JPH04346418A - 半導体基材の作製方法 - Google Patents

半導体基材の作製方法

Info

Publication number
JPH04346418A
JPH04346418A JP3148164A JP14816491A JPH04346418A JP H04346418 A JPH04346418 A JP H04346418A JP 3148164 A JP3148164 A JP 3148164A JP 14816491 A JP14816491 A JP 14816491A JP H04346418 A JPH04346418 A JP H04346418A
Authority
JP
Japan
Prior art keywords
porous
layer
single crystal
substrate
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3148164A
Other languages
English (en)
Inventor
Kiyobumi Sakaguchi
清文 坂口
Takao Yonehara
隆夫 米原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP3148164A priority Critical patent/JPH04346418A/ja
Priority to CA002061264A priority patent/CA2061264C/en
Priority to EP92301252A priority patent/EP0499488B9/en
Priority to US07/835,381 priority patent/US5767020A/en
Priority to AT92301252T priority patent/ATE244931T1/de
Priority to SG9901639A priority patent/SG93197A1/en
Priority to MYPI92000239A priority patent/MY114349A/en
Priority to SG1996006372A priority patent/SG47089A1/en
Priority to JP05911892A priority patent/JP3347354B2/ja
Priority to EP03076425A priority patent/EP1347505A3/en
Priority to KR92002263A priority patent/KR960007640B1/ko
Priority to CN92101589A priority patent/CN1037727C/zh
Publication of JPH04346418A publication Critical patent/JPH04346418A/ja
Priority to CN93118894A priority patent/CN1099905A/zh
Priority to US08/472,270 priority patent/US6171512B1/en
Priority to CN 97105478 priority patent/CN1099698C/zh
Priority to US09/298,054 priority patent/US6254794B1/en
Priority to US09/298,056 priority patent/US6238586B1/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、半導体基材の作製方法
に関し、特に、誘電体分離あるいは、絶縁物上の単結晶
半導体層に作成された電子デバイス、集積回路に適する
半導体基材の作製方法に好適に用いられるものである。
【0002】
【従来の技術】絶縁物上の単結晶Si半導体層の形成は
、シリコン  オン  インシュレーター(SOI)技
術として広く知られ、通常のSi集積回路を作製するバ
ルクSi基板では到達しえない数々の優位点をSOI技
術を利用したデバイスが有することから多くの研究が成
されてきた。すなわち、SOI技術を利用することで、
■.誘電体分離が容易で高集積化が可能、■.対放射線
耐性に優れている、 ■.浮遊容量が低減され高速化が可能、■.ウエル工程
が省略できる、 ■.ラッチアップを防止できる、 ■.薄膜化による完全空乏型電界効果トランジスタが可
能、等の優位点が得られる。
【0003】上記したようなデバイス特性上の多くの利
点を実現するために、ここ数十年に渡り、SOI構造の
形成方法について研究されてきている。この内容は、例
えば、  Special Issue: ”Sing
le−crystal silicon on non
−single−crystal insulator
s”; edited by G.W.Cullen,
 Journal of Crystal Growt
h, volume 63, no 3,pp 429
〜590 (1983). にまとめられている。
【0004】また、古くは、単結晶サファイア基板上に
、SiをCVD(化学気相法)で、ヘテロエピタキシー
させて形成するSOS(シリコン  オン  サファイ
ア)が知られており、最も成熟したSOI技術として一
応の成功を収めはしたが、Si層と下地サファイア基板
界面の格子不整合により大量の結晶欠陥、サファイア基
板からのアルミニュームのSi層への混入、そして何よ
りも基板の高価格と大面積化への遅れにより、その応用
の広がりが妨げられている。比較的近年には、サファイ
ア基板を使用せずにSOI構造を実現しようという試み
が行なわれている。この試みは、次の二つに大別される
。(1)Si単結晶基板を表面酸化後に、窓を開けてS
i基板を部分的に表出させ、その部分をシードとして横
方向へエピタキシャル成長させ、SiO2 上へSi単
結晶層を形成する(この場合には、SiO2 上にSi
層の堆積をともなう。)。(2)Si単結晶基板そのも
のを活性層として使用し、その下部にSiO2 を形成
する(この方法は、Si層の堆積をともなわない。)。
【0005】
【発明が解決しようとしている課題】上記(1)を実現
する手段として、CVD法により、直接、単結晶層Si
を横方向エピタキシャル成長させる方法、非晶質Siを
堆積して、熱処理により固相横方向エピタキシャル成長
させる方法、非晶質あるいは、多結晶Si層に電子線、
レーザー光等のエネルギービームを収束して照射し、溶
融再結晶により単結晶層をSiO2 上に成長させる方
法、そして、棒状ヒーターにより帯状に溶融領域を走査
する方法(Zone melting recryst
allization) が知られている。これらの方
法にはそれぞれ一長一短があるが、その制御性、生産性
、均一性、品質に多大の問題を残しており、いまだに、
工業的に実用化したものはない。たとえば、CVD法は
平坦薄膜化するには、犠牲酸化が必要となり、固相成長
法ではその結晶性が悪い。また、ビームアニール法では
、収束ビーム走査による処理時間と、ビームの重なり具
合、焦点調整などの制御性に問題がある。このうち、Z
one Melting Recrystalliza
tion法がもっとも成熟しており、比較的大規模な集
積回路も試作されてはいるが依然として、亜粒界等の結
晶欠陥は、多数残留しており、少数キャリヤーデバイス
を作成するにいたってない。
【0006】上記(2)の方法であるSi基板をエピタ
キシャル成長の種子として用いない方法に於ては、次の
3種類の方法が挙げられる。
【0007】■.V型の溝が表面に異方性エッチングさ
れたSi単結晶基板に酸化膜を形成し、該酸化膜上に多
結晶Si層をSi基板と同じ程厚く堆積した後、Si基
板の裏面から研磨によって、厚い多結晶Si層上にV溝
に囲まれて誘電分離されたSi単結晶領域を形成する方
法である。この方法に於ては、結晶性は、良好であるが
、多結晶Siを数百ミクロンも厚く堆積する工程と、単
結晶Si基板を裏面より研磨して分離したSi活性層の
みを残す工程とを要するために、制御性及び生産性の点
から問題がある。
【0008】■.サイモックス(SIMOX:Sepe
ration by ion implanted o
xygen) と称されるSi単結晶基板中に酸素のイ
オン注入によりSiO2 層を形成する方法であり、S
iプロセスと整合性が良いため現在もっとも成熟した方
法である。しかしながら、SiO2 層形成をするため
には、酸素イオンを1018ions/cm2 以上も
注入する必要があり、その注入時間は長大であり、生産
性は高いとはいえず、また、ウエハーコストは高い。更
に、結晶欠陥は多く残存し、工業的に見て、少数キャリ
ヤーデバイスを作製できる充分な品質に至っていない。
【0009】■.多孔質Siの酸化による誘電体分離に
よりSOI構造を形成する方法である。この方法は、P
型Si単結晶基板表面にN型Si層をプロトンイオン注
入(イマイ他, J.Crystal Growth,
vol 63,547(1983) ), もしくは、
エピタキシャル成長とパターニングによって島状に形成
し、表面よりSi島を囲むようにHF溶液中の陽極化成
法によりP型のSi基板のみを多孔質化したのち、増速
酸化によりN型Si島を誘電体分離する方法である。本
方法では、分離されているSi領域は、デバイス工程の
まえに決定されており、デバイス設計の自由度を制限す
る場合があるという問題点がある。
【0010】本発明は、上記したような問題点及び上記
したような要求に応える半導体基板を作製する半導体基
材の作製方法を提供することを目的とする。また、本発
明は、シリコン基体の絶縁面上に結晶性が単結晶ウエハ
ー並に優れた単結晶を得ることができ、且つ生産性、均
一性、制御性、コストの面において卓越した半導体基材
の作製方法を提供することを目的とする。更に本発明は
、従来のSOI構造の利点を実現し、応用可能な半導体
基材の作製方法を提供することも目的とする。また、本
発明は、SOI構造の大規模集積回路を作製する際にも
、高価なSOSや、SIMOXの代替たり得る半導体基
材の作製方法を提供することを目的とする。
【0011】
【課題を解決するための手段】本発明の半導体基材の作
製方法は、シリコン基体を多孔質化する工程と、該多孔
質化したシリコン基体上に非多孔質シリコン単結晶層を
形成する工程と、該非多孔質シリコン単結晶層の表面に
酸化層を形成する工程と、該非多孔質シリコン単結晶層
上の酸化層表面を、表面に絶縁物を有するもう一方のシ
リコン基体に貼り合わせてのち、弗酸に浸すことによっ
て該多孔質化したシリコン基体を無電解湿式化学エッチ
ングにより除去する工程と、を有することを特徴とする
【0012】また、本発明の半導体基材の作製方法は、
一方の面側をN型にしたシリコン基体の他方の面側を多
孔質化する工程と、N型の非多孔質シリコン単結晶表面
に酸化層を形成する工程と、該酸化層表面を、表面に絶
縁物を有するもう一方のシリコン基体に貼り合わせての
ち、弗酸に浸すことによって多孔質化したシリコン領域
を無電解湿式化学エッチングにより除去する工程と、を
有することを特徴とする。
【0013】ここで、絶縁物を有するもう一方のシリコ
ン基体は、トランジスタ等の電子回路素子、Al等の電
極配線が形成されたものも含めるものとする。
【0014】以下、本発明について実施態様例に基づい
て説明するが、まず、本発明の理解を容易化するために
、多孔質Si及びそのエッチングについての従来技術に
ついて説明する。
【0015】本発明において用いる多孔質Siは、Uh
lir 等によって1956年に半導体の電解研磨の研
究過程に於て発見された(A.Uhlir, Bell
 Syst.Tech.J., vol 35,p.3
33(1956)) 。また、ウナガミ等は、陽極化成
におけるSiの溶解反応を研究し、HF溶液中のSiの
陽極反応には正孔が必要であり、その反応は、次のよう
であると報告している(T.ウナガミ: J. Ele
ctrochem.Soc., vol. 127, 
p.476 (1980) )。
【0016】 Si + 2HF + (2−n)e+  →  Si
F2 + 2H+ + ne−SiF2 + 2HF 
 →  SiF4 + H2SiF4 + 2HF  
→  H2SiF6又は、 Si + 4HF + (4−λ)e+ →  SiF
4+ 4H+ +  λe−SiF4 + 2HF  
→  H2SiF6ここで、e+ 及び、e− はそれ
ぞれ、正孔と電子を表している。また、n及びλは夫々
シリコン1原子が溶解するために必要な正孔の数であり
、n>2又は、λ>4なる条件が満たされた場合に多孔
質シリコンが形成されるとしている。
【0017】以上のことから、正孔の存在するP型シリ
コンは、多孔質化されるが、N型シリコンは多孔質化さ
れない。この多孔質化に於ける選択性は、長野ら及びイ
マイによって実証されている(長野、中島、安野、大中
、梶原; 電子通信学会技術研究報告、vol 79,
SSD 79−9549(1979)、(K.イマイ;
Solid−State Electronicsvo
l24,159 (1981))。
【0018】しかし、高濃度N型Siであれば多孔質化
されるという報告もあり(R.P.Holmstrom
 and J.Y.Chi. Appl.Phys.L
ett. Vol.42,386(1983) )、P
型、N型の別にこだわらず、多孔質化を実現できる基板
を選ぶことが重要である。
【0019】また、多孔質層はその内部に大量の空隙が
形成されているために、密度が半分以下に減少する。そ
の結果、体積に比べて表面積が飛躍的に増大するため、
その化学エッチング速度は、通常の単結晶層のエッチン
グ速度に比べて、著しく増速される。
【0020】次に、上記多孔質Siの化学エッチングに
よる除去について論じる。一般に、 P=(2. 33−A)/2. 33        
 (1)をPorosityといい、陽極化成時に、こ
の値を30〜55%に調節することによって、酸化多孔
質Siを単結晶Siの酸化膜と同程度の質にすることが
できる。Porosityは、P=( m1 −m2)
/(m1 −m3)           (2)また
は、 P=( m1 −m2)/ ρAt         
      (3)m1 :陽極化成前の全重量 m2 :陽極化成後の全重量 m3 :多孔質Siを除去した後の全重量ρ  :単結
晶Siの密度 A  :多孔質化した面積 t  :多孔質Siの厚さ で表されるが、多孔質化する領域の面積を正確に算出で
きない場合も多々ある。この場合は、式 (2) が有
効であるが、m3 を測定するためには、多孔質Siを
エッチングしなければならない。
【0021】また、上記した多孔質Si上のエピタキシ
ャル成長において、多孔質Siはその構造的性質のため
、ヘテロエピタキシャル成長の際に発生する歪みを緩和
して、欠陥の発生を抑制することが可能である。しかし
ながら、この場合も、多孔質SiのPorosityが
非常に重要なパラメーターとなることは明らかである。 したがって、上記のPorosityの測定は、この場
合も必要不可欠である。
【0022】多孔質Siをエッチングする方法としては
、■.NaOH水溶液で多孔質Siをエッチングする(
G.Bonchil,R.Herino,K.Barl
a,and J.C.Pfister, J.Elec
trochem.Soc., vol.130, no
.7, 1611(1983) )。■.単結晶Siを
エッチングすることが可能なエッチング液で多孔質Si
をエッチングする。が知られている。
【0023】上記■の方法は、通常、フッ硝酸系のエッ
チング液が用いられるが、このときのSiのエッチング
過程は、Si + 2O  → Si O2Si O2
 +4 HF  →  Si F4 +H2 Oに示さ
れる様に、Siが硝酸で酸化され、Si O2 に変質
し、そのSi O2 をフッ酸でエッチングすることに
よりSiのエッチングが進む。
【0024】しかしながら,上記■の方法のようなエッ
チングの場合、多孔質Siをエッチングすることはでき
るが、結晶Siもエッチングされてしまう。
【0025】同様に結晶Siをエッチングする方法とし
ては、上記フッ硝酸系エッチング液の他に、エチレンジ
アミン系 KOH系 ヒドラジン系 などがある。
【0026】これらのことから、多孔質Siの選択エッ
チングを行うためには、上記Siエッチング液以外で多
孔質Siをエッチングすることのできるエッチング液を
選ぶ必要がある。
【0027】従来行われている多孔質Siの選択エッチ
ングは、上記■の方法となるNaOH水溶液をエッチン
グ液としたエッチングのみである。
【0028】しかしながら、従来行われているNaOH
水溶液を用いた多孔質Siの選択エッチング方法では、
Naイオンがエッチング表面に吸着することは避けられ
ない。このNaイオンは、不純物汚染の主たる原因とな
り、界面準位を形成するなどの悪影響を与えるのみで、
半導体プロセスにおいて導入されてはならない物質であ
る。
【0029】本発明は、以上説明した多孔質Si及びそ
のエッチングについての従来技術に鑑みなされたもので
ある。
【0030】ここで、前述した多孔質Si層には、透過
電子顕微鏡による観察によれば、平均約600オングス
トローム程度の径の孔が形成されており、その密度は単
結晶Siに比べると、半分以下になるにもかかわらず、
単結晶性は維持されており、多孔質層の上部へ単結晶S
i層をエピタキシャル成長させることも可能である。た
だし、1000℃以上では、内部の孔の再配列が起こり
、増速エッチングの特性が損なわれる。このため、Si
層のエピタキシャル成長には、分子線エピタキシャル成
長法、プラズマCVD法、熱CVD法、光CVD法、バ
イアス・スパッター法、液相成長法等の低温成長が好適
とされる。
【0031】また、正孔の存在するP型シリコンは、多
孔質化されやすく、選択的にP型シリコンを多孔質化す
ることができる。なお高濃度N型Siであれば多孔質化
することも可能であるとの報告もあり、P型、N型の別
にこだわらず、多孔質化を実現できる基板を選ぶことが
重要である。
【0032】さらに多孔質はその内部に大量の空隙が形
成されているために、体積に比べて表面積が飛躍的に増
大するため、その化学エッチング速度は、通常の単結晶
層のエッチング速度に比べて、著しく増速される。
【0033】本発明は、このような多孔質シリコン層の
性質を利用するともに、この多孔質シリコンを単結晶シ
リコンに対して選択的にエッチング可能なエッチング液
を用いた半導体基材の作製方法を提供するものである。 本発明において用いられるエッチング液は、弗酸であり
、かかる弗酸は汚染がきわめて少なく半導体プロセス上
悪影響をおよぼすことなく、非多孔質シリコンをエッチ
ングせずに、効率よく、均一に、多孔質シリコンを選択
的に化学エッチングすることができる。なお、弗酸を用
いた無電解湿式化学エッチングについての説明の詳細に
ついては後述する。
【0034】本発明の特徴とするところは、シリコン基
体を多孔質化し、この多孔質化した基体上に結晶性の優
れた非多孔質シリコン単結晶層を形成するか、或は一方
の面側をN型にしたシリコン基体の他方の面側を多孔質
化することで、多孔質シリコン領域上に結晶性の優れた
非多孔質シリコン単結晶層を形成し、この非多孔質シリ
コン単結晶層に酸化層を形成して、表面に絶縁物が形成
されたシリコン基体の該絶縁表面に貼り合せて、絶縁面
上に結晶性の優れた非多孔質シリコン単結晶層を形成し
、該多孔質化により通常の単結晶層に比べて著しくエッ
チング速度が増速された多孔質化シリコン基体(又は多
孔質化シリコン領域)を非多孔質シリコン単結晶層を残
して、弗酸を用いて除去することにある。
【0035】本発明においては、経済性に優れて、大面
積に渡り均一平坦で、欠陥の著しく少ない極めて優れた
結晶性を有するシリコン単結晶を、絶縁物が形成された
シリコン基体の絶縁面上に形成することができる。
【0036】以下、本発明の実施態様例について説明す
る。 (実施態様例1)なお、ここでは、Si基板の全てを多
孔質化した後に単結晶層をエピタキシャル成長させた場
合について説明する。
【0037】図1〜図3は本発明の半導体基材の作製方
法の第1の実施態様例を説明するための工程図である。
【0038】図1に示すように、先ず、Si単結晶基板
を用意して、その全部を多孔質化する(11)。種々の
成長法により、エピタキシャル成長を多孔質化した基板
表面に行い、薄膜単結晶層12を形成する。Si基板は
、HF溶液を用いた陽極化成法によって、多孔質化させ
る。この多孔質Si層は、単結晶Siの密度2.33g
/cm3に比べて、その密度をHF溶液濃度を50〜2
0%に変化させることで密度1.1〜0.6g/cm3
の範囲に変化させることができる。この多孔質Si層は
、透過電子顕微鏡による観察によれば、平均約600オ
ングストローム程度の径の孔が形成される。
【0039】次に図2に示すように、もう一つのSi基
板13を用意して、その表面に絶縁物14を形成した後
、多孔質Si基板上の単結晶Si層上に形成した酸化層
15表面に、該絶縁物14を表面に持つSi基板を貼り
つける。絶縁物14は、Siの絶縁層はもちろんのこと
、堆積されたシリコン酸化物、窒化物、酸化窒化物、酸
化タンタル等が適用される。この貼り付け工程は、洗浄
した表面同志を密着させ、その後酸素雰囲気あるいは、
窒素雰囲気中で加熱する。また、酸化層15は、最終的
な活性層である単結晶層12の界面準位を低減させるた
めに形成する。次に図3に示すように、多孔質Si基板
11を全部、弗酸に浸し撹はんすることによって、多孔
質Siのみを無電解湿式化学エッチングして絶縁物上に
薄膜化した単結晶シリコン層を残存させ形成する。 図3は本発明で得られる半導体基板が示される。絶縁物
14、酸化層15を介した絶縁物基板13上に結晶性が
シリコンウエハーと同等な単結晶Si層12が平坦に、
しかも均一に薄層化されて、ウエハー全域に、大面積に
形成される。
【0040】こうして得られた半導体基板は、絶縁分離
された電子素子作製という点から見ても好適に使用する
ことができる。
【0041】弗酸による、多孔質Siのみを無電解湿式
エッチングする選択エッチング法について、以下に述べ
る。
【0042】図4に、多孔質Siと単結晶Siを49%
弗酸に撹はんしながら浸潤したときのエッチングされた
多孔質Siと単結晶Siの厚みのエッチング時間依存性
を示す。多孔質Siは単結晶Siを陽極化成によって作
成し、その条件を以下にしめす。陽極化成によって形成
する多孔質Siの出発材料は、単結晶Siに限定される
ものではなく、他の結晶構造のSiでも可能である。
【0043】印加電圧:          2.6(
V)電流密度:          30  (mA・
cm−2 )陽極化成溶液:HF:H2O:C2H5O
H=1:1:1時間:              2
. 4  (時間)多孔質Siの厚み:  300(μ
m)Porosity:    56(%)上記条件に
より作成した多孔質Siを室温において49%弗酸(白
丸)に撹はんしながら浸潤した。のちに、該多孔質Si
の厚みの減少を測定した。多孔質Siは急速にエッチン
グされ、40分ほどで90μm、更に、80分経過させ
ると205μmも、高度の表面性を有して、均一にエッ
チングされる。エッチング速度は溶液濃度及び、温度に
依存する。
【0044】また、500μm厚の非多孔質Siを室温
において49%弗酸(黒丸)に撹はんしながら浸潤した
。のちに、該非多孔質Siの厚みの減少を測定した。 非多孔質Siは、120分経過した後にも、50オング
ストローム以下しかエッチングされなかった。
【0045】エッチング後の多孔質Siと非多孔質Si
を水洗し、その表面を二次イオンにより微量分析したと
ころ何等不純物は検出されなかった。
【0046】溶液濃度および温度の条件は、本願では、
一例として、49%弗酸、室温の場合について取り上げ
たが、本発明はかかる条件に限定されるものではなく、
多孔質Siのエッチング速度および多孔質Siと非多孔
質Siとのエッチングの選択比が製造工程等で実用上差
し支えない範囲で設定される。好ましくは、弗酸濃度は
5%〜95%、温度は通常用いられる温度で行われる。
【0047】(実施態様例2)以下、本発明の半導体基
材の作製方法の第2の実施態様例を図面を参照しながら
詳述する。
【0048】図5〜図8は本発明の半導体基材の作製方
法の第2の実施態様例を説明するための工程図で、夫々
各工程に於ける模式的切断面図として示されている。
【0049】先ず図5に示される様に種々の薄膜成長法
によるエピタキシャル成長によりP型Si単結晶基板3
1上に低不純物濃度層32を形成する。或は、P型Si
単結晶基板31の表面をプロトンをイオン注入してN型
単結晶層32を形成する。
【0050】次に、図6に示される様にP型Si単結晶
基板31を裏面よりHF溶液を用いた陽極化成法によっ
て、多孔質Si基板33に変質させる。この多孔質Si
層は、単結晶Siの密度2.33g/cm3に比べて、
その密度をHF溶液濃度を50〜20%に変化させるこ
とで密度1.1〜0.6g/cm3の範囲に変化させる
ことができる。この多孔質層は、既に述べたように、P
型基板に形成される。
【0051】図7に示すように、もう一つのSi基板3
4を用意して、その表面に絶縁物35を形成した後、多
孔質Si基板上の単結晶Si層上に形成した酸化層36
の表面に、該絶縁物35を持つSi基板34を貼りつけ
る。その後に、多孔質シリコン基板を全部、弗酸に浸し
、撹はんすることによって、多孔質Siのみを無電解湿
式化学エッチングして絶縁物上に薄膜化した単結晶シリ
コン層を残存させ形成する。
【0052】図8には本発明で得られる半導体基板が示
される。酸化層36、絶縁物35を介した絶縁物基板3
4上に結晶性がシリコンウエハーと同等な単結晶Si層
32が平坦に、しかも均一に薄層化されて、ウエハー全
域に、大面積に形成される。こうして得られた半導体基
板は、絶縁分離された電子素子作製という点から見ても
好適に使用することができる。
【0053】陽極化成の条件、無電解湿式化学エッチン
グにおける溶液濃度および温度の条件等は、実施態様例
1で示した条件と同様である。
【0054】以上は、多孔質化を行う前にN型層を形成
し、その後、陽極化成により選択的に、P型基板のみを
多孔質化する方法である。
【0055】
【実施例】以下、具体的な実施例によって本発明を説明
する。 (実施例1)200ミクロンの厚みを持ったP型(10
0 )単結晶Si基板をHF溶液中において陽極化成を
行った。
【0056】陽極化成条件は以下のとおりであった。
【0057】印加電圧:          2.6(
V)電流密度:          30  (mA・
cm−2 )陽極化成溶液:HF:H2O:C2H5O
H=1:1:1時間:              1
. 6  (時間)多孔質Siの厚み:  200(μ
m)Porosity:    56(%)該P型(1
00 )多孔質Si基板上にMBE(分子線エピタキシ
ー:Molecular Beam Epitaxy)
 法により、Siエピタキシャル層を0.5ミクロン低
温成長させた。堆積条件は、以下のとおりである。
【0058】温度:      700 ℃圧力:  
    1 × 10−9 Torr成長速度:   
   0.1 nm/sec次に、このエピタキシャル
層の表面に1000オングストロームの酸化層を形成し
、その酸化表面に、表面に5000オングストロームの
酸化層を形成したもう一方のSi基板を重ねあわせ、酸
素雰囲気中で800 ℃、0.5 時間過熱することに
より、両者のSi基板は、強固に接合された。
【0059】その後、該張り合わせた基板を49%弗酸
で撹はんしながら選択エッチングする。78分後には、
単結晶Si層だけがエッチングされずに残り、単結晶S
iをエッチ・ストップの材料として、多孔質Si基板は
選択エッチングされ、完全に除去された。
【0060】非多孔質Si単結晶の該エッチング液にた
いするエッチング速度は、極めて低く78分後でも50
オングストローム以下程度であり、多孔質層のエッチン
グ速度との選択比は十の五乗以上にも達し、非多孔質層
におけるエッチング量(数十オングストローム)は実用
上無視できる膜厚減少である。すなわち、200ミクロ
ンの厚みをもった多孔質化されたSi基板は、除去され
、SiO2 上に0.5 μm の厚みを持った単結晶
Si層が形成できた。透過電子顕微鏡による断面観察の
結果、Si層には新たな結晶欠陥は導入されておらず、
良好な結晶性が維持されていることが確認された。 (実施例2)200ミクロンの厚みを持ったP型(10
0 )単結晶Si基板をHF溶液中において陽極化成を
行った。
【0061】陽極化成条件は以下のとおりであった。
【0062】印加電圧:          2.6(
V)電流密度:          30  (mA・
cm−2 )陽極化成溶液:HF:H2O:C2H5O
H=1:1:1時間:        1. 6  (
時間)多孔質Siの厚み:  200(μm)Poro
sity:    56(%)該P型(100 )多孔
質Si基板上にプラズマCVD法により、Siエピタキ
シャル層を0.5 ミクロン低温成長させた。堆積条件
は、以下のとおりである。
【0063】ガス:        SiH4高周波電
力:        100 W温度:       
 800 ℃ 圧力:   1× 10−2 Torr成長速度:  
      2.5 nm/sec次に、このエピタキ
シャル層の表面に1000オングストロームの酸化層を
形成し、その酸化表面に、表面に5000オングストロ
ームの酸化層を形成したもう一方のSi基板を重ねあわ
せ、酸素雰囲気中で800 ℃,0.5 時間過熱する
ことにより、両者のSi基板は、強固に接合された。
【0064】その後、該張り合わせた基板を49%弗酸
で撹はんしながら選択エッチングする。78分後には、
単結晶Si層だけがエッチングされずに残り、単結晶S
iをエッチ・ストップの材料として、多孔質Si基板は
選択エッチングされ、完全に除去された。非多孔質Si
単結晶の該エッチング液にたいするエッチング速度は、
極めて低く78分後でも50オングストローム以下程度
であり、多孔質層のエッチング速度との選択比は十の五
乗以上にも達し、非多孔質層におけるエッチング量(数
十オングストローム)は実用上無視できる膜厚減少であ
る。すなわち、200ミクロンの厚みをもった多孔質化
されたSi基板は、除去され、SiO2上に0.5 μ
m の厚みを持った単結晶Si層が形成できた。 (実施例3)200ミクロンの厚みを持ったP型(10
0)単結晶Si基板をHF溶液中において陽極化成を行
った。
【0065】陽極化成条件は以下のとおりであった。
【0066】印加電圧:          2.6(
V)電流密度:          30  (mA・
cm−2 )陽極化成溶液:HF:H2O:C2H5O
H=1:1:1時間:          1. 6 
 (時間)多孔質Siの厚み:  200(μm)Po
rosity:    56(%)該P型(100)多
孔質Si基板上にバイアス・スパッター法により、Si
エピタキシャル層を0.5 ミクロン低温成長させた。 堆積条件は、以下のとおりである。 RF周波数:      100 MHz高周波電力:
      600 W 温度:      300 ℃ Ar  ガス圧力:   8× 10−3 Torr成
長時間:      60  分 ターゲット 直流バイアス:  −200 V 基板直流バイアス:  +5 V 次に、このエピタキシャル層の表面に1000オングス
トロームの酸化層を形成し、その酸化表面に、表面に5
000オングストロームの酸化層を形成したもう一方の
Si基板を重ねあわせ、酸素雰囲気中で800 ℃,0
.5 時間過熱することにより、両者のSi基板は、強
固に接合された。
【0067】その後、該張り合わせた基板を49%弗酸
で撹はんしながら選択エッチングする。78分後には、
単結晶Si層だけがエッチングされずに残り、単結晶S
iをエッチ・ストップの材料として、多孔質Si基板は
選択エッチングされ、完全に除去された。非多孔質Si
単結晶の該エッチング液にたいするエッチング速度は、
極めて低く78分後でも50オングストローム以下程度
であり、多孔質層のエッチング速度との選択比は十の五
乗以上にも達し、非多孔質層におけるエッチング量(数
十オングストローム)は実用上無視できる膜厚減少であ
る。すなわち、200ミクロンの厚みをもった多孔質化
されたSi基板は、除去され、SiO2上に0.5 μ
m の厚みを持った単結晶Si層が形成できた。 (実施例4)200ミクロンの厚みを持ったN型(10
0)単結晶Si基板をHF溶液中におい て陽極化成を行った。
【0068】陽極化成条件は以下のとおりであった。
【0069】印加電圧:          2.6(
V)電流密度:          30  (mA・
cm−2 )陽極化成溶液:HF:H2O:C2H5O
H=1:1:1時間:              1
. 6  (時間)多孔質Siの厚み:  200(μ
m)Porosity:    56(%)該N型(1
00)多孔質Si基板上に液相成長法により、Siエピ
タキシャル層を5ミクロン低温成長させた。成長条件は
、以下のとおりである。
【0070】溶媒:  Sn 成長温度:  900 ℃ 成長雰囲気:  H2 成長時間:  50  分 次に、このエピタキシャル層の表面に1000オングス
トロームの酸化層を形成し、その酸化表面に、表面に5
000オングストロームの酸化層を形成したもう一方の
Si基板を重ねあわせ、酸素雰囲気中で800 ℃,0
.5 時間過熱することにより、両者のSi基板は、強
固に接合された。
【0071】その後、該張り合わせた基板を49%弗酸
で撹はんしながら選択エッチングする。78分後には、
単結晶Si層だけがエッチングされずに残り、単結晶S
iをエッチ・ストップの材料として、多孔質Si基板は
選択エッチングされ、完全に除去された。
【0072】非多孔質Si単結晶の該エッチング液にた
いするエッチング速度は、極めて低く78分後でも50
オングストローム以下程度であり、多孔質層のエッチン
グ速度との選択比は十の五乗以上にも達し、非多孔質層
におけるエッチング量(数十オングストローム)は実用
上無視できる膜厚減少である。すなわち、200ミクロ
ンの厚みをもった多孔質化されたSi基板は、除去され
、SiO2 上に 5μmの厚みを持った単結晶Si層
が形成できた。 (実施例5)200ミクロンの厚みを持ったP型(10
0)単結晶Si基板をHF溶液中において陽極化成を行
った。
【0073】陽極化成条件は以下のとおりであった。
【0074】印加電圧:          2.6(
V)電流密度:          30  (mA・
cm−2 )陽極化成溶液:HF:H2O:C2H5O
H=1:1:1時間:              1
. 6  (時間)多孔質Siの厚み:  200(μ
m)Porosity:    56(%)該P型(1
00)多孔質Si基板上に減圧CVD法により、Siエ
ピタキシャル層を1.0 ミクロン成長させた。堆積条
件は、以下のとおりである。
【0075】ソースガス:        SiH4キ
ャリヤーガス:        H2温度:     
   850 ℃ 圧力:    1 ×10−2 Torr成長速度: 
         3.3 nm/sec次に、このエ
ピタキシャル層の表面に1000オングストロームの酸
化層を形成し、その酸化表面に、表面に5000オング
ストロームの酸化層を形成したもう一方のSi基板を重
ねあわせ、酸素雰囲気中で800 ℃,0.5 時間過
熱することにより、両者のSi基板は、強固に接合され
た。
【0076】その後、該張り合わせた基板を49%弗酸
で撹はんしながら選択エッチングする。78分後には、
単結晶Si層だけがエッチングされずに残り、単結晶S
iをエッチ・ストップの材料として、多孔質Si基板は
選択エッチングされ、完全に除去された。
【0077】非多孔質Si単結晶の該エッチング液にた
いするエッチング速度は、極めて低く78分後でも50
オングストローム以下程度であり、多孔質層のエッチン
グ速度との選択比は十の五乗以上にも達し、非多孔質層
におけるエッチング量(数十オングストローム)は実用
上無視できる膜厚減少である。すなわち、200ミクロ
ンの厚みをもった多孔質化されたSi基板は、除去され
、SiO2 上に 1.0μm の厚みを持った単結晶
Si層が形成できた。ソースガスとして、SiH2Cl
2 をもちいた場合には、成長温度を数十度上昇させる
必要があるが、多孔質基板に特有な増速エッチング特性
は、維持された。 (実施例6)200ミクロンの厚みを持ったP型(10
0)Si基板上に減圧CVD法により、Siエピタキシ
ャル層を1ミクロン成長させた。堆積条件は、以下のと
おりである。
【0078】反応ガス流量:    SiH2Cl2 
    1000SCCMH2          2
30  l/min.温度:            
      1080℃圧力:           
        80 Torr時間:       
             2 min.この基板を5
0% のHF溶液中において陽極化成を行った。この時
の電流密度は、100mA/cm2であった。 又、この時の多孔質化速度は、8.4μm/min.で
あり200ミクロンの厚みを持ったP型(100)Si
基板全体は、24分で多孔質化された。前述したように
この陽極化成では、P型(100)Si基板のみが多孔
質化され,Siエピタキシャル層には変化がなかった。
【0079】次に、このエピタキシャル層の表面に10
00オングストロームの酸化層を形成し、その酸化表面
に、表面に5000オングストロームの酸化層を形成し
たもう一方のSi基板を重ねあわせ、酸素雰囲気中で8
00 ℃,0.5 時間過熱することにより、両者のS
i基板は、強固に接合された。
【0080】その後、該張り合わせた基板を49%弗酸
で撹はんしながら選択エッチングする。78分後には、
単結晶Si層だけがエッチングされずに残り、単結晶S
iをエッチ・ストップの材料として、多孔質Si基板は
選択エッチングされ、完全に除去された。
【0081】非多孔質Si単結晶の該エッチング液にた
いするエッチング速度は、極めて低く78分後でも50
オングストローム以下程度であり、多孔質層のエッチン
グ速度との選択比は十の五乗以上にも達し、非多孔質層
におけるエッチング量(数十オングストローム)は実用
上無視できる膜厚減少である。すなわち、200ミクロ
ンの厚みをもった多孔質化されたSi基板は、除去され
、SiO2 上に1.0 μm の厚みを持った単結晶
Si層が形成できた。
【0082】透過電子顕微鏡による断面観察の結果、S
i層には新たな結晶欠陥は導入されておらず、良好な結
晶性が維持されていることが確認された。 (実施例7)200ミクロンの厚みを持ったP型(10
0)Si基板上に常圧CVD法により、Siエピタキシ
ャル層を5ミクロン成長させた。堆積条件は、以下のと
おりである。
【0083】反応ガス流量:    SiH2Cl2 
    1000SCCMH2          2
30  l/min.温度:            
    1080  ℃圧力:           
     760 Torr時間:         
         1 min.上記Si基板をHF溶
液中において陽極化成を行った。
【0084】陽極化成条件は以下のとおりであった。
【0085】印加電圧:          2.6(
V)電流密度:          30  (mA・
cm−2 )陽極化成溶液:  HF:H2O:C2H
5OH=1:1:1時間:        1. 6 
 (時間)多孔質Siの厚み:    200(μm)
Porosity:      56(%)前述したよ
うにこの陽極化成では、P型(100)Si基板のみが
多孔質化されSiエピタキシャル層には変化がなかった
【0086】次に、このエピタキシャル層の表面に10
00オングストロームの酸化層を形成し、その酸化表面
に、表面に5000オングストロームの酸化層を形成し
たもう一方のSi基板を重ねあわせ、酸素雰囲気中で8
00 ℃,0.5 時間過熱することにより、両者のS
i基板は、強固に接合された。
【0087】その後、該張り合わせた基板を49%弗酸
で撹はんしながら選択エッチングする。78分後には、
単結晶Si層だけがエッチングされずに残り、単結晶S
iをエッチ・ストップの材料として、多孔質Si基板は
選択エッチングされ、完全に除去された。
【0088】非多孔質Si単結晶の該エッチング液にた
いするエッチング速度は、極めて低く78分後でも50
オングストローム以下程度であり、多孔質層のエッチン
グ速度との選択比は十の五乗以上にも達し、非多孔質層
におけるエッチング量(数十オングストローム)は実用
上無視できる膜厚減少である。すなわち、200ミクロ
ンの厚みをもった多孔質化されたSi基板は、除去され
、SiO2 上に5 μmの厚みを持った単結晶Si層
が形成できた。  透過電子顕微鏡による断面観察の結
果、Si層には新たな結晶欠陥は導入されておらず、良
好な結晶性が維持されていることが確認された。 (実施例8)200ミクロンの厚みを持ったP型(10
0)Si基板表面にプロトンのイオン注入によって、N
型Si層を1ミクロン形成した。H+ 注入量は、5 
×1015  (ions/cm2)であった。この基
板を50%のHF溶液中において陽極化成を行った。こ
の時の電流密度は、100 mA/cm2 であった。 この時の多孔質化速度は、8.4μm/min.であり
,200ミクロンの厚みを持ったP型(100)Si基
板全体は、24分で多孔質化された。前述したようにこ
の陽極化成では、P型(100)Si基板のみが多孔質
化されN型Si層には変化がなかった。
【0089】次に、このN型Si層の表面に1000オ
ングストロームの酸化層を形成し、その酸化表面に、表
面に5000オングストロームの酸化層を形成したもう
一方のSi基板を重ねあわせ、酸素雰囲気中で800 
℃,0.5 時間過熱することにより、両者のSi基板
は、強固に接合された。
【0090】その後、該張り合わせた基板を49%弗酸
で撹はんしながら選択エッチングする。78分後には、
単結晶Si層だけがエッチングされずに残り、単結晶S
iをエッチ・ストップの材料として、多孔質Si基板は
選択エッチングされ、完全に除去された。
【0091】非多孔質Si単結晶の該エッチング液にた
いするエッチング速度は、極めて低く78分後でも50
オングストローム以下程度であり、多孔質層のエッチン
グ速度との選択比は十の五乗以上にも達し、非多孔質層
におけるエッチング量(数十オングストローム)は実用
上無視できる膜厚減少である。すなわち、200ミクロ
ンの厚みをもった多孔質化されたSi基板は、除去され
、SiO2 上に1.0 μm の厚みを持った単結晶
Si層が形成できた。
【0092】透過電子顕微鏡による断面観察の結果、S
i層には新たな結晶欠陥は導入されておらず、良好な結
晶性が維持されていることが確認された。
【0093】
【発明の効果】以上詳述したように、本発明によれば、
絶縁物基体上に結晶性が単結晶ウエハー並に優れたSi
結晶層を得るうえで、生産性、均一性、制御性、経済性
の面において卓越した方法を提供することができる。
【0094】更に本発明によれば、従来のSOIデバイ
スの利点を実現し、応用可能な半導体基材の作製方法を
提案することができる。
【0095】また、本発明によれば、SOI構造の大規
模集積回路を作製する際にも、高価なSOSや、SIM
OXの代替足り得る半導体基材の作製方法を提案するこ
とができる。
【0096】本発明によれば、元々良質な単結晶Si基
体を出発材料として、単結晶層を表面にのみに残して下
部のSi基体を化学的に除去して絶縁物上に移設させる
ものであり、実施例にも詳細に記述したように、多数処
理を短時間に行うことが可能となり、その生産性と経済
性に多大の進歩がある。
【0097】本発明によれば、多孔質Siのエッチング
において、半導体プロセス上悪影響をおよぼさない湿式
化学エッチング液用いることができ、かつ、多孔質Si
と非多孔質Siとのエッチングの選択比が5桁以上もあ
り、制御性、生産性に多大の進歩がある。
【図面の簡単な説明】
【図1】本発明の半導体基材の作製方法の第1の実施態
様例の工程を説明するための模式的断面図である。
【図2】本発明の半導体基材の作製方法の第1の実施態
様例の工程を説明するための模式的断面図である。
【図3】本発明の半導体基材の作製方法の第1の実施態
様例の工程を説明するための模式的断面図である。
【図4】多孔質と非多孔質Siのエッチング特性である
【図5】本発明の半導体基材の作製方法の第2の実施態
様例の工程を説明するための模式的断面図である。
【図6】本発明の半導体基材の作製方法の第2の実施態
様例の工程を説明するための模式的断面図である。
【図7】本発明の半導体基材の作製方法の第2の実施態
様例の工程を説明するための模式的断面図である。
【図8】本発明の半導体基材の作製方法の第2の実施態
様例の工程を説明するための模式的断面図である。
【符号の説明】
11  多孔質Si基板 12  エピタキシャルSi単結晶層 13  Si基板 14  表面絶縁物層 15  エピタキシャルSi単結晶層表面の絶縁層31
  P型Si単結晶基板 32  N型Si単結晶層 33  多孔質Si基板 34  Si基板 35  表面絶縁物層

Claims (12)

    【特許請求の範囲】
  1. 【請求項1】  シリコン基体を多孔質化する工程と、
    該多孔質化したシリコン基体上に非多孔質シリコン単結
    晶層を形成する工程と、該非多孔質シリコン単結晶層の
    表面に酸化層を形成する工程と、該非多孔質シリコン単
    結晶層上の酸化層表面を、表面に絶縁物を有するもう一
    方のシリコン基体に貼り合わせてのち、弗酸に浸すこと
    によって該多孔質化したシリコン基体を無電解湿式化学
    エッチングにより除去する工程と、を有する半導体基材
    の作製方法。
  2. 【請求項2】  前記多孔質化したシリコン基体上に形
    成された前記非多孔質シリコン単結晶層の厚さが100
    ミクロン以下である請求項1に記載の半導体基材の作製
    方法。
  3. 【請求項3】  前記非多孔質シリコン単結晶層は、エ
    ピタキシャル成長により形成される請求項1に記載の半
    導体基材の作製方法。
  4. 【請求項4】  前記非多孔質シリコン単結晶層は分子
    線エピタキシャル法、プラズマCVD法、熱CVD法、
    光CVD法、液相成長法、バイアス・スパッター法から
    選ばれる方法によって形成される請求項1に記載の半導
    体基材の作製方法。
  5. 【請求項5】  前記多孔質化する工程は陽極化成であ
    る請求項1に記載の半導体基材の作製方法。
  6. 【請求項6】  前記陽極化成はHF溶液中で行われる
    請求項5に記載の半導体基材の作製方法。
  7. 【請求項7】  一方の面側をN型にしたシリコン基体
    の他方の面側を多孔質化する工程と、N型の非多孔質シ
    リコン単結晶表面に酸化層を形成する工程と、該酸化層
    表面を、表面に絶縁物を有するもう一方のシリコン基体
    に貼り合わせてのち、弗酸に浸すことによって多孔質化
    したシリコン領域を無電解湿式化学エッチングにより除
    去する工程と、を有する半導体基材の作製方法。
  8. 【請求項8】  前記他方の面側がP型にされている請
    求項7に記載の半導体基材の作製方法。
  9. 【請求項9】  前記N型とされた領域の厚さが100
    ミクロン以下である請求項7に記載の半導体基材の作製
    方法。
  10. 【請求項10】  前記多孔質化する工程は陽極化成で
    ある請求項7に記載の半導体基材の作製方法。
  11. 【請求項11】  前記N型のシリコン領域はプロトン
    照射またはエピタキシャル成長により形成されている請
    求項7に記載の半導体基材の作製方法。
  12. 【請求項12】  前記陽極化成はHF溶液中で行われ
    る請求項10に記載の半導体基材の作製方法。
JP3148164A 1991-02-15 1991-05-24 半導体基材の作製方法 Pending JPH04346418A (ja)

Priority Applications (17)

Application Number Priority Date Filing Date Title
JP3148164A JPH04346418A (ja) 1991-05-24 1991-05-24 半導体基材の作製方法
EP03076425A EP1347505A3 (en) 1991-02-15 1992-02-14 Method of preparing semiconductor member using an etching solution
EP92301252A EP0499488B9 (en) 1991-02-15 1992-02-14 Etching solution for etching porous silicon, etching method using the etching solution and method of preparing semiconductor member using the etching solution
US07/835,381 US5767020A (en) 1991-02-15 1992-02-14 Etching solution for etching porous silicon, etching method using the etching solution and method of preparing semiconductor member using the etching solution
AT92301252T ATE244931T1 (de) 1991-02-15 1992-02-14 Ätzlösung für das ätzen von porösem silizium, ätzmethode unter verwendung der ätzlösung und verfahren zur vorbereitung einer halbleiteranordnung unter verwendung der ätzlösung
SG9901639A SG93197A1 (en) 1991-02-15 1992-02-14 Etching solution for etching porous silicon, etching method using the etching solution and method of preparing semiconductor member using the etching solution
MYPI92000239A MY114349A (en) 1991-02-15 1992-02-14 Etching solution for etching porous silicon, etching method using the etching solution and method of prepa- ring semiconductor member using the etching solution
SG1996006372A SG47089A1 (en) 1991-02-15 1992-02-14 Etching solution for etching porous silicon etching method using the etching solution and method of preparing semiconductor member using the etching solution
JP05911892A JP3347354B2 (ja) 1991-02-15 1992-02-14 エッチング方法および半導体基材の作製方法
CA002061264A CA2061264C (en) 1991-02-15 1992-02-14 Etching solution for etching porous silicon, etching method using the etching solution and method of preparing semiconductor member using the etching solution
KR92002263A KR960007640B1 (en) 1991-02-15 1992-02-15 Etching solution for etching porous silicon, etching method using the etching solution, and fabiricating method of semiconductor substate
CN92101589A CN1037727C (zh) 1991-02-15 1992-02-15 腐蚀多孔硅用的腐蚀液以及、使用该腐蚀液的腐蚀方法
CN93118894A CN1099905A (zh) 1991-02-15 1993-10-08 半导体基片的制作方法
US08/472,270 US6171512B1 (en) 1991-02-15 1995-06-07 Etching solution for etching porous silicon, etching method using the etching solution and method of preparing semiconductor member using the etching solution
CN 97105478 CN1099698C (zh) 1991-02-15 1997-06-02 半导体基片的制作方法
US09/298,054 US6254794B1 (en) 1991-02-15 1999-04-22 Etching solution for etching porous silicon, etching method using the etching solution and method of preparing semiconductor member using the etching solution
US09/298,056 US6238586B1 (en) 1991-02-15 1999-04-22 Etching solution for etching porous silicon, etching method using the etching solution and method of preparing semiconductor member using the etching solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3148164A JPH04346418A (ja) 1991-05-24 1991-05-24 半導体基材の作製方法

Publications (1)

Publication Number Publication Date
JPH04346418A true JPH04346418A (ja) 1992-12-02

Family

ID=15446683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3148164A Pending JPH04346418A (ja) 1991-02-15 1991-05-24 半導体基材の作製方法

Country Status (1)

Country Link
JP (1) JPH04346418A (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06350063A (ja) * 1993-06-10 1994-12-22 Canon Inc 半導体基板の作製方法
US5679475A (en) * 1992-01-31 1997-10-21 Canon Kabushiki Kaisha Semiconductor substrate and process for preparing the same
US6232142B1 (en) 1997-12-09 2001-05-15 Seiko Epson Corporation Semiconductor device and method for making the same, electro-optical device using the same and method for making the electro-optical device, and electronic apparatus using the electro-optical device
US6331473B1 (en) 1998-12-29 2001-12-18 Seiko Epson Corporation SOI substrate, method for making the same, semiconductive device and liquid crystal panel using the same
JP2003197882A (ja) * 2001-09-12 2003-07-11 Seiko Epson Corp 半導体基板の製造方法、半導体基板、電気光学装置並びに電子機器
US6815718B1 (en) 1999-07-16 2004-11-09 Seiko Epson Corporation Electro-optical device and electronic equipment using the same
US6852653B2 (en) 2000-10-16 2005-02-08 Seiko Epson Corporation Method of manufacturing semiconductor substrate, semiconductor substrate, electro-optical apparatus and electronic equipment

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5679475A (en) * 1992-01-31 1997-10-21 Canon Kabushiki Kaisha Semiconductor substrate and process for preparing the same
JPH06350063A (ja) * 1993-06-10 1994-12-22 Canon Inc 半導体基板の作製方法
US6232142B1 (en) 1997-12-09 2001-05-15 Seiko Epson Corporation Semiconductor device and method for making the same, electro-optical device using the same and method for making the electro-optical device, and electronic apparatus using the electro-optical device
US6331473B1 (en) 1998-12-29 2001-12-18 Seiko Epson Corporation SOI substrate, method for making the same, semiconductive device and liquid crystal panel using the same
US6815718B1 (en) 1999-07-16 2004-11-09 Seiko Epson Corporation Electro-optical device and electronic equipment using the same
US7391052B2 (en) 1999-07-16 2008-06-24 Seiko Epson Corporation TFT structure for suppressing parasitic MOSFET in active display
US6852653B2 (en) 2000-10-16 2005-02-08 Seiko Epson Corporation Method of manufacturing semiconductor substrate, semiconductor substrate, electro-optical apparatus and electronic equipment
JP2003197882A (ja) * 2001-09-12 2003-07-11 Seiko Epson Corp 半導体基板の製造方法、半導体基板、電気光学装置並びに電子機器

Similar Documents

Publication Publication Date Title
JP3214631B2 (ja) 半導体基体及びその作製方法
JP3112121B2 (ja) 半導体基材の作製方法および半導体部材
JP3237888B2 (ja) 半導体基体及びその作製方法
JP2608351B2 (ja) 半導体部材及び半導体部材の製造方法
US5374581A (en) Method for preparing semiconductor member
KR100246902B1 (ko) 반도체기판 및 그의 제작방법
US6100165A (en) Method of manufacturing semiconductor article
JPH05275329A (ja) 半導体素子基体とその作製方法
JP2994837B2 (ja) 半導体基板の平坦化方法、半導体基板の作製方法、及び半導体基板
JP2901031B2 (ja) 半導体基材及びその作製方法
JP2910001B2 (ja) 半導体基材及びその作製方法
US6238586B1 (en) Etching solution for etching porous silicon, etching method using the etching solution and method of preparing semiconductor member using the etching solution
JPH04346418A (ja) 半導体基材の作製方法
JP3297600B2 (ja) 半導体基板の作製方法
JP3347354B2 (ja) エッチング方法および半導体基材の作製方法
JP3119384B2 (ja) 半導体基板及びその作製方法
JP3112100B2 (ja) 半導体基材の作製方法
JP3342442B2 (ja) 半導体基板の作製方法及び半導体基板
JP3088032B2 (ja) 半導体装置
JP3112101B2 (ja) 半導体基材の作製方法
JP3112102B2 (ja) 半導体装置
JPH04349621A (ja) 半導体基材の作製方法
JP3237889B2 (ja) 半導体基体及びその作製方法
JP3098811B2 (ja) 絶縁ゲート型電界効果トランジスタ及びそれを用いた半導体装置
JP3128076B2 (ja) バイポーラトランジスタの製造方法及びそれを用いた半導体装置の製造方法