JPH0434519A - Liquid crystal display device - Google Patents

Liquid crystal display device

Info

Publication number
JPH0434519A
JPH0434519A JP14234190A JP14234190A JPH0434519A JP H0434519 A JPH0434519 A JP H0434519A JP 14234190 A JP14234190 A JP 14234190A JP 14234190 A JP14234190 A JP 14234190A JP H0434519 A JPH0434519 A JP H0434519A
Authority
JP
Japan
Prior art keywords
liquid crystal
sensor
resistor
temp
doping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14234190A
Other languages
Japanese (ja)
Other versions
JP2619554B2 (en
Inventor
Katsuji Sakai
酒井 勝二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Seiki Co Ltd
Original Assignee
Nippon Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Seiki Co Ltd filed Critical Nippon Seiki Co Ltd
Priority to JP2142341A priority Critical patent/JP2619554B2/en
Publication of JPH0434519A publication Critical patent/JPH0434519A/en
Application granted granted Critical
Publication of JP2619554B2 publication Critical patent/JP2619554B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PURPOSE:To obtain arbitrary sensor characteristics when the impurity doping quantity of a polysilicon resistor is selected by providing a sensor for making temp. compensation of a driving voltage on the substrate in a liquid crystal cell and forming the sensor of the polysislicon resistor. CONSTITUTION:The polysislicon resistor 4 adjusted to a prescribed resistance value with a desired impurity concn. is obtd. by forming an amorphous silicon film in the prescribed range on the substrate 2 and subjecting the film to prescribed patterning, then subjecting the point to be installed with the sensor for temp. compensation to laser doping and laser annealing. A lead electrode 5 is thereafter formed by vapor deposition of a metal. The temp. coefft. of resistance (TCR) of the polysislicon resistor 4 is changed by the doping concn. Since the TCR can be arbitrarily selected by the doping concn. of the impurity in this way, the selection of the sensor characteristics in correspondence to the designing of the temp. compensation circuit is possible.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は温度補償用センサを備えた液晶表示装置に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a liquid crystal display device equipped with a temperature compensation sensor.

(従来の技術) 液晶表示装置は対向電極を有する対向基板内に液晶を封
入し、対向電極間に電極を印加することで液晶の光学的
性質を変化せしめ、所望の光学的表示を行うものである
が、液晶を動作せしめるに必要な最適な立ち上がり電圧
(実効値)は常に一定ではなく、温度の変化に伴ってそ
の値も変化する。そこで温度変化に対して液晶の駆動電
圧を調整する必要があるので、従来より温度センサを設
けて、駆vJJ電圧の自動調整を行っているものである
(Prior Art) A liquid crystal display device is a device in which liquid crystal is sealed in a counter substrate having counter electrodes, and the optical properties of the liquid crystal are changed by applying an electrode between the counter electrodes, thereby producing a desired optical display. However, the optimum rise voltage (effective value) required to operate the liquid crystal is not always constant, and its value changes as the temperature changes. Therefore, it is necessary to adjust the driving voltage of the liquid crystal in response to temperature changes, so conventionally a temperature sensor is provided to automatically adjust the driving vJJ voltage.

ところで前記の温度センサを液晶セルの外部に設けてお
く手段も知られているが(特開昭53−101297号
)、液晶材料は熱伝導の悪いガラス板その他の基板内に
封入されているため、外部センサでは液晶材料そのもの
の温度変化に対応できない。
By the way, a method is known in which the above-mentioned temperature sensor is provided outside the liquid crystal cell (Japanese Unexamined Patent Publication No. 53-101297), but since the liquid crystal material is sealed inside a glass plate or other substrate with poor thermal conductivity, However, external sensors cannot respond to temperature changes in the liquid crystal material itself.

特に急激な温度変化においては、液晶材料が当該外部温
度に到達するまでの間に、対向電極にはアンバランスな
駆動電圧が印加されることになる。
Particularly in the case of rapid temperature changes, an unbalanced drive voltage will be applied to the counter electrode until the liquid crystal material reaches the external temperature.

そこで温度センサを液晶セルの内部に設けることが捷案
されている(特開昭82−229235号)。前記手段
は特に薄g!トランジスタ(TFT)を利用したマトリ
ックス液晶表示装置の表示画素部分以外の領域に温度検
知用の半導体素子を形成したものである。
Therefore, it has been proposed to provide a temperature sensor inside the liquid crystal cell (Japanese Patent Laid-Open No. 82-229235). The above means is especially thin! This is a matrix liquid crystal display device using transistors (TFTs) in which a semiconductor element for temperature detection is formed in a region other than the display pixel portion.

(発明が解決しようとする課題) 前述した液晶セル内に温度検知用の半導体素子を設ける
手段において、この半導体素子として具体的にどのよう
なものを選択するべきかは前記文献に明示されていす、
TPTと同様の半導体を設けろ旨記載しているのみであ
るので、例えばアクティブマトリックス基板として特開
平3−40837号を用いたとしたならば、前記の温度
検知用の半導体素子はノンドープアモルファスシリコン
膜若しくはPドープアモルファスシリコン膜と推測され
る。
(Problem to be Solved by the Invention) In the above-mentioned means for providing a semiconductor element for temperature detection in the liquid crystal cell, what kind of semiconductor element should be specifically selected is not clearly specified in the above-mentioned document. ,
Since it only states that a semiconductor similar to TPT should be provided, for example, if JP-A-3-40837 is used as an active matrix substrate, the semiconductor element for temperature detection mentioned above may be a non-doped amorphous silicon film or a PPT. It is presumed to be a doped amorphous silicon film.

しかし温度検知用の半導体素子としてTPTの半導体と
同じ材料のものに限定すると熱電対やサーZスタ等のセ
ンサを用いた場合に比して駆#h電圧の出力電圧調整を
行う温度補償回路の設計は、煩雑な作業になると基に、
必ずしも最適な温度補償がなされるものではない。
However, if the semiconductor element for temperature detection is limited to one made of the same material as the TPT semiconductor, the temperature compensation circuit that adjusts the output voltage of the drive voltage will be more difficult than when using a sensor such as a thermocouple or Z-star. Based on the fact that designing can be a complicated task,
Optimal temperature compensation is not necessarily achieved.

(課題を解決するための手段) 本発明に係るw1品表示装置は、対向電極を有する対向
基板間に液晶を封入してなる液晶セルを備えた液晶表示
装置に於て、ポリシリコン抵抗体からなる温度補償用セ
ンサを液晶セル内に設けたことを特徴とするもので、更
には前記のポリシリコン抵抗を、液晶セルの最適駆動電
圧の温度係数と一致する抵抗温度係数に形成したことを
特徴とするものである。
(Means for Solving the Problems) A W1 product display device according to the present invention is a liquid crystal display device equipped with a liquid crystal cell formed by sealing liquid crystal between opposing substrates having opposing electrodes. A temperature compensation sensor is provided in the liquid crystal cell, and the polysilicon resistor is formed to have a resistance temperature coefficient that matches the temperature coefficient of the optimum driving voltage of the liquid crystal cell. That is.

(作 用) ポリシリコン抵抗体の抵抗温度係数(TCR)は非常に
大きく、温度検出が容易に行えると共に不純物のドーピ
ング濃度によってTCRを任意に選択できるので、温度
補償回路の設計に対応してセン号特性を選択できる利点
があり、而もTPTの形成の際にセンサ設置個所にアモ
ルファスシリコン膜を予め形成しておくと、レーザアニ
ール等の手段で外に影響を与えることなく、所望のセン
サを得ることができる。更に前記ポリシリコン抵抗体の
TCRを液晶材料の最適駆動電圧の温度特性と一致させ
ておくと、センサの抵抗変化と直接駆動電圧変化と対応
せしめれば良いので、その設計は用意となる。
(Function) The temperature coefficient of resistance (TCR) of a polysilicon resistor is extremely large, making it easy to detect temperature, and the TCR can be arbitrarily selected depending on the doping concentration of impurities. The advantage is that the desired sensor characteristics can be selected, and if an amorphous silicon film is formed in advance at the sensor installation location when forming the TPT, the desired sensor can be formed by means such as laser annealing without affecting the outside. Obtainable. Furthermore, if the TCR of the polysilicon resistor is made to match the temperature characteristics of the optimum driving voltage of the liquid crystal material, the design can be easily made because it is sufficient to directly correspond the resistance change of the sensor to the driving voltage change.

(実施例) 次に本発明の実施例について説明する。(Example) Next, examples of the present invention will be described.

液晶表示装置は、従来周知の通り対向電極1を有する対
向基板2間に液晶材料3を封入してなる液晶セルと、対
向電極1に所定の電圧を印加する駆動回路(図示せず)
からなり、本発明に係る液晶表示装置の液晶セルは基板
2上に温度補償用センサ4を設けたもので、前記センサ
4は液晶セル形成前に基板2上に設けてなる。次にその
実施例を製造手段に基づいて説明する。
As is conventionally known, a liquid crystal display device includes a liquid crystal cell in which a liquid crystal material 3 is sealed between a counter substrate 2 having a counter electrode 1, and a drive circuit (not shown) that applies a predetermined voltage to the counter electrode 1.
The liquid crystal cell of the liquid crystal display device according to the present invention has a temperature compensation sensor 4 provided on a substrate 2, and the sensor 4 is provided on the substrate 2 before forming the liquid crystal cell. Next, the embodiment will be explained based on the manufacturing means.

基板上の所定範囲にP−CVDその他の手段でアモルフ
ァスシリコン膜を形成し、所定のパーターニングを行っ
た後、温度補償用センサの設置個所にレーザードーピン
グ及びレーザーアニールを施して所望の不純物濃度で所
定の抵抗値(レーザーアニールによってポリ化部分が決
定する)としたポリシリコン抵抗体4を得、而る後金属
蒸着によってリード電極5を形成する。
After forming an amorphous silicon film in a predetermined area on the substrate by P-CVD or other means and performing predetermined patterning, laser doping and laser annealing are performed at the location where the temperature compensation sensor is installed to achieve the desired impurity concentration. A polysilicon resistor 4 having a predetermined resistance value (the poly-ized portion is determined by laser annealing) is obtained, and then a lead electrode 5 is formed by metal vapor deposition.

また前記の手段でなく、最初に所定のドーピングガスを
混入せしめて、所定の量の不純物が混入したアモルファ
スシリコン膜を形成し、これにレーザーアニールを施す
と所定のポリシリコン抵抗体4を得ることができろ。
Alternatively, instead of using the above-mentioned method, a predetermined doping gas may be mixed first to form an amorphous silicon film containing a predetermined amount of impurities, and then a predetermined polysilicon resistor 4 can be obtained by subjecting this to laser annealing. Be able to do it.

ところで前記手段で形成されたボリシ1;コン抵抗体4
は、第2図に示すようにドーピング濃度によって抵抗温
度係数(TCR)が変化する。例えばシリコン1に対し
てボロンを0.01%混入すると、TCRばI X 1
0−’程度となる。即ち1℃の温度変化で0.1%の抵
抗値変化が生ずることになる。而も液晶材料に対する最
適駆動電圧の温度特性(Tey)の係数は約2 X 1
0−1程度である。
By the way, the resistor 1 formed by the above method; the resistor 4
As shown in FIG. 2, the temperature coefficient of resistance (TCR) changes depending on the doping concentration. For example, if 0.01% boron is added to 1 silicon, TCR becomes I
It becomes about 0-'. That is, a temperature change of 1° C. causes a change in resistance value of 0.1%. Moreover, the coefficient of the temperature characteristic (Tey) of the optimum driving voltage for the liquid crystal material is approximately 2 x 1
It is about 0-1.

以上のことから、液晶セル内部に温度補償用センサとし
てポリシリコン抵抗体を用いることにょって、 (1)任意の温度特性を有するセンサを得ることができ
る (2)センサを複数個設置すると共に各センサのTCR
を異ならせ、特にTCRが正負逆となるように設けてお
き、両者の差異に基づいて温度検出を行うと、潤度シζ
対する感度を倍加せしめることができる。
From the above, by using a polysilicon resistor as a temperature compensation sensor inside a liquid crystal cell, (1) it is possible to obtain a sensor with arbitrary temperature characteristics, and (2) by installing multiple sensors, TCR of each sensor
If the temperature is detected based on the difference between the two, especially if the TCR is set so that the positive and negative are reversed, the moisture level ζ
It is possible to double the sensitivity to

(3)センサのTCRleTCVと一致せしめると、セ
ンサを駆動電圧出力の回路に直接組み込むことで完全な
温度補償が達成される。
(3) By matching the TCRleTCV of the sensor, complete temperature compensation is achieved by directly incorporating the sensor into the circuit of the drive voltage output.

(4)基板にTPTを形成する場合、センサを形成する
ためのアモルファスシリコン膜の形成並びにリード電極
5の形成はTPTの形成の際に同時に行うことができ、
而もセンサ部分のポリ化は他の部材に影響を与えないレ
ーザーアニールによって形成できる。
(4) When forming the TPT on the substrate, the formation of the amorphous silicon film for forming the sensor and the formation of the lead electrode 5 can be performed simultaneously when forming the TPT;
Moreover, the sensor portion can be made poly by laser annealing without affecting other members.

等の利点を有する。It has the following advantages.

尚本発明におけるポリシリコン抵抗体(温度補償用セン
サ)4の形成手段は前記実施例に限定されるものでなく
、他の適宜な手段を採用しても良いことは勿論のこと、
対象とする液晶セルの具体的構造並びに使用液晶等は任
意である。
It should be noted that the means for forming the polysilicon resistor (temperature compensation sensor) 4 in the present invention is not limited to the above-mentioned embodiments, and it goes without saying that other suitable means may be adopted.
The specific structure of the target liquid crystal cell and the liquid crystal used are arbitrary.

(発明の効果) 本発明は以上のように液晶表示装置におけろ駆動電圧の
温度補償を行うためのセンサを、液晶セル内の基板上に
設けると共1こ、センサをポリシリコン抵抗体で形成し
たもので、ポリシリコン抵抗体の不純物ドーピング量を
選択することで任意のセンサ特性を得ろことができ、更
に特に前記センサ特性を最適部r!JJ電圧の温度特性
と一致せしめろと、センサ出力をそのまま駆動電圧出力
と対応させることができ、温度補償用の回路が簡単に構
成されると共に、完全な温度補償が達成されろものであ
る。
(Effects of the Invention) As described above, the present invention provides a sensor for temperature compensation of drive voltage in a liquid crystal display device on a substrate in a liquid crystal cell, and also provides a sensor using a polysilicon resistor. By selecting the impurity doping amount of the polysilicon resistor, it is possible to obtain arbitrary sensor characteristics, and in particular, the sensor characteristics can be adjusted to an optimum value. By matching the temperature characteristics of the JJ voltage, the sensor output can be made to correspond directly to the drive voltage output, and the temperature compensation circuit can be easily constructed and complete temperature compensation can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例の液晶セルの断面図、第2図は
ポリシリコン抵抗体の抵抗温度係数グラフ、第3図は最
適駆動電圧の温度特性グラフである。 1は対向電極 2は基板 3は液晶 4ば温度補償用センサ(ポリシリコン抵抗体)5はリー
ド電極
FIG. 1 is a cross-sectional view of a liquid crystal cell according to an embodiment of the present invention, FIG. 2 is a resistance temperature coefficient graph of a polysilicon resistor, and FIG. 3 is a temperature characteristic graph of an optimum driving voltage. 1 is a counter electrode 2 is a substrate 3 is a liquid crystal 4 is a temperature compensation sensor (polysilicon resistor) 5 is a lead electrode

Claims (2)

【特許請求の範囲】[Claims] (1)対向電極を有する対向基板間に液晶を封入してな
る液晶セルを備えた液晶表示装置に於て、ポリシリコン
抵抗体からなる温度補償用センサを液晶セル内に設けた
ことを特徴とする液晶表示装置。
(1) A liquid crystal display device equipped with a liquid crystal cell formed by sealing liquid crystal between opposing substrates having opposing electrodes, characterized in that a temperature compensation sensor made of a polysilicon resistor is provided in the liquid crystal cell. LCD display device.
(2)請求項第1項のポリシリコン抵抗体を、液晶セル
の最適駆動電圧の温度係数と一致する抵抗温度係数に形
成したことを特徴とする液晶表示装置。
(2) A liquid crystal display device characterized in that the polysilicon resistor according to claim 1 is formed to have a resistance temperature coefficient that matches the temperature coefficient of the optimum driving voltage of the liquid crystal cell.
JP2142341A 1990-05-31 1990-05-31 Liquid crystal display Expired - Lifetime JP2619554B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2142341A JP2619554B2 (en) 1990-05-31 1990-05-31 Liquid crystal display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2142341A JP2619554B2 (en) 1990-05-31 1990-05-31 Liquid crystal display

Publications (2)

Publication Number Publication Date
JPH0434519A true JPH0434519A (en) 1992-02-05
JP2619554B2 JP2619554B2 (en) 1997-06-11

Family

ID=15313109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2142341A Expired - Lifetime JP2619554B2 (en) 1990-05-31 1990-05-31 Liquid crystal display

Country Status (1)

Country Link
JP (1) JP2619554B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5657522A (en) * 1996-05-14 1997-08-19 Duracell Inc. Coiled electrode assemblies and methods of producing same
US6414740B1 (en) 1999-06-01 2002-07-02 Nec Corporation LCD having temperature detection elements provided on an active-substrate
KR100873546B1 (en) * 2006-05-17 2008-12-11 엡슨 이미징 디바이스 가부시키가이샤 Electronic circuit, electro-optic device and electronic apparatus including it
US8102486B2 (en) 2006-09-28 2012-01-24 Sharp Kabushiki Kaisha Display panel and display device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5691276A (en) * 1979-12-25 1981-07-24 Citizen Watch Co Ltd Display panel
JPS646927A (en) * 1987-06-29 1989-01-11 Hosiden Electronics Co Liquid crystal display device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5691276A (en) * 1979-12-25 1981-07-24 Citizen Watch Co Ltd Display panel
JPS646927A (en) * 1987-06-29 1989-01-11 Hosiden Electronics Co Liquid crystal display device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5657522A (en) * 1996-05-14 1997-08-19 Duracell Inc. Coiled electrode assemblies and methods of producing same
US6414740B1 (en) 1999-06-01 2002-07-02 Nec Corporation LCD having temperature detection elements provided on an active-substrate
KR100873546B1 (en) * 2006-05-17 2008-12-11 엡슨 이미징 디바이스 가부시키가이샤 Electronic circuit, electro-optic device and electronic apparatus including it
KR100905360B1 (en) * 2006-05-17 2009-07-01 엡슨 이미징 디바이스 가부시키가이샤 Electronic circuit, electro-optic device and electronic apparatus including it
US7868882B2 (en) 2006-05-17 2011-01-11 Sony Corporation Electronic circuit, electro-optical device, and electronic apparatus including the same
US8102486B2 (en) 2006-09-28 2012-01-24 Sharp Kabushiki Kaisha Display panel and display device

Also Published As

Publication number Publication date
JP2619554B2 (en) 1997-06-11

Similar Documents

Publication Publication Date Title
US8399951B2 (en) Thin-film semiconductor device
US5045905A (en) Amorphous silicon thin film transistor
US20070207574A1 (en) Double gate thin-film transistor and method for forming the same
JPS6187371A (en) Thin-film semiconductor device
US6713825B2 (en) Poly-crystalline thin film transistor and fabrication method thereof
JPH0555581A (en) Thin-film semiconductor element and its manufacture
KR20010013006A (en) Electronic devices comprising thin-film transistors
US5053354A (en) Method of fabricating a reverse staggered type silicon thin film transistor
US6444390B1 (en) Process for producing semiconductor thin film devices using group 14 element and high temperature oxidizing treatment to achieve a crystalline silicon film
CN104599640A (en) Active matrix organic light emitting diode display and temperature adjustment method thereof
JPH0434519A (en) Liquid crystal display device
JPH09266316A (en) Semiconductor element
JP3056813B2 (en) Thin film transistor and method of manufacturing the same
JP3008485B2 (en) Thin film transistor
US8102486B2 (en) Display panel and display device
JPH0142146B2 (en)
US4979006A (en) Reverse staggered type silicon thin film transistor
JP2004134615A (en) Soi-mosfet device
JP2001024199A (en) Thin film semiconductor device
US6953716B2 (en) Polysilicon material and semiconductor devices formed therefrom
JPH04181917A (en) Infrared sensor
JP2018190909A (en) Semiconductor device, electronic equipment, and method of manufacturing semiconductor device
KR950009797B1 (en) Fid poly silicon tft with bottom gate
JPH06258144A (en) Temperature sensor
JPH01276767A (en) Thin film transistor and manufacture thereof