JPS6344824B2 - - Google Patents

Info

Publication number
JPS6344824B2
JPS6344824B2 JP58091797A JP9179783A JPS6344824B2 JP S6344824 B2 JPS6344824 B2 JP S6344824B2 JP 58091797 A JP58091797 A JP 58091797A JP 9179783 A JP9179783 A JP 9179783A JP S6344824 B2 JPS6344824 B2 JP S6344824B2
Authority
JP
Japan
Prior art keywords
steel strip
bearing
metal layer
molten metal
cooled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58091797A
Other languages
Japanese (ja)
Other versions
JPS59219425A (en
Inventor
Masahito Fujita
Noboru Okabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NDC Co Ltd
Original Assignee
NDC Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NDC Co Ltd filed Critical NDC Co Ltd
Priority to JP9179783A priority Critical patent/JPS59219425A/en
Publication of JPS59219425A publication Critical patent/JPS59219425A/en
Publication of JPS6344824B2 publication Critical patent/JPS6344824B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)
  • Sliding-Contact Bearings (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Description

【発明の詳細な説明】 本発明は軸受材料の製造法に係り、詳しくは、
帯鋼上に例えばCu等の軸受金属層が形成され、
しかも、この軸受金属層中にデンドライト組織が
成長し、例えば、面圧600Kg/cm2以上の高負荷に耐
えることができる軸受材料の製造法に係る。
[Detailed Description of the Invention] The present invention relates to a method for manufacturing a bearing material, and in detail,
A bearing metal layer such as Cu is formed on the steel strip,
Furthermore, the present invention relates to a method for producing a bearing material in which a dendrite structure grows in this bearing metal layer and can withstand a high load of, for example, a surface pressure of 600 Kg/cm 2 or more.

一般に、自動車等の回転軸を支承する軸受とし
て帯鋼と軸受金属層とから成るものが用いられて
いる。この軸受合金層の形成には、(1)、帯鋼上に
軸受金属粉末を散布して焼結する方法、(2)、帯鋼
と軸受金属板とを圧着する方法、(3)、帯鋼上に軸
受金属溶湯を注湯し、冷却凝固する方法がある。
しかし、これら形成法の中で(3)の方法は軸受金属
層が鋳造組織のものとして形成されるが、次の通
りの問題があり、鋳造組織の特性が十分にいかさ
れていない。
2. Description of the Related Art Generally, bearings made of a steel band and a bearing metal layer are used as bearings for supporting rotating shafts of automobiles and the like. This bearing alloy layer can be formed by (1) spreading bearing metal powder onto the steel strip and sintering it, (2) crimping the steel strip and the bearing metal plate, and (3) There is a method of pouring molten bearing metal onto steel and cooling and solidifying it.
However, among these forming methods, method (3) forms the bearing metal layer as having a cast structure, but it has the following problems and does not take full advantage of the characteristics of the cast structure.

すなわち、第1図に示すように、帯鋼1を矢印
方向に連続的に供給し、これを例えば高周波やシ
リコニツト等の両加熱炉4,5で予熱する。この
帯鋼上に溶解した軸受金属の溶湯8を注ぎ、その
後、帯鋼1の裏面から油6や水7により冷却す
る。このように製造すると、帯鋼1の裏面からの
みの冷却であるため、凝固組織に方向性が与えら
れ、とくに、垂直荷重に強く、信頼度の高い軸受
材料が得られると云われている。
That is, as shown in FIG. 1, a steel strip 1 is continuously fed in the direction of the arrow, and is preheated in both heating furnaces 4 and 5 using, for example, high frequency or siliconite heating furnaces. A molten bearing metal 8 is poured onto this steel band, and then the steel band 1 is cooled with oil 6 and water 7 from the back side. When manufactured in this manner, since the steel strip 1 is cooled only from the back side, directionality is imparted to the solidification structure, and it is said that a bearing material that is particularly resistant to vertical loads and has high reliability can be obtained.

しかし、この方法であると、十分に凝固に方向
性を持たすのには、冷却時の温度コントロールを
厳格に行なうことが必要になり、更に、冷却を油
と水の併用によつて行なつても、帯鋼裏面からの
みの冷却では十分に方向性を持たせて凝固するこ
とがきわめてむづかしい。つまり、高負荷に耐え
る樹枝状のデンドライト組織が生成できない。
However, with this method, it is necessary to strictly control the temperature during cooling in order to achieve sufficient directionality in solidification, and furthermore, cooling is performed using a combination of oil and water. However, it is extremely difficult to solidify with sufficient directionality if the steel strip is cooled only from the back side. In other words, a dendritic dendrite structure that can withstand high loads cannot be generated.

例えば、Cu−Pb合金(ケルメツト)材を帯鋼
上に鋳込む場合、まず、帯鋼を洗浄し、高周波お
よびシリコニツト等の加熱炉で1000〜1050℃に予
熱し、その上に1150℃に加熱したCu−24%Pb合
金の溶湯を注ぐ。この注湯作業は帯鋼と溶湯との
界面の充分な密着を得るために、N2若しくは非
酸化性雰囲気中で行なわれる。注湯後は、帯鋼裏
面を油、次いで水で急冷し、帯鋼上の溶湯に方向
性を与えて凝固する。
For example, when casting Cu-Pb alloy (Kelmet) material onto a steel strip, the steel strip is first cleaned, preheated to 1000-1050°C in a high-frequency or siliconite heating furnace, and then heated to 1150°C. Pour the molten Cu-24%Pb alloy. This pouring operation is carried out in an N 2 or non-oxidizing atmosphere in order to obtain sufficient adhesion at the interface between the steel strip and the molten metal. After pouring, the back side of the steel strip is rapidly cooled with oil and then water, giving direction to the molten metal on the steel strip and solidifying it.

しかし、油や水で帯鋼裏面からのみ冷却するだ
けでは、凝固時に全体にわたつて方向性を与える
ことがむづかしく、更に、冷却時の温度に僅かな
バラツキがあると、Cu−Pb合金の凝固組織が変
化し、一定のものが得られない。
However, if the steel strip is cooled only from the back side with oil or water, it is difficult to provide directionality throughout the solidification process, and furthermore, if there is slight variation in the temperature during cooling, the Cu-Pb alloy The coagulation structure changes and a constant consistency cannot be obtained.

また、このように鋳造された軸受材料は600Kg/
cm2以上の面圧に耐えることを目的としているが、
必ずしもこの目的が達成できず、高荷重用の用途
に供せられないことが多い。
In addition, the bearing material cast in this way weighs 600Kg/
Although it is intended to withstand surface pressure of cm 2 or more,
This purpose cannot always be achieved and it is often not possible to use it for high-load applications.

本発明は上記欠点の解決を目的とし、具体的に
は、従来法では注湯時の溶湯の温度管理や冷却時
の水や油の温度管理等が非常にむづかしく、溶湯
を十分に方向性を与えて冷却することが困難で、
鋳造組織にバラツキが生じることを解決すること
を目的とする。
The present invention aims to solve the above-mentioned drawbacks. Specifically, in the conventional method, it is very difficult to control the temperature of the molten metal during pouring and the temperature of water and oil during cooling, and it is difficult to control the temperature of the molten metal during cooling. It is difficult to give properties and cool down.
The purpose is to solve the problem of variations in the casting structure.

すなわち、従来法では、工業的に如何に注湯冷
却作業をコントロールしかつ凝固に十分な方向性
を与えて、均一な軸受材料を得ることが大きな問
題であつた。
That is, in the conventional method, a major problem was how to industrially control the pouring and cooling operation and give sufficient directionality to solidification to obtain a uniform bearing material.

そこで、本発明では、帯鋼上に軸受金属層を形
成する際に、金属溶湯を注湯する代わりに、金属
粉末を散布する。この理由は、近年、金属粉末の
製造技術の向上に伴い、種々の金属粉末、例え
ば、軸受金属の粉末も製造されるようになつたこ
とによる。従つて、軸受金属は粉末状態で散布さ
れるため、むづかしい温度管理や危険な鋳造作業
を行なう必要がなく、静的にかつ安全に軸受材料
が製造できる。更に、金属溶融層の冷却方法を改
善することによつて、凝固に十分に方向性を与え
てデンドライト組織を成長させることができ、高
荷重用の軸受材料が得られる。
Therefore, in the present invention, when forming a bearing metal layer on a steel band, metal powder is sprinkled instead of pouring molten metal. The reason for this is that various metal powders, such as bearing metal powders, have come to be manufactured in recent years as technology for manufacturing metal powders has improved. Therefore, since the bearing metal is dispersed in a powdered state, there is no need for difficult temperature control or dangerous casting work, and the bearing material can be manufactured statically and safely. Furthermore, by improving the cooling method of the molten metal layer, solidification can be given sufficient directionality to grow a dendrite structure, and a bearing material for high loads can be obtained.

そこで、第2図によつて、本発明法を更に具体
的に示すと、次の通りである。
Therefore, the method of the present invention is more specifically illustrated as follows with reference to FIG.

まず、第2図に示す如く、帯鋼1上にパウダー
スプレツダ2により金属粉末3を散布し、この帯
鋼1上の金属粉末を高周波加熱炉4によつて急激
に加熱溶解し、金属溶融層を形成する。その後、
循環されて均一温度に保たれている油6を帯鋼1
の裏面に吹付けて急冷すると同時に、金属溶融層
の表面を例えばシリコニツト加熱炉5で加熱す
る。このように油6によつて冷却すると同時に加
熱すると、この時に金属溶融層の横断面において
帯鋼表面から金属溶融層の表面に向つて適正な温
度勾配が与えられる。このため、帯鋼表面から垂
直に方向性が与えられて凝固し、表面に向つて樹
枝状を成すデンドライト組織が得られる。なお、
シリコニツト加熱炉5による加熱に併せて油6で
冷却したのちは、水7によつて常温まで冷却され
る。常温冷却後は、表面をミーリングカツタで整
えると、軸受材料が得られる。
First, as shown in FIG. 2, metal powder 3 is spread onto a steel strip 1 by a powder spreader 2, and the metal powder on this steel strip 1 is rapidly heated and melted in a high-frequency heating furnace 4 to melt the metal. form a layer. after that,
Oil 6, which is circulated and maintained at a uniform temperature, is applied to the steel strip 1.
At the same time, the surface of the molten metal layer is heated in a silicone heating furnace 5, for example. By cooling and heating simultaneously with the oil 6 in this way, an appropriate temperature gradient is provided from the surface of the steel strip toward the surface of the molten metal layer in the cross section of the molten metal layer. Therefore, the steel strip is solidified with directionality perpendicular to the surface, and a dendrite structure forming a dendritic structure toward the surface is obtained. In addition,
After being heated by the siliconite heating furnace 5 and cooled by oil 6, it is cooled to room temperature by water 7. After cooling to room temperature, the surface is prepared with a milling cutter to obtain a bearing material.

次に、実施例について説明する。 Next, examples will be described.

まず、帯鋼の上に、76wt%Cu−24wt%Pb合金
粉末を散布して、3mm厚さの金属粉末層を形成
し、これをN2雰囲気中で高周波加熱炉によつて
約15分かけて1220℃まで加熱し、金属粉末層を充
分溶解させた。その後、帯鋼の裏面から80℃に調
節された油を吹付けて30℃/secの冷却速度で冷
却すると同時に、金属溶融層の表面からシリコニ
ツト加熱炉で加熱して500℃まで冷却し、その後、
水冷によつて常温まで冷却した。その後、表面を
約1mmミーリングしフランヂ部を切断し、このよ
うにして得られた軸受材料を面圧650Kg/cm2のベア
リングテストしたところ、200時間耐え、優れた
摺動性能をもつ材料であつた。更に、この軸受材
料の横断面の顕微鏡写真をみたところ、表面に向
つて樹枝状のデンドライト組織が整然と成長して
いた。
First, 76wt%Cu-24wt%Pb alloy powder was sprinkled on the steel strip to form a 3mm thick metal powder layer, and this was heated in a high-frequency heating furnace in an N2 atmosphere for about 15 minutes. The metal powder layer was sufficiently dissolved by heating to 1220°C. Then, oil adjusted to 80℃ is sprayed from the back side of the steel strip to cool it at a cooling rate of 30℃/sec, and at the same time, the surface of the molten metal layer is heated in a silicone heating furnace to cool it to 500℃. ,
It was cooled to room temperature by water cooling. Afterwards, the surface was milled approximately 1 mm and the flange section was cut, and the thus obtained bearing material was subjected to a bearing test under a surface pressure of 650 kg/cm 2 and was found to withstand 200 hours and has excellent sliding performance. Ta. Furthermore, when looking at a microscopic photograph of a cross section of this bearing material, it was found that a dendritic dendrite structure had grown in an orderly manner toward the surface.

また、比較のために、第1図に示す如く、上記
のところと同組成の合金溶湯を用いて、軸受材料
を製造し、同様なベアリングテストならびに顕微
鏡テストを行なつた。この結果、帯鋼表面から中
央部まではデンドライト組織が生成されていた
が、表面ではその生成が不十分で、ベアリングテ
ストでは80時間程度しか耐えられなかつた。
For comparison, as shown in FIG. 1, a bearing material was manufactured using a molten alloy having the same composition as the one described above, and similar bearing tests and microscope tests were conducted. As a result, a dendrite structure was formed from the surface of the steel strip to the center, but it was insufficiently formed on the surface and could only withstand about 80 hours in the bearing test.

以上詳しく説明した通り、本発明法では、帯鋼
上の金属溶融層を冷却凝固する際に、金属溶融層
を帯鋼を介して裏面から冷却するのに対し、表面
から加熱するため、凝固時に、金属溶融層の横断
面には裏面から表面に向つて適正な温度勾配が形
成される。このため、表面に向つて樹枝状のデン
ドライト組織が整然と成長し、高い面圧に耐える
構造の軸受材料が得られる。
As explained in detail above, in the method of the present invention, when the molten metal layer on the steel strip is cooled and solidified, the molten metal layer is cooled from the back side through the steel strip, whereas it is heated from the surface, so during solidification, the molten metal layer is heated from the front surface. , an appropriate temperature gradient is formed in the cross section of the molten metal layer from the back surface to the front surface. Therefore, a dendritic dendrite structure grows in an orderly manner toward the surface, and a bearing material having a structure that can withstand high surface pressure can be obtained.

また、金属粉末を散布し、これを溶解させて軸
受金属層を形成するため、温度管理が容易にな
り、微細な鋳造組織が得られる。
Furthermore, since the bearing metal layer is formed by dispersing metal powder and melting it, temperature control becomes easy and a fine cast structure can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来法によつて軸受材料を製造する際
に使用する装置の一例の配置図であり、第2図は
本発明法によつて軸受材料を製造する際に使用す
る装置の一例の配置図である。 符号1……帯鋼、2……パウダースプレツダ、
3……金属粉末、4……高周波加熱炉、5……シ
リコニツト加熱炉、6……油、7……水、8……
溶湯。
FIG. 1 is a layout diagram of an example of equipment used in manufacturing bearing materials by the conventional method, and FIG. 2 is a layout diagram of an example of equipment used in manufacturing bearing materials by the method of the present invention. It is a layout diagram. Code 1...Strip steel, 2...Powder spreader,
3... Metal powder, 4... High frequency heating furnace, 5... Siliconite heating furnace, 6... Oil, 7... Water, 8...
Molten metal.

Claims (1)

【特許請求の範囲】[Claims] 1 金属粉末を帯鋼上に散布してから、この金属
粉末を加熱溶融して帯鋼に金属溶融層を形成し、
その後、この金属溶融層を表面から加熱すると同
時に帯鋼を裏面から冷却して、帯鋼表面から垂直
にデンドライト組織を成長させてから、更に、帯
鋼裏面から冷却することを特徴とする軸受材料の
製造法。
1 Sprinkle metal powder onto the steel strip, heat and melt the metal powder to form a molten metal layer on the steel strip,
Thereafter, this molten metal layer is heated from the front surface and at the same time the steel strip is cooled from the back side to grow a dendrite structure perpendicularly from the surface of the steel strip, and then further cooled from the back surface of the steel strip. manufacturing method.
JP9179783A 1983-05-25 1983-05-25 Production of bearing material Granted JPS59219425A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9179783A JPS59219425A (en) 1983-05-25 1983-05-25 Production of bearing material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9179783A JPS59219425A (en) 1983-05-25 1983-05-25 Production of bearing material

Publications (2)

Publication Number Publication Date
JPS59219425A JPS59219425A (en) 1984-12-10
JPS6344824B2 true JPS6344824B2 (en) 1988-09-07

Family

ID=14036598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9179783A Granted JPS59219425A (en) 1983-05-25 1983-05-25 Production of bearing material

Country Status (1)

Country Link
JP (1) JPS59219425A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS616284A (en) * 1984-06-21 1986-01-11 Taiho Kogyo Co Ltd Method and device for producing copper-lead bearing material
JPH09279362A (en) * 1996-04-11 1997-10-28 Tokushu Denkyoku Kk Surface treatment for metallic member
JP2003136629A (en) 2001-11-01 2003-05-14 Daido Metal Co Ltd Multilayered material and method for manufacturing multilayered material
US9109291B2 (en) * 2013-05-24 2015-08-18 General Electric Company Cold spray coating process

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49129637A (en) * 1973-04-18 1974-12-12
JPS50812A (en) * 1972-11-14 1975-01-07
JPS52111425A (en) * 1976-03-15 1977-09-19 Toyo Kogyo Co Method of depositing thin layer of wearrresistng alloy powder on surface of iron base material
JPS57200536A (en) * 1981-06-02 1982-12-08 Mitsubishi Heavy Ind Ltd Preparation of corrosion resistant structural member
JPS5891798A (en) * 1981-11-26 1983-05-31 Ube Ind Ltd Separation of ash from coal

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50812A (en) * 1972-11-14 1975-01-07
JPS49129637A (en) * 1973-04-18 1974-12-12
JPS52111425A (en) * 1976-03-15 1977-09-19 Toyo Kogyo Co Method of depositing thin layer of wearrresistng alloy powder on surface of iron base material
JPS57200536A (en) * 1981-06-02 1982-12-08 Mitsubishi Heavy Ind Ltd Preparation of corrosion resistant structural member
JPS5891798A (en) * 1981-11-26 1983-05-31 Ube Ind Ltd Separation of ash from coal

Also Published As

Publication number Publication date
JPS59219425A (en) 1984-12-10

Similar Documents

Publication Publication Date Title
US3936298A (en) Metal composition and methods for preparing liquid-solid alloy metal composition and for casting the metal compositions
US4108643A (en) Method for forming high fraction solid metal compositions and composition therefor
US3948650A (en) Composition and methods for preparing liquid-solid alloys for casting and casting methods employing the liquid-solid alloys
US4753690A (en) Method for producing composite material having an aluminum alloy matrix with a silicon carbide reinforcement
US3951651A (en) Metal composition and methods for preparing liquid-solid alloy metal compositions and for casting the metal compositions
DE69512490T2 (en) BERYLLIUM CONTAINING ALUMINUM ALLOYS AND LIQUID / SOLID PROCESSING OF SUCH ALLOYS
JPS61130451A (en) Aluminum/iron/vanadium alloy having high strength at high temperature
JPH06292942A (en) Method and device for producing monotectic alloy
DE3874986T2 (en) METHOD FOR THE PRODUCTION OF CASTING PIECES FROM ACTIVE METAL OR AN ALLOY THEREOF, CONSTRUCTING FROM A DIRECTED SOLIDIFICATION STRUCTURE.
US5087298A (en) Process of producing continuous thin sheet of tial intermetallic using pair of cooling rolls
JPS62133037A (en) Alloy for grain refining and its manufacture
JPS6344824B2 (en)
CA1269575A (en) Production of flat products from particulate material
JPH04502784A (en) Phase redistribution process
US4402905A (en) Production of a polycrystalline silicon aluminum alloy by a hot pressing technique
JPS6344823B2 (en)
JPS6411093B2 (en)
JP3824670B2 (en) Method for producing solid-liquid coexisting metal for molding
DE2300073A1 (en) PROCESS FOR PRODUCING ABRASIVE GRIT
JPS616284A (en) Method and device for producing copper-lead bearing material
JPS641230B2 (en)
JPS6141732A (en) Manufacture of alloy containing metallic particle dispersed as second phase
JPH0219177B2 (en)
JP2571596B2 (en) Manufacturing method of composite material composed of ceramic and metal
JP2876506B2 (en) Material modification method by casting with sintering, and casting material