22a
〜22hと吸入チユーブ23a〜23hと吐出チ
ユーブ24a〜24hと吐入ノズル25a〜25
hとスイツチバンク用退避チユーブ26a〜26
hより構成される。 分析動作の開始前に、吸入チユーブ23a〜2
3h以外のすべての流路に残つている古い試薬を
洗浄,廃出する。すなわち、三方切換弁22a〜
22hをすべて吐出側に切り換えて、洗浄水供給
弁32を開き、多連弁28を順次Q1→Q0→Q2
Q0…Q7→Q0→Q8に切り換えてシリンジ27を経
て多連弁28を介して各スイツチバツク式分注流
路の退避チユーブ26a〜26hと吐出チユーブ
24a〜24hをすべて洗浄する。 洗浄水は、外部の洗浄水供給装置から流路49
を介してシリンジ27の方へ供給される。洗浄が
終了した後、すべての分注流路内の試薬を新しい
ものに置換する。 ところで、通常の自動分析装置では、洗浄水と
して脱イオン水あるいは蒸溜水を用いているが、
第1図における共通流路の洗浄を繰り返すと、シ
リンジ27内部を始めとする共通流路において、
微細な空気の気泡が発生し、これが時間の経過に
ともなつて蓄積され、シリンジ27の吸入,吐出
動作時に気泡がダンパーとして作用し、各試薬の
添加量の再現性を低下させるという問題を生ず
る。これは、供給される脱イオン水あるいは蒸溜
水は室温以下であるのに対して、自動分析装置内
部では種々の電気部品からの放熱によつて40〜50
℃に温度上昇しているため、溶存していた空気が
放出されて気泡となることによる。 〔発明の目的〕 本発明の目的は、溶存空気の脱気の程度が高い
液を分析装置の消費系へ供給することができる自
動分析装置用脱気処理装置を提供することにあ
る。 〔発明の概要〕 本発明は、脱気前の未処理液が導入される分岐
管を脱気流路系の入口側に設け、その脱気流路系
の出口側と脱気液断続消費系との間に脱気液が流
通し得る弁を設け、この弁が消費系への脱気液の
流れを阻止するときに脱気流路系からの脱気液の
流れを上記分岐管に導く循環路を設けたことを特
徴とする。 〔発明の実施例〕 第2図に、本発明の一実施例の構成を示す。第
2図の脱気処理装置は、自動分析装置において例
えば第1図に示された消費系に接続される。 脱気流路系は、気液トラツプ41,加熱槽4
2,気液分離槽となる分離トラツプ45、気体排
出弁46,送液ポンプとなるうず巻きポンプ4
7、およびトラツプ48を備えている。脱気流路
系の出口側にあるトラツプ48は、洗浄水供給弁
32に接続された流路49および分岐管40に接
続された循環路50に連結されている。 脱気流路系の入口側に設けられた分岐管40
は、循環用ジヨイントの働きを有する。この分岐
管40へは、外部の洗浄液供給源から脱気されて
いない未処理洗浄液が導入される。分岐管40の
出口は気液トラツプ41に接続される。 気液トラツプ41は、内径が供給管路よりも大
きい管状体からなり、分岐管40を経て供給され
る加圧洗浄水を減圧させることによつて溶存空気
の発泡を促す。加熱水槽42は、気液トラツプ4
1から出た洗浄水を加熱する機能を有する。加熱
水槽42内に収容された浴水がヒータ43によつ
て約55℃に加熱される。加熱水槽42内にはコイ
ル状に形成された流路44が浸漬されており、こ
の流路44内に通る洗浄水が加温されることによ
つて溶存空気の発泡が更に促進される。 発生した空気の気泡は気液トラツプ45の上方
に集まるので、気液トラツプの上方出口に接続し
た気体排出弁46を大気開放して溜つた空気を排
出する。気液トラツプ45の下部はポンプ47の
上部に接続されており、気泡と分離された液がポ
ンプ47に導入される。加温されている洗浄水
は、うず巻きポンプ47の羽根の高速回転によ
り、攪拌されると共に、流路49および循環路5
0へ送液される。うず巻きポンプ47の回転に伴
つて生じた気液の大部分は気液トラツプ45の上
方まで上昇する。 うず巻きポンプ47からトラツプ48に導かれ
た洗浄水は、トラツプ48の底部から流路49に
導かれ、気泡がほぼ完全に分離された脱気流浄水
として供給弁32を経てシリンジ27へ供給され
る。トラツプ48においても多少の気泡が生ずる
が、そのような気泡を含む洗浄水はトラツプ48
の上方から循環路50によつて脱気流路系の入口
側へ戻される。 洗浄水供給弁32が開状態のときの余分の洗浄
水も循環路50を通つて分岐管40から脱気流路
系内に戻される。洗浄水供給弁32が閉状態のと
きには、ポンプ47によつて送られるすべての洗
浄水が循環路50および分岐管40を経て脱気流
路系内に戻される。トラツプ48から出る洗浄水
は加温されているので、分岐管40において合流
される冷たい加圧洗浄水に温度変化を与え、その
加圧洗浄水内の溶存空気の気泡化を容易にする。 なお、気体排出弁46と洗浄水供給弁32とは
反対の動作をするようにしてある。すなわち、気
体排出弁46は、洗浄水供給弁32が開いて洗浄
のため洗浄水がシリンジ27へ通水されるときは
閉じており、洗浄水供給弁32が閉のときは一定
時間開となつて気体を排出する。この気体は大気
へ直接排出してもよいが、気体排出弁46の先に
真空ポンプを設け、分離トラツプ45を一定時間
減圧して気泡の発生を促進するようにしてもよ
い。 第1表は空気の主成分である窒素および酸素の
水への溶解度を示したものである。10℃の水は約
0.002923%(w/w)の空気を溶解している。そ
して、仮に水温が50℃に上昇すると、空気の溶解
度は0.001504%(w/w)まで減少するから、そ
の差分0.001419%分の空気が放出されることにな
る。したがつて、供給される脱イオン水(洗浄
水)の温度が10℃、装置内温度が50℃、洗浄水の
消費量が10/hrとすると、気泡発生量は約
0.1419g/hrとなり、50℃,1気圧において131
ml/hrの気泡が連続的に発生することになる。
[Field of Application of the Invention] The present invention relates to a degassing device for an automatic analyzer,
In particular, the present invention relates to a degassing device for supplying degassed liquid from a degassing channel system to a consumption system. [Background of the Invention] In an automatic analyzer, it is necessary to clean the sample dispensing system and the reagent dispensing system with a cleaning liquid. FIG. 1 shows an example of a conventional reagent dispensing system, which is one type of washing water consuming system. The multiple flow path switching valve (hereinafter abbreviated as multiple valve) 28 in FIG.
The function of selectively connecting the discharge side flow path with any one of the evacuation tubes 26a to 26h, and the function of selectively conducting the flow path from the inlet of the syringe 27 to the sliding surface of the valve before conducting to each evacuation tube 26a to 26h. It also has the function of waste liquid when cleaning the common flow path. The syringe mechanism is composed of a syringe 27, a driving rack mechanism 29, and a driving pulse motor 30. The cold storage 31 is indicated by a dashed line,
The reagent bottles 10a to 10h and most of the switchback type dispensing channels are stored in the cold storage 31. 3a to 3h are reaction vessels that receive samples and reagents. The dispensing flow path is a three-way switching valve 22a.
~22h, suction tubes 23a~23h, discharge tubes 24a~24h, and discharge nozzles 25a~25
h and switch bank evacuation tubes 26a to 26
Consists of h. Before starting the analysis operation, the suction tubes 23a-2
Clean and discard old reagents remaining in all channels except for 3h. That is, the three-way switching valve 22a~
22h to the discharge side, open the wash water supply valve 32, and open the multiple valve 28 in sequence Q 1 →Q 0 →Q 2
The sequence is changed to Q 0 ...Q 7 →Q 0 →Q 8 , and all the escape tubes 26a to 26h and discharge tubes 24a to 24h of each switchback type dispensing flow path are cleaned through the syringe 27 and the multiple valve 28. Washing water is supplied from an external washing water supply device to a flow path 49.
is supplied to the syringe 27 via the syringe 27. After washing is completed, replace the reagents in all the dispensing channels with new ones. By the way, in normal automatic analyzers, deionized water or distilled water is used as washing water.
When the cleaning of the common flow path in FIG. 1 is repeated, in the common flow path including the inside of the syringe 27,
Fine air bubbles are generated and accumulated over time, causing the problem that the bubbles act as a damper during the suction and discharge operations of the syringe 27, reducing the reproducibility of the amount of each reagent added. . This is because while the supplied deionized water or distilled water is below room temperature, inside the automatic analyzer the temperature is 40-50°C due to heat dissipation from various electrical components.
As the temperature rises to ℃, dissolved air is released and becomes bubbles. [Object of the Invention] An object of the present invention is to provide a degassing device for an automatic analyzer that can supply a liquid with a high degree of deaeration of dissolved air to the consumption system of the analyzer. [Summary of the Invention] The present invention provides a branch pipe into which the untreated liquid before degassing is introduced at the inlet side of the degassing flow path system, and connecting the outlet side of the degassing flow path system and the degassing liquid intermittent consumption system. A valve through which the degassed liquid can flow is provided between the valves, and when this valve blocks the flow of the degassed liquid to the consumption system, a circulation path is provided that guides the flow of the degassed liquid from the degassing channel system to the branch pipe. It is characterized by having been established. [Embodiment of the Invention] FIG. 2 shows the configuration of an embodiment of the present invention. The degassing device shown in FIG. 2 is connected to, for example, the consumption system shown in FIG. 1 in an automatic analyzer. The degassing channel system includes a gas-liquid trap 41 and a heating tank 4.
2. Separation trap 45 that serves as a gas-liquid separation tank, gas discharge valve 46, and whirlpool pump 4 that serves as a liquid pump.
7, and a trap 48. A trap 48 on the outlet side of the degassing channel system is connected to a channel 49 connected to the wash water supply valve 32 and a circulation channel 50 connected to the branch pipe 40. Branch pipe 40 provided on the inlet side of the degassing channel system
has the function of a circulation joint. Undegassed, untreated cleaning liquid is introduced into this branch pipe 40 from an external cleaning liquid supply source. The outlet of the branch pipe 40 is connected to a gas-liquid trap 41. The gas-liquid trap 41 is made of a tubular body having an inner diameter larger than that of the supply pipe, and promotes foaming of dissolved air by reducing the pressure of the pressurized washing water supplied through the branch pipe 40. The heating water tank 42 is a gas-liquid trap 4
It has the function of heating the washing water discharged from 1. Bath water contained in the heating water tank 42 is heated to about 55° C. by the heater 43. A coil-shaped channel 44 is immersed in the heated water tank 42, and the washing water passing through the channel 44 is heated to further promote foaming of dissolved air. Since the generated air bubbles gather above the gas-liquid trap 45, the gas discharge valve 46 connected to the upper outlet of the gas-liquid trap is opened to the atmosphere to discharge the accumulated air. The lower part of the gas-liquid trap 45 is connected to the upper part of the pump 47, and the liquid separated from the bubbles is introduced into the pump 47. The heated cleaning water is stirred by the high-speed rotation of the blades of the centrifugal pump 47, and is also circulated through the flow path 49 and the circulation path 5.
The liquid is sent to 0. Most of the gas and liquid generated as the centrifugal pump 47 rotates rises above the gas-liquid trap 45. The wash water led from the centrifugal pump 47 to the trap 48 is led from the bottom of the trap 48 to a flow path 49, and is supplied to the syringe 27 via the supply valve 32 as degassed clean water from which air bubbles have been almost completely separated. Some air bubbles are also generated in the trap 48, but the cleaning water containing such air bubbles is removed from the trap 48.
The air is returned from above to the inlet side of the degassing channel system by the circulation path 50. Excess wash water when the wash water supply valve 32 is in the open state is also returned to the degassing flow path system from the branch pipe 40 through the circulation path 50. When the wash water supply valve 32 is in the closed state, all the wash water sent by the pump 47 is returned to the degassing flow path system through the circulation path 50 and the branch pipe 40. Since the wash water exiting the trap 48 is heated, it imparts a temperature change to the cold pressurized wash water that is joined in the branch pipe 40, facilitating the formation of bubbles of air dissolved in the pressurized wash water. Note that the gas discharge valve 46 and the wash water supply valve 32 are designed to operate in opposite directions. That is, the gas discharge valve 46 is closed when the wash water supply valve 32 is opened and wash water is passed to the syringe 27 for washing, and remains open for a certain period of time when the wash water supply valve 32 is closed. to release the gas. This gas may be discharged directly to the atmosphere, or a vacuum pump may be provided at the end of the gas discharge valve 46 to reduce the pressure in the separation trap 45 for a certain period of time to promote the generation of bubbles. Table 1 shows the solubility of nitrogen and oxygen, which are the main components of air, in water. Water at 10℃ is approx.
Dissolves 0.002923% (w/w) of air. If the water temperature were to rise to 50°C, the solubility of air would decrease to 0.001504% (w/w), so the difference in air solubility would be 0.001419%. Therefore, if the temperature of the supplied deionized water (washing water) is 10°C, the temperature inside the device is 50°C, and the washing water consumption is 10/hr, the amount of bubbles generated will be approximately
0.1419g/hr, 131 at 50℃, 1 atm
ml/hr of bubbles will be generated continuously.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、脱気流
路系において一旦脱気した液を再び脱気流路系に
戻して再脱気することが可能となるから、自動分
析装置の脱気液消費系へ供給する液の脱気の程度
が高くなる。また、脱気未処理液の消耗量を減ず
ることができる。
As explained above, according to the present invention, the liquid once degassed in the degassing channel system can be returned to the degassing channel system and degassed again. The degree of degassing of the liquid supplied to the system increases. Further, the amount of consumption of untreated degassed liquid can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は自動分析装置における試薬分注系の例
を示す図、第2図は本発明の一実施例の脱気処理
装置を示す流路構成図である。 27……シリンジ、32……洗浄水供給弁、4
0……分岐管、41……気液トラツプ、42……
加熱水槽、45……分離トラツプ、46……気体
排出弁、47……ポンプ、48……トラツプ、5
0……循環路。
FIG. 1 is a diagram showing an example of a reagent dispensing system in an automatic analyzer, and FIG. 2 is a flow path configuration diagram showing a degassing device according to an embodiment of the present invention. 27...Syringe, 32...Washing water supply valve, 4
0... Branch pipe, 41... Gas-liquid trap, 42...
Heating water tank, 45... Separation trap, 46... Gas discharge valve, 47... Pump, 48... Trap, 5
0... Circulation route.

Claims (1)

【特許請求の範囲】[Claims] 1 気液分離槽および送液ポンプを備えた脱気流
路系と、上記脱気流路系からの脱気液を断続的に
消費する消費系とを有する自動分析装置用脱気処
理装置において、脱気される前の未処理液が導入
される分岐管を上記脱気流路系の入口側に設け、
上記脱気流路系の出口側と上記消費系との間に脱
気液が流通し得る弁を設け、上記弁が上記消費系
への脱気液の流れを阻止するときに上記脱気流路
系からの脱気液の流れを上記分岐管に導く循環路
を設けたことを特徴とする自動分析装置用脱気処
理装置。
1. In a degassing processing device for an automatic analyzer, which has a degassing channel system equipped with a gas-liquid separation tank and a liquid sending pump, and a consumption system that intermittently consumes the degassing liquid from the degassing channel system, A branch pipe into which the untreated liquid is introduced before being aerated is provided on the inlet side of the degassing channel system,
A valve through which degassed liquid can flow is provided between the outlet side of the deaeration flow path system and the consumption system, and when the valve blocks the flow of the deaeration liquid to the consumption system, the deaeration flow path system A deaeration processing device for an automatic analyzer, characterized in that a circulation path is provided for guiding a flow of deaeration liquid from the degassing liquid to the branch pipe.
JP17383483A 1983-09-19 1983-09-19 Automatic analytical apparatus Granted JPS6064256A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17383483A JPS6064256A (en) 1983-09-19 1983-09-19 Automatic analytical apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17383483A JPS6064256A (en) 1983-09-19 1983-09-19 Automatic analytical apparatus

Publications (2)

Publication Number Publication Date
JPS6064256A JPS6064256A (en) 1985-04-12
JPH0434700B2 true JPH0434700B2 (en) 1992-06-08

Family

ID=15968016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17383483A Granted JPS6064256A (en) 1983-09-19 1983-09-19 Automatic analytical apparatus

Country Status (1)

Country Link
JP (1) JPS6064256A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010001644A1 (en) * 2008-07-02 2010-01-07 オリンパス株式会社 Dispensing device

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2512828Y2 (en) * 1990-02-08 1996-10-02 日本テクトロン株式会社 Water treatment mechanism in automatic analyzer
CN106238389B (en) * 2016-09-14 2019-04-30 国家电网公司 All-glass syringe ultrasonic clean scrubs machine
CN106269652B (en) * 2016-09-14 2019-01-11 国家电网公司 Chromatographic injector needle core cleaning equipment
CN106180052B (en) * 2016-09-14 2018-09-11 国家电网公司 The transmission device of electric power oiling experiment cleaning equipment
CN106345734B (en) * 2016-09-14 2018-08-14 国家电网公司 Clean the discharging unit of electric power oiling experiment syringe
CN106391553B (en) * 2016-09-14 2018-10-12 国家电网公司 The cleaning equipment of electric power oiling experiment needle guard
CN106238388B (en) * 2016-09-14 2018-05-11 国家电网公司 The control system of chromatographic injector needle core cleaning equipment
CN106216302B (en) * 2016-09-14 2018-10-12 国家电网公司 All-glass syringe supersonic cleaning scrubs the control system of machine
CN106216319B (en) * 2016-09-14 2018-05-11 国家电网公司 All-glass syringe supersonic cleaning scrubs the washing tool of machine
CN108614097B (en) * 2018-04-04 2020-12-22 安徽昌信生物质能源有限公司 Analysis cartridge for analyzing a biological fluid sample

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5519198A (en) * 1978-07-24 1980-02-09 Cordis Dow Corp Device for preparing dialysis liquid used for blood dialysis and its method
JPS5768184A (en) * 1980-10-17 1982-04-26 Hitachi Ltd Cleaning-up method and its device
JPS57208460A (en) * 1981-06-19 1982-12-21 Toshiba Corp Analyzer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5519198A (en) * 1978-07-24 1980-02-09 Cordis Dow Corp Device for preparing dialysis liquid used for blood dialysis and its method
JPS5768184A (en) * 1980-10-17 1982-04-26 Hitachi Ltd Cleaning-up method and its device
JPS57208460A (en) * 1981-06-19 1982-12-21 Toshiba Corp Analyzer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010001644A1 (en) * 2008-07-02 2010-01-07 オリンパス株式会社 Dispensing device
JP2010014490A (en) * 2008-07-02 2010-01-21 Olympus Corp Dispenser
US8449840B2 (en) 2008-07-02 2013-05-28 Beckman Coulter, Inc. Dispensing device

Also Published As

Publication number Publication date
JPS6064256A (en) 1985-04-12

Similar Documents

Publication Publication Date Title
JPH0434700B2 (en)
EP0042591A1 (en) Circuit for washing a water-feed system in automatic beverage vending machines
US6045698A (en) Method for cleaning a filtration installation of the type with immersed membranes
US4955992A (en) Liquid degassing system
JPS6147094B2 (en)
US5322082A (en) Ultrasonic cleaning apparatus
US2366369A (en) Method and apparatus for treating pipettes and the like
JP2659914B2 (en) Automatic priming method and apparatus for blood purification circuit
JPH02267288A (en) Etching liquid regenerator
JP3110618U (en) Automatic analyzer
JPS625351A (en) Apparatus for electrochemically sterilizing liquid
JPS63130107A (en) Automatic deaerator
US927893A (en) Beer-pipe-cleaning apparatus.
JPH07174765A (en) Dispenser
JP3517134B2 (en) Substrate processing equipment
JP2000245753A (en) Dental treatment device
JPS5867339A (en) Reaction vessel
GB2063660A (en) Washing apparatus with water softening means
JP3610111B2 (en) Electrolyte solution analyzer and electrolyte solution analysis method
KR19980035988U (en) Impurity washing and removing device in pipe
JPH01151434A (en) Apparatus for washing and disinfecting endoscope
JPS5840138A (en) Chemical liquid supply and discharge apparatus in one tank type embedding apparatus
CN117655008A (en) CIP cleaning method and cleaning system
Taylor et al. A rapid circulating dialyzer
JPH0942599A (en) Carrying device for degassed liquid