JPH0434628B2 - - Google Patents

Info

Publication number
JPH0434628B2
JPH0434628B2 JP59126375A JP12637584A JPH0434628B2 JP H0434628 B2 JPH0434628 B2 JP H0434628B2 JP 59126375 A JP59126375 A JP 59126375A JP 12637584 A JP12637584 A JP 12637584A JP H0434628 B2 JPH0434628 B2 JP H0434628B2
Authority
JP
Japan
Prior art keywords
copper
lead
strip
sintering
melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59126375A
Other languages
Japanese (ja)
Other versions
JPS616284A (en
Inventor
Sumio Sahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiho Kogyo Co Ltd
Original Assignee
Taiho Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiho Kogyo Co Ltd filed Critical Taiho Kogyo Co Ltd
Priority to JP59126375A priority Critical patent/JPS616284A/en
Publication of JPS616284A publication Critical patent/JPS616284A/en
Publication of JPH0434628B2 publication Critical patent/JPH0434628B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/10Coating starting from inorganic powder by application of heat or pressure and heat with intermediate formation of a liquid phase in the layer
    • C23C24/103Coating with metallic material, i.e. metals or metal alloys, optionally comprising hard particles, e.g. oxides, carbides or nitrides
    • C23C24/106Coating with metal alloys or metal elements only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/02Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers
    • B22F7/04Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/14Special methods of manufacture; Running-in
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2220/00Shaping
    • F16C2220/20Shaping by sintering pulverised material, e.g. powder metallurgy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2226/00Joining parts; Fastening; Assembling or mounting parts
    • F16C2226/50Positive connections
    • F16C2226/80Positive connections with splines, serrations or similar profiles to prevent movement between joined parts

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、銅−鉛軸受材料の製造方法に関する
ものであり、さらに詳しく述べるならば、銅−鉛
軸受合金を裏金に被着させた複合軸受材料を製造
する方法ならびに製造装置に関するものである。
本発明は、自動車用軸受を始めとしてあらゆる産
業分野で使用される滑り軸受の製造方法を改良す
るとともに、すぐれた性能の軸受材料を提供する
ものである。
[Detailed Description of the Invention] Industrial Application Field The present invention relates to a method for manufacturing a copper-lead bearing material, and more specifically, a composite bearing material in which a copper-lead bearing alloy is adhered to a back metal. The present invention relates to a method of manufacturing and a manufacturing apparatus.
The present invention aims to improve the manufacturing method of sliding bearings used in all industrial fields including bearings for automobiles, and to provide a bearing material with excellent performance.

従来の技術 複合軸受材料を量産する方法としては、ストリ
ツプ状の裏金をアンコイラーからコイラーに巻取
る過程でストリツプ上に所望の軸受合金を軸受層
として被着させる方法が行われており、そしてこ
の方法は、連帯圧接法、連帯焼結法及び連帯鋳造
法に分けられる。連帯圧接法は、軸受合金である
ストリツプ形態アルミニウム合金をストリツプ上
に圧接被着することが一般的に行われている。一
方、連帯焼結法及び連帯鋳造法は、銅−鉛軸受合
金等を裏金ストリツプ上に被着することが一般的
に行われている。
Prior Art A method for mass-producing composite bearing materials is to deposit a desired bearing alloy on the strip as a bearing layer during the process of winding a strip-shaped backing metal from an uncoiler to a coiler. The method can be divided into the joint pressure welding method, the joint sintering method, and the joint casting method. In the joint pressure welding method, a strip-shaped aluminum alloy, which is a bearing alloy, is generally pressure-bonded onto a strip. On the other hand, in the joint sintering method and the joint casting method, a copper-lead bearing alloy or the like is generally deposited on a back metal strip.

連帯焼結法は、銅−鉛軸受合金の粉末を通板さ
れつつあるストリツプ上に散布し、そして散布さ
れた粉末を適当な保護雰囲気を有する焼結炉内で
加熱することによつて、粉末間及び粉末とストリ
ツプ間の反応を行わせることを骨子とする方法で
ある。一般に、焼結は二回焼結で行われ、前後の
焼結の間に粉末とストリツプを圧下ロールで圧下
して、焼結層を所定の寸法にするとともにその緻
密化が図られている。連帯焼結法で製造された複
合軸受の銅−鉛合金軸受層は、焼結反応特有の残
存空孔を有しているので、組織の緻密化が十分で
なく、特に近年の内燃機関の高負荷・高回転下で
使用される軸受としては疲労強度が十分でないと
いう問題がある。また、連帯焼結法において焼結
反応が完全に進行するには数十分ないし数時間の
加熱時間が必要であるために、銅−鉛合金中の鉛
粒子の粗大化傾向発生が避けられず、このことに
よつても組織の緻密性が十分でなくなる。
Solid sintering is a process in which copper-lead bearing alloy powder is sprinkled onto the strip being threaded and the powder is heated in a sintering furnace with a suitable protective atmosphere. The main point of this method is to cause a reaction between the powder and the strip. Generally, sintering is performed twice, and between the two sinterings, the powder and strip are rolled down with a reduction roll to form the sintered layer to a predetermined size and to densify it. The copper-lead alloy bearing layer of composite bearings manufactured by the solid-state sintering method has residual pores peculiar to the sintering reaction, so the structure is not sufficiently densified, especially in recent years with high-performance internal combustion engines. There is a problem in that the fatigue strength is insufficient for bearings used under high loads and high speeds. In addition, since several tens of minutes to several hours of heating time is required for the sintering reaction to proceed completely in the joint sintering method, it is inevitable that the lead particles in the copper-lead alloy tend to become coarser. , This also causes the tissue to become insufficiently dense.

連帯焼結法において、焼結完了後複合材料スト
リツプを鉛浴中を通板せしめることによつて、銅
−鉛軸受合金層中の空孔を鉛によつて埋収する方
法も知られているが、溶融鉛の表面張力が高く、
且つ空孔は微細であるために、鉛が十分に空孔に
深く浸透しない。よつてこの方法も万全とは言え
ない。
In the joint sintering method, it is also known to pass the composite material strip through a lead bath after sintering, thereby filling the voids in the copper-lead bearing alloy layer with lead. However, the surface tension of molten lead is high,
In addition, since the pores are minute, lead does not penetrate deeply into the pores. Therefore, this method cannot be said to be perfect.

連帯鋳造法を記載した英国特許第437199号によ
ると、ケルメツト合金を細長片上に被着させた複
合軸受ストリツプを製造するために、ストリツプ
をコイラーからアンコイラーに巻取る過程で、ス
トリツプを先ず銅浴中を通過させることにより次
工程の鋳造温度近くまで昇温せしめ、次に、ケル
メツト合金をストリツプ上に鋳造し、引続いて鋳
造金属の酸化を防ぐために還元性雰囲気の炉内を
通板し、そしてストリツプ裏側から水冷により鋳
造金属を急冷凝固させる方法が公知である。
According to British Patent No. 437199, which describes a solid casting process, in order to produce a composite bearing strip with Kelmet alloy deposited on a strip, the strip is first placed in a copper bath while being wound from a coiler to an uncoiler. The strip is then heated to near the casting temperature of the next step by passing through the strip, and then the Kelmet alloy is cast onto the strip, followed by passing through a furnace with a reducing atmosphere to prevent oxidation of the cast metal. A method is known in which the cast metal is rapidly solidified by water cooling from the back side of the strip.

さらに、特公昭39−22498号公報によると、鉛
系軸受合金を細長片上に被着させた複合軸受スト
リツプを製造するために、圧延鋼材よりなる細長
片のコイルをコイラーからアンコイラーに巻取る
過程で、清浄化浴、還元性雰囲気炉、鋳造部、冷
却部、フライス及び仕上ロールを細長片を逐次通
過せしめる方法が公知である。この方法では、先
ず、溶媒脱脂及び雰囲気加熱によつて圧延鋼材の
表面を清浄・活性化して次工程での鋳造金属被着
のための表面条件を調整し、次に鋳造を行い直ち
に急冷を行つて鉛系合金を微細な組織の薄層とし
て凝固させている。
Furthermore, according to Japanese Patent Publication No. 39-22498, in order to manufacture a composite bearing strip in which a lead-based bearing alloy is coated on a strip, a coil of a strip of rolled steel is wound from a coiler to an uncoiler. It is known to pass the strip successively through a cleaning bath, a reducing atmosphere furnace, a casting section, a cooling section, a milling cutter and a finishing roll. In this method, the surface of the rolled steel material is first cleaned and activated by solvent degreasing and atmospheric heating to adjust the surface conditions for adhering the cast metal in the next step, then casting is performed and immediately quenched. The lead-based alloy is solidified as a thin layer with a fine structure.

上述の連帯鋳造法は、鋳造に特有な組織が緻密
な銅−鉛軸受合金層を得さしめるものの、溶解の
ための電源、長尺のストリツプ全体に注湯しうる
容量を有するための加熱炉、及び注湯量を制御す
るためのストツパー装置、又は炉の傾倒機構等を
不可欠とし、さらに、通常の圧延鋼材を裏金とし
て用いる場合は、鋳造前にストリツプの表面状態
を清浄・活性化するための浴槽設備又は雰囲気加
熱炉が、必要となるので、連帯鋳造法には設備投
資コストがかさむという欠点がある。さらに、連
帯鋳造法では、銅−鉛軸受合金層の厚さは、一次
的には注湯量及びストリツプ通板速度により定ま
る単位時間・単位面積当たりの溶湯適用量によ
り、決定されるが、溶解炉のストツパー又は傾倒
機構制御によつては所望の均一な層厚を得ること
は必ずしも容易ではなく、それ故、常法では急冷
後にスカイピングにより所望の層厚まで鋳造合金
層表面部をかなりの量削り取つている。この事は
製品歩留りを低下させる大きな要因となる。
Although the above-mentioned solid casting method produces a dense copper-lead bearing alloy layer due to the unique structure of casting, it requires a power source for melting and a heating furnace with the capacity to pour the metal into the entire long strip. , a stopper device to control the amount of molten metal poured, or a furnace tilting mechanism, etc. are indispensable.Furthermore, when ordinary rolled steel is used as the backing metal, a stopper device to control the amount of molten metal poured, or a furnace tilting mechanism, etc. Since a bathtub facility or an atmosphere heating furnace is required, the joint casting method has the disadvantage of high equipment investment cost. Furthermore, in the solid casting method, the thickness of the copper-lead bearing alloy layer is primarily determined by the amount of molten metal applied per unit time and unit area, which is determined by the amount of molten metal poured and the strip passing speed. It is not always easy to obtain the desired uniform layer thickness by controlling the stopper or tilting mechanism, and therefore, in the conventional method, after rapid cooling, a considerable amount of the surface of the cast alloy layer is removed by skyping to the desired layer thickness. It's being scraped off. This becomes a major factor in reducing product yield.

発明が解決しようとする問題点 本発明は、連帯鋳造法により得られる軸受合金
層と同等の組織緻密性を有する、銅−鉛軸受合金
層を裏金に被着させた複合軸受材料を、連帯鋳造
法の如く複雑且つ高価な設備を使用せずに、製造
する方法を提供することを目的とする。
Problems to be Solved by the Invention The present invention provides a composite bearing material in which a copper-lead bearing alloy layer is adhered to a back metal, which has the same structural density as a bearing alloy layer obtained by a solid-state casting method. The object of the present invention is to provide a manufacturing method without using extremely complicated and expensive equipment.

さらに、本発明は、既存の連帯焼結法実施設備
をほとんど改造せずに、若干の付加設備を設ける
ことによつて、上記方法を実施しうる複合軸受材
料製造装置を提供することを目的とする。
Furthermore, it is an object of the present invention to provide a composite bearing material manufacturing apparatus that can carry out the above method by providing some additional equipment without substantially modifying existing equipment for carrying out the joint sintering method. do.

問題点を解決するための手段 本発明に係る方法は、銅−鉛軸受合金粉末を裏
金に散布し、焼結し、そして得られた焼結層を溶
融する工程を逐次行うことを特徴とする。
Means for Solving the Problems The method according to the invention is characterized by sequentially performing the steps of scattering copper-lead bearing alloy powder on a back metal, sintering it, and melting the obtained sintered layer. .

本発明において、銅−鉛軸受合金は、銅を主成
分とし、鉛を5〜20%含有し、さらに必要によ
り、アンチモン、亜鉛、スズ等を必要により含有
する銅系軸受合金であつて、この組成の特徴は鉛
粒子が粗大化しやすいところにある。また、銅−
鉛軸受合金の粉末は、通常の粒度のものであつて
よく、特に−250メツシユのものが、使用される。
In the present invention, the copper-lead bearing alloy is a copper-based bearing alloy whose main component is copper, contains 5 to 20% lead, and further contains antimony, zinc, tin, etc. as necessary. A characteristic of the composition is that the lead particles tend to become coarse. Also, copper-
The lead bearing alloy powder may be of normal particle size, particularly -250 mesh is used.

上述の銅−鉛軸受合金粉末を、通常の裏金材料
に散布し、裏金全面に適用した後、焼結を行う。
この焼結は、本発明においては、次工程の溶解の
前段として行われる。すなわち、通常の連帯焼結
法では、焼結により所望の銅−鉛軸受合金層が形
成されるが、本発明では先ず焼結を行い次に溶解
を行つて複合軸受材料を得る。ここで前段とし
て、焼結を行つているのは、散布された銅−鉛合
金粉末の粒子間及び該粉末と裏金とをある程度密
着させることによつて、軸受として要求される特
性がある程度実現させるとともに、次工程の溶融
によつて銅−鉛軸受合金粉末の粒子間の反応が顕
著に進行するような粒子分散状態を実現するため
である。
The above-mentioned copper-lead bearing alloy powder is spread on a normal back metal material, applied to the entire surface of the back metal, and then sintered.
In the present invention, this sintering is performed as a preliminary step to the next step of melting. That is, in the usual continuous sintering method, a desired copper-lead bearing alloy layer is formed by sintering, but in the present invention, sintering is first performed and then melting is performed to obtain a composite bearing material. As a first step, sintering is performed to achieve the characteristics required for a bearing to some extent by bringing the particles of the dispersed copper-lead alloy powder into close contact with each other and between the powder and the metal backing. At the same time, this is to achieve a state of particle dispersion in which the reaction between the particles of the copper-lead bearing alloy powder progresses significantly during the next step of melting.

本発明によると、焼結完了後、銅−鉛合金焼結
層が溶融される。この溶融工程によつて、銅−鉛
軸受合金粉末粒子間に焼結完了時に残存していた
空孔は溶融金属により埋められ、組織が緻密な軸
受層が得られる。
According to the invention, after sintering is complete, the copper-lead alloy sintered layer is melted. Through this melting process, the voids remaining between the copper-lead bearing alloy powder particles upon completion of sintering are filled with molten metal, resulting in a bearing layer with a dense structure.

本発明に係る方法では、溶融工程において、銅
−鉛焼結合金の全体を溶融させても、あるいはそ
の低融点相のみ溶融させても、所望の効果が得ら
れる。一般に、本発明に係る方法では、銅−鉛軸
受合金の溶融程度を加熱条件調整によつて空孔埋
収に必要な程度に調節することができる。これに
対して連帯鋳造法では、鋳造作業上のトラブルを
避けるために、銅−鉛軸受合金の融点よりかなり
高い鋳造温度が設定される。銅−鉛軸受合金の溶
融程度調節が上述の如く許容される本発明では、
溶融後は放冷でも支障ないが、溶融程度大、特に
全体溶融の場合は、裏金の裏側から水又はガスを
裏金に噴射することによつて、溶融合金を急冷す
ると一層緻密な組織が得られる。
In the method according to the present invention, the desired effect can be obtained even if the entire copper-lead sintered alloy or only its low melting point phase is melted in the melting step. Generally, in the method according to the present invention, the degree of melting of the copper-lead bearing alloy can be adjusted to the degree necessary for filling the voids by adjusting the heating conditions. On the other hand, in the joint casting method, the casting temperature is set considerably higher than the melting point of the copper-lead bearing alloy in order to avoid troubles during the casting operation. In the present invention, the degree of melting of the copper-lead bearing alloy is allowed to be adjusted as described above.
There is no problem if the molten alloy is allowed to cool after melting, but if the degree of melting is large, especially if the entire metal is melted, a more dense structure can be obtained by rapidly cooling the molten alloy by injecting water or gas from the back side of the metal backing. .

本発明に係る方法の溶融を実施するための加熱
手段は任意であるが、高周波誘導加熱、電気抵抗
加熱、レーザ加熱、電子ビーム加熱、火焔又はプ
ラズマ吹付等が採用可能である。但し、溶融に伴
う銅−鉛合金の酸化を避けるためには火焔吹付等
は好ましくはなく、また熱投入速度が遅いと、鉛
含有量によつては加熱中に鉛粒子が粗大化する可
能性が大きくなるから急速加熱に不適な電気抵抗
加熱も好ましくない。また、レーザ及び電子ビー
ム加熱では、レーザービーム又は電子ビームを走
査するための走査機構が必要になる。
The heating means for performing the melting in the method according to the present invention is arbitrary, and high frequency induction heating, electric resistance heating, laser heating, electron beam heating, flame or plasma spraying, etc. can be employed. However, in order to avoid oxidation of the copper-lead alloy during melting, flame spraying is not recommended, and if the heat input rate is slow, lead particles may become coarse during heating depending on the lead content. Electric resistance heating, which is unsuitable for rapid heating, is also not preferred because it increases . Furthermore, laser and electron beam heating require a scanning mechanism for scanning the laser beam or electron beam.

高周波誘導加熱は上述の不都合がないので好ま
しいが、電磁力により銅−鉛溶融合金が僅かに盛
り上がる傾向があるので加熱条件の調節が重要に
なる。
High-frequency induction heating is preferable because it does not have the above-mentioned disadvantages, but since the copper-lead molten alloy tends to swell slightly due to electromagnetic force, it is important to adjust the heating conditions.

本発明に係る複合軸受材料製造装置は、コイル
状のストリツプを巻回したアンコイラから該スト
リツプを巻取るコイラにより通板されているスト
リツプに銅−鉛軸受合金粉末を散布するタンクよ
り、通板方向に順次、焼結炉、高周波誘導加熱手
段、及び冷却手段を設け、通板中に銅−鉛軸受合
金粉末の焼結、溶融及び冷却を行うことを特徴と
する。
The composite bearing material manufacturing apparatus according to the present invention operates from a tank that sprays copper-lead bearing alloy powder onto the strip being threaded, from an uncoiler that winds a coiled strip to a coiler that winds the strip. The method is characterized in that a sintering furnace, high-frequency induction heating means, and cooling means are sequentially provided to sinter, melt, and cool the copper-lead bearing alloy powder during sheet threading.

本発明に係る装置は、通常の連帯焼結法実施装
置に、焼結後の溶融を行う高周波誘導加熱手段及
び溶融焼結層の冷却手段を附設したことを特徴と
するものである。
The apparatus according to the present invention is characterized in that a high-frequency induction heating means for performing melting after sintering and a means for cooling the molten sintered layer are added to a conventional apparatus for carrying out a continuous sintering method.

作 用 本発明における焼結及び溶融の作用をそれぞれ
従来の連帯焼結法における焼結及び溶融の作用と
比較して説明する。
Effects The effects of sintering and melting in the present invention will be explained in comparison with the effects of sintering and melting in the conventional solid sintering method.

本発明における焼結は最終的軸受層組織を形成
する作用をもたず、溶融の前駆として行われるも
のである。よつて、本発明における焼結により得
られた焼結層組織は、空孔を有していてもよく、
且つ従来の連帯焼結法により得られた焼結層より
も空孔率が多くともよい場合がある。但し、焼結
程度が著しく低いと、溶融工程での銅−鉛軸受合
金粉末粒子間の反応が不足するので好ましくな
い。一方、従来の連帯焼結法によれば、空孔を伴
う焼結組織がそのまま製品に残る。
Sintering in the present invention does not have the function of forming the final bearing layer structure, but is performed as a precursor to melting. Therefore, the sintered layer structure obtained by sintering in the present invention may have pores,
In addition, the sintered layer may have a higher porosity than the sintered layer obtained by the conventional continuous sintering method. However, if the degree of sintering is extremely low, the reaction between the copper-lead bearing alloy powder particles during the melting process will be insufficient, which is not preferable. On the other hand, according to the conventional solid state sintering method, the sintered structure with pores remains in the product as it is.

本発明における溶融は、一旦焼結履歴を経た銅
−鉛軸受合金粉末粒子にさらに溶融処理を加える
ことによつて、焼結組織特有の空孔を実質的に消
失させるものである。これに対して、連帯鋳造法
では銅−鉛合金が裏金上に適用された時点で、溶
融状態を生じているものであるから、そもそも空
孔の問題起こらないし、したがつて、溶融は一旦
形成された空孔を消失させる作用も有しない。
Melting in the present invention substantially eliminates pores peculiar to the sintered structure by further melting the copper-lead bearing alloy powder particles that have undergone a sintering history. On the other hand, in the joint casting method, the copper-lead alloy is in a molten state when it is applied to the backing metal, so there is no problem of voids in the first place, and therefore, the molten metal is formed once. It also does not have the effect of eliminating the pores that have been formed.

なお、上述の作用を有する本発明により調製さ
れた銅−鉛軸受合金層は、第4B図に示すよう
に、空孔を有さず、また加熱前の焼結組織(第4
A図)よりも鋳造組織に近い組織を呈する。
Note that the copper-lead bearing alloy layer prepared according to the present invention having the above-mentioned effect has no pores and has a sintered structure (4
It exhibits a structure closer to that of a cast structure than that shown in Figure A).

さらに、本発明における溶融は、空孔を消失さ
せる程度で行えばよいので、銅−鉛合金を全面的
に溶融させる必要はなく、且つその温度も広い範
囲で選択可能であることに加えて、焼結された合
金層は裏金上にかなり強固に熱接着され、加熱中
の移動・流動が少ないため、溶融時の局部的層厚
変化を抑える作用ももたらす。また、本発明にお
ける溶融によると、焼結工程において細かい粒度
の粉末を選択し且つ焼結及び溶融温度ならびに時
間を適宜選択して急速加熱急速冷却を行うと、微
細な最終組織を得る作用が実現可能である。これ
に対して、連帯鋳造法では、冷却速度により組織
の微細程度調整が可能であるが、溶融された金属
を注湯・凝固させる鋳造プロセスでは、溶融条件
を種々工夫しても鉛等の偏析し易い低融点金属を
多量に含む銅−鉛軸受合金中に鉛粒子が粗大に晶
出する可能性は避けられない。
Furthermore, since the melting in the present invention only needs to be carried out to the extent that the pores disappear, it is not necessary to completely melt the copper-lead alloy, and the temperature can be selected within a wide range. The sintered alloy layer is quite firmly thermally bonded onto the backing metal, and because there is little movement or flow during heating, it also has the effect of suppressing local layer thickness changes during melting. Furthermore, according to the melting in the present invention, by selecting powder with fine particle size in the sintering process and performing rapid heating and rapid cooling by appropriately selecting the sintering and melting temperature and time, it is possible to obtain a fine final structure. It is possible. On the other hand, in the joint casting method, it is possible to adjust the fineness of the structure by changing the cooling rate, but in the casting process in which molten metal is poured and solidified, segregation of lead, etc. occurs even if various melting conditions are devised. It is unavoidable that lead particles may coarsely crystallize in a copper-lead bearing alloy containing a large amount of a low-melting point metal that tends to melt.

以下、本発明の実施例を説明する。 Examples of the present invention will be described below.

実施例 第1図において、1は裏金として使用されてい
るSPCCなどのストリツプ、10はストリツプを
巻回しているアンコイラ、11は巻回ストリツプ
を巻もどすコイラ、12は銅合金粉末2を通板中
のストリツプ1に散布するタンクである。ストリ
ツプ1上に散布された銅−鉛合金粉末2は、スト
リツプ1の通板とともに焼結炉3で焼結される。
焼結は通常、還元性雰囲気下の700〜900℃で10〜
30分間実施される。焼結後銅−鉛合金層(図示せ
ず)を被着したストリツプ1は高周波誘導加熱炉
5に通板される。ここで、銅−鉛合金層は、1000
℃近傍まで約数十秒で昇温され、そしてこの1000
℃近傍で溶融処理を短時間受けた後、ストリツプ
1とともに冷却炉6に移動し、ここで約数十秒〜
数分間で室温まで冷却される。13は水又は油を
ストリツプ1の裏側から噴射するノズルである。
9は焼結、溶融、及び冷却を経て形成された銅−
鉛合金層である。
Example In Fig. 1, 1 is a strip of SPCC or the like used as a backing metal, 10 is an uncoiler that winds the strip, 11 is a coiler that unwinds the wound strip, and 12 is a copper alloy powder 2 being passed through. This is a tank for spraying on strip 1 of The copper-lead alloy powder 2 sprinkled on the strip 1 is sintered in a sintering furnace 3 as the strip 1 is passed through.
Sintering is typically performed at 700-900℃ under a reducing atmosphere for 10~
It will be held for 30 minutes. After sintering, the strip 1 coated with a copper-lead alloy layer (not shown) is passed through a high frequency induction heating furnace 5. Here, the copper-lead alloy layer is 1000
The temperature is raised to around 1000°C in about a few tens of seconds, and this 1000°C
After being melted for a short period of time at around
It will cool down to room temperature in a few minutes. 13 is a nozzle that sprays water or oil from the back side of the strip 1.
9 is copper formed through sintering, melting, and cooling.
It is a lead alloy layer.

第2図は第1図と同様の参照数字を用いて本発
明の他の実施例を示す。この実施例では、焼結炉
3と高周波炉の中間に圧下ロール4を配置して、
焼結層の厚さ調整を行つている。
FIG. 2 uses the same reference numerals as FIG. 1 to illustrate another embodiment of the invention. In this embodiment, a reduction roll 4 is arranged between the sintering furnace 3 and the high frequency furnace,
The thickness of the sintered layer is being adjusted.

第1図及び第2図の高周波炉の主要部が第3図
に示されている。ストリツプ1上に焼結・接着さ
れた銅−鉛合金層14は、ストリツプ通板中にコ
イル15内を通過せしめられる。コイルの形状は
ストリツプ1を通過せしめるものであれば、円形
又は矩形等任意の形状であつてよい。ストリツプ
1が巾150mm、厚さ約2mm、銅−鉛合金層14の
厚さ0.3mmの場合は、コイル15に通電せしめる
電源(図示せず)は、容量16KW、周波数3KHz
のものでよい。ストリツプ1への電力投入量を定
める通板速度は、コイル15の全長500mm、ピツ
チ20mmの場合、0.25〜0.1m/分がよい。
The main parts of the high frequency furnace shown in FIGS. 1 and 2 are shown in FIG. A copper-lead alloy layer 14 sintered and bonded onto the strip 1 is passed through a coil 15 during strip threading. The shape of the coil may be any shape, such as circular or rectangular, as long as it allows the coil to pass through the strip 1. If the strip 1 has a width of 150 mm and a thickness of about 2 mm, and the thickness of the copper-lead alloy layer 14 is 0.3 mm, the power source (not shown) that energizes the coil 15 has a capacity of 16 KW and a frequency of 3 KHz.
It's fine to use one. The threading speed that determines the amount of power input to the strip 1 is preferably 0.25 to 0.1 m/min when the total length of the coil 15 is 500 mm and the pitch is 20 mm.

なお、銅−鉛合金層14が溶融状態にある時間
が長い場合は、高周波加熱炉6の雰囲気を還元性
とすることが望ましい。
Note that if the copper-lead alloy layer 14 remains in a molten state for a long time, it is desirable that the atmosphere in the high-frequency heating furnace 6 be reduced.

効 果 本発明によると、従来の連帯鋳造法と同等の組
織緻密性を有する銅−鉛軸受合金層が連帯焼結実
施後に短時間加熱を行うことにより、得られる。
Effects According to the present invention, a copper-lead bearing alloy layer having the same structural density as the conventional solid-state casting method can be obtained by heating for a short time after solid-state sintering.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は本発明に係る実施例の説明
図、第3図は高周波誘導加熱を説明するための高
周波炉の主要部、第4図は、本発明に係る方法に
より製造された複合軸受材料の銅−鉛合金層のそ
れぞれ溶融前後の組織を示す金属顕微鏡写真(倍
率100倍)である。 1……ストリツプ、2……銅−鉛合金粉末、3
……焼結炉、5……高周波誘導加熱炉、6……冷
却炉。
Figures 1 and 2 are explanatory diagrams of embodiments according to the present invention, Figure 3 is the main part of a high frequency furnace for explaining high frequency induction heating, and Figure 4 is an illustration of a high frequency furnace manufactured by the method according to the present invention. These are metallurgical micrographs (100x magnification) showing the structure of the copper-lead alloy layer of the composite bearing material before and after melting, respectively. 1... Strip, 2... Copper-lead alloy powder, 3
... Sintering furnace, 5 ... High frequency induction heating furnace, 6 ... Cooling furnace.

Claims (1)

【特許請求の範囲】 1 銅−鉛合金粉末を裏金に散布し、焼結し、そ
して得られた焼結層を溶融する工程を逐次行うこ
とを特徴とする銅−鉛軸受材料の製造方法。 2 コイル状のストリツプを巻回したアンコイラ
から該ストリツプを巻取るコイラにより通板され
ている該ストリツプに銅−鉛軸受合金粉末を散布
するように構成した該粉末貯蔵用タンクより、通
板方向に、順次、焼結炉、高周波誘導加熱手段、
及び冷却手段を設け、通板中に銅−鉛軸受合金粉
末の焼結、溶融、及び冷却を行う銅−鉛軸受材料
製造装置。
[Scope of Claims] 1. A method for producing a copper-lead bearing material, which comprises sequentially performing the steps of dispersing copper-lead alloy powder onto a back metal, sintering it, and melting the obtained sintered layer. 2. From the powder storage tank configured to spray copper-lead bearing alloy powder onto the strip being threaded by an uncoiler that winds the coiled strip and a coiler that winds the strip, , sequentially, sintering furnace, high frequency induction heating means,
A copper-lead bearing material manufacturing apparatus, which is provided with a cooling means and performs sintering, melting, and cooling of copper-lead bearing alloy powder during sheet passing.
JP59126375A 1984-06-21 1984-06-21 Method and device for producing copper-lead bearing material Granted JPS616284A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59126375A JPS616284A (en) 1984-06-21 1984-06-21 Method and device for producing copper-lead bearing material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59126375A JPS616284A (en) 1984-06-21 1984-06-21 Method and device for producing copper-lead bearing material

Publications (2)

Publication Number Publication Date
JPS616284A JPS616284A (en) 1986-01-11
JPH0434628B2 true JPH0434628B2 (en) 1992-06-08

Family

ID=14933610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59126375A Granted JPS616284A (en) 1984-06-21 1984-06-21 Method and device for producing copper-lead bearing material

Country Status (1)

Country Link
JP (1) JPS616284A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2706934B2 (en) * 1987-07-14 1998-01-28 第一高周波工業株式会社 Surface coating method
JPH09279362A (en) * 1996-04-11 1997-10-28 Tokushu Denkyoku Kk Surface treatment for metallic member
JP2003136629A (en) 2001-11-01 2003-05-14 Daido Metal Co Ltd Multilayered material and method for manufacturing multilayered material
JP5040584B2 (en) * 2007-10-24 2012-10-03 三菱マテリアル株式会社 Porous titanium sintered body manufacturing method and porous titanium sintered body manufacturing apparatus
CN102212822A (en) * 2011-05-28 2011-10-12 青岛海纳等离子科技有限公司 Method and device for machining metal abrasion-resistant composite plate

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59219425A (en) * 1983-05-25 1984-12-10 N D C Kk Production of bearing material
JPS6344824A (en) * 1986-08-13 1988-02-25 有限会社ミナギ技研 Pig breeding feeder

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59219425A (en) * 1983-05-25 1984-12-10 N D C Kk Production of bearing material
JPS6344824A (en) * 1986-08-13 1988-02-25 有限会社ミナギ技研 Pig breeding feeder

Also Published As

Publication number Publication date
JPS616284A (en) 1986-01-11

Similar Documents

Publication Publication Date Title
EP0270670B1 (en) Antifriction coating and process for its manufacture
CN100369702C (en) Method of manufacturing metallic products such as sheet by cold working and flash annealing
JP4249899B2 (en) Aluminide sheet manufacturing method by thermomechanical processing of aluminide powder
US4002472A (en) Process for making composite bearing material
JP4413008B2 (en) Method for manufacturing a sputter target
US4758404A (en) Method of producing composite material for sliding member
US2490549A (en) Method of making composite stock
JPH0434628B2 (en)
DE3721008A1 (en) Sandwich material or sandwich material element, and process for manufacturing it by vacuum-plasma spraying
CN1157492C (en) Process for preparing bimetal band with steel substrate
JP2003136629A (en) Multilayered material and method for manufacturing multilayered material
DK2083958T3 (en) Process for producing two interconnected layers and functional component which can be prepared according to the method
US4333775A (en) Method of producing aluminum alloy composite
US4267241A (en) Method of preparing steel-backed antifriction alloy, composite strips and products therefrom
JP3811094B2 (en) Multilayer material manufacturing method
JPH01312008A (en) Production of intermetallic compound alloy material
DE19626732B4 (en) Apparatus and method for producing and recycling sputtering targets
DE10246454A1 (en) Making coated foamed components used in e.g. automobile or building industries, employs surface treatment, coating and profiling by thermal foaming
EP0871983B1 (en) Method of manufacturing electrodes by gas atomisation of molten metals
WO1994018352A1 (en) Substrate for spray cast strip
WO2024064870A1 (en) Method for manufacturing a beryllium-based article
JPS6344824B2 (en)
JPH08267179A (en) Continuous production of composite metallic material
CN116288328A (en) Method for cladding surface of alloy powder wire mesh after composite rolling
JP2912473B2 (en) Manufacturing method of long preform by spray deposit method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees