JPH0434504A - Optical fiber for detecting gas, liquid or the like - Google Patents

Optical fiber for detecting gas, liquid or the like

Info

Publication number
JPH0434504A
JPH0434504A JP2141908A JP14190890A JPH0434504A JP H0434504 A JPH0434504 A JP H0434504A JP 2141908 A JP2141908 A JP 2141908A JP 14190890 A JP14190890 A JP 14190890A JP H0434504 A JPH0434504 A JP H0434504A
Authority
JP
Japan
Prior art keywords
core
optical fiber
cladding
outer periphery
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2141908A
Other languages
Japanese (ja)
Inventor
Masayuki Nishimoto
西本 征幸
Yoshikazu Matsuda
松田 美一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Toho Gas Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Toho Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd, Toho Gas Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2141908A priority Critical patent/JPH0434504A/en
Publication of JPH0434504A publication Critical patent/JPH0434504A/en
Pending legal-status Critical Current

Links

Landscapes

  • Examining Or Testing Airtightness (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Abstract

PURPOSE:To prevent the light waves projecting and propagating to the outer periphery of a core from being absorbed in a primary coating by forming the off-centered core side of the primary coating to the thickness smaller than the thickness on the reflection side. CONSTITUTION:The core A having the refractive index higher than the refractive index of a clad B is disposed in the off-centered position near the outer periphery of the clad B and the primary coating C having the refractive index higher than the refractive index of the clad B is formed on the outer periphery of the clad B. The core A side of the primary coating C is formed to the thickness smaller than the thickness on the opposite side. Further, the secondary coating D having the refractive index lower than the refractive index of the clad B is formed on the outer periphery of the primary coating C. The core A side of the secondary coating D is formed to the thickness larger than the thickness on the opposite side. Of the core light, the light waves projecting and propagating from the outer periphery of the core are substantially prevented from being absorbed in the primary coating.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、光ファイバを伝播する光波を利用して、気体
や液体を検知するのに用いられる光ファイバに関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an optical fiber used to detect gas or liquid by utilizing light waves propagating through the optical fiber.

(従来の技術) 従来、シングルモード光ファイバのコアAを伝播するコ
ア光のうちコアAの外周からはみ出して伝播する僅かな
光波を利用して気体や液体等を検知する光ファイバとし
て、第2図のような偏心コアシングルモード光ファイバ
が知られている。この光ファイバはクラッドBよりも高
い屈折率を有するコアAが同クラッドBの外周寄り偏心
位置に配置され、同クラッドBの外周に一次被NCが均
な肉厚で形成され、その外周に二法被F!IDが均な肉
厚で形成されている。
(Prior Art) Conventionally, a second optical fiber has been used as an optical fiber for detecting gas, liquid, etc. by utilizing a small amount of light waves propagating outside the outer periphery of the core A of the core light propagating through the core A of a single mode optical fiber. An eccentric core single mode optical fiber as shown in the figure is known. In this optical fiber, a core A having a higher refractive index than the cladding B is arranged at an eccentric position near the outer periphery of the cladding B, a primary sheathing NC is formed with a uniform thickness on the outer periphery of the cladding B, and a core A with a uniform thickness is formed on the outer periphery of the cladding B. Happi coat F! The ID is formed with a uniform thickness.

この偏心コアシングルモード光ファイバでは、コア光が
クラッドBの薄肉部の外側まではみ出した状態で伝播す
るため、同コア光よりも屈折率の高い気体や液体、また
は同コア光と同一波長を吸収し易い気体や液体が、前記
クラッドBに直接接触するか、または同クラッドBの外
周の一次被覆Cに拡散或は膨潤するとエバネッシェント
波が吸収されてコア光の伝送損失が増加し、それに伴っ
て同光ファイバの光出力が変化する。従って同光ファイ
バによれば、この変化から前記気体や液体を検知するこ
とができる。
In this eccentric core single mode optical fiber, the core light propagates to the outside of the thin part of the cladding B, so gas or liquid with a higher refractive index than the core light or the same wavelength as the core light is absorbed. When a gas or liquid that easily comes into direct contact with the cladding B or diffuses or swells into the primary coating C around the cladding B, evanescent waves are absorbed and the transmission loss of the core light increases. The optical output of the same optical fiber changes. Therefore, according to the same optical fiber, the gas or liquid can be detected from this change.

一方、光フアイバ内を伝播する光には既に知られている
ように前記コア光以外に、クラッドB内を伝播するクラ
ッドモード光がある。このクラッドモード光に対するコ
ア光の比率は二倍の−から十分の一程度である。しかも
、使用される条件にもよるが、コアの外周からはみ出し
て伝播する光波のコア光に対する比率は十分の一程度で
あり、更に気体や液体に吸収される光波のコアの外周か
らはみ出して伝播する光波に対する比率は四分の一程度
である。従って、偏心コアシングルモード光ファイバの
クラッドモード光を含む全光出力に対する吸収による出
力変化量は小さすぎて検知するのが困難である。そこで
従来は、萌記−次被覆CをクラッドBよりも屈折率の高
いものとすることにより、タラウドモード光を一次被m
cに吸収させて、コア光だけを検知するようにしていた
On the other hand, as is already known, the light propagating within the optical fiber includes cladding mode light propagating within the cladding B in addition to the core light. The ratio of the core light to the cladding mode light is about twice to one-tenth. Moreover, although it depends on the conditions of use, the ratio of light waves that propagate beyond the outer periphery of the core to core light is about one-tenth, and furthermore, the ratio of light waves that are absorbed by gases or liquids that propagate beyond the outer periphery of the core. The ratio of light waves to light waves is about one quarter. Therefore, the amount of output change due to absorption with respect to the total optical output including cladding mode light of the eccentric core single mode optical fiber is too small to be detected. Therefore, in the past, by making the Moeki-order coating C have a higher refractive index than the cladding B, the Taloud mode light was
c, so that only the core light was detected.

また、前記二法被rfIDはクラッドBより屈折率の低
いものとすることにより、伝播光の透過・反射に関与し
ないようにしていた。
Furthermore, the bimodal rfID is made to have a lower refractive index than the cladding B, so that it does not participate in the transmission and reflection of propagating light.

(発明が解決しようとする課題) しかしながら従来の偏心コアシングルモード光ファイバ
は次のような問題点があった。
(Problems to be Solved by the Invention) However, the conventional eccentric core single mode optical fiber has the following problems.

■、屈折率の高い一次被覆CがクラッドBの外周に均一
な肉厚で被覆されているので、この−法被raCにより
クラッドモード光と共にコアの外周にはみ出して伝播す
る光波も吸収されてしまう。
■Since the primary coating C with a high refractive index is coated on the outer periphery of the cladding B with a uniform thickness, this -legal coating raC absorbs the light waves that propagate to the outer periphery of the core along with the cladding mode light. .

そのため、従来の偏心コアシングルモード光ファイバは
伝送損失が大きく、長尺での使用ができず、光伝送路と
しては全く使用できなかった。
Therefore, conventional eccentric core single mode optical fibers have large transmission losses, cannot be used in long lengths, and cannot be used as optical transmission lines at all.

■ −法被FIICによりコアの外周にはみ出して伝播
する光コアの外周からはみ出して伝播する光波が吸収さ
れてしまうので、−法被[Cのうち少なくとも気体や液
体等を検知する部分(センサ部)を同−法被覆Cの全周
に互って除去するか、偏心しているコアへの近傍部分だ
けの一次被ticを除去しなければ、気体や液体を検知
することができなかった。このため、−々、−法被覆C
を除去していたが、この作業が面倒であった。
- Light waves propagating outside the outer periphery of the optical core are absorbed by the FIIC. ) must be removed from the entire circumference of the coating C, or only the primary coating near the eccentric core must be removed to detect gas or liquid. For this reason, -, - law covering C
, but this work was troublesome.

■、−次被法被を除去するためには二法被1iIDをも
除去しなければならず、そのようにすると同センサ部の
機械的強度が低下し、同光ファイバの寿命が短(なると
いう問題もあった。
■, - In order to remove the second haptic, it is also necessary to remove the second haptic 1iID, which reduces the mechanical strength of the sensor section and shortens the life of the optical fiber. There was also the problem.

■、前記強度や寿命等の問題からセンサ部を長くするこ
とができず、従ってセンサ部がおのずと短くなり、その
短いセンサ部でしか気体や液体を検知することができな
かった。
(2) Due to the above-mentioned problems such as strength and lifespan, it is not possible to make the sensor section long, so the sensor section naturally becomes short, and gas or liquid can only be detected with the short sensor section.

■、偏心コアシングルモード光ファイバでは伝送損失が
大きくて光伝送路として使用できず、センサ部も長(で
きないため、従来は、数十cmの短い偏心コアシングル
モード光ファイバにセンサ部を設けて、それを光伝送用
の長尺8光ファイバに接続して検知用光ファイバとして
いた。しかしこれではそのセンサ部でしか検知できない
ため。
■Eccentric core single mode optical fiber has a large transmission loss and cannot be used as an optical transmission path, and the sensor section cannot be long. Conventionally, the sensor section was installed on a short eccentric core single mode optical fiber of several tens of centimeters. This was connected to eight long optical fibers for optical transmission and used as a detection optical fiber.However, this could only be detected by the sensor section.

長距離に亙って布設して複数箇所で検知することはでき
なかった。この場合従来は、前記検知用光ファイバを複
数本用意し、それをセンサ部の位置をずらして布設して
いた。しかし、そのようにするとコスト高となり、また
布設可能本数に限度があるため、その限られたセンサ部
が例えばガス管や液体輸送管の分岐部とか接続部といっ
た気体や液体が漏れ易い箇所に位置するように検知用光
ファイバを布設していた。このようにして検知箇所を増
やしても、センサ部でしか気体や液体を検知することが
できず、センサ部間では検知できないので、光ファイバ
の長手方向多数点で検知してガスや水等の分布状態を計
測すること(分布計θす)はできなかった。
It was not possible to install it over a long distance and detect it at multiple locations. In this case, conventionally, a plurality of the above-mentioned optical fibers for detection have been prepared and laid so as to shift the position of the sensor section. However, this increases the cost and limits the number of cables that can be installed, so the limited number of sensor parts is often located at locations where gas or liquid is likely to leak, such as at branch points or connections of gas pipes or liquid transport pipes. A detection optical fiber was installed so that the Even if the number of detection points is increased in this way, gases and liquids can only be detected at the sensor section, and cannot be detected between the sensor sections. It was not possible to measure the distribution state (distribution meter θ).

(発明の目的) 本発明の目的は光伝送路としても使用でき、被mを除去
しな(とも気体や液体の検知かでき、しかも長手方向の
どの箇所でも検知が可能な気体、液体等の検知用光ファ
イバを提供することにある。
(Object of the Invention) The object of the present invention is that it can be used as an optical transmission path, and can detect gases and liquids without removing the target. An object of the present invention is to provide a detection optical fiber.

f問題点を解決するための手段) 本発明の気体、液体等の検知用光ファイバは第1図のよ
うに、クラッドBよりも高い屈折率を有するコア八が同
クラッドBの外周寄り偏心位置に配置され、同クラッド
Bの外周に同クラッドBよりも高い屈折率を有する一次
被raCが設けられてなる気体、液体等の検知用光ファ
イバにおいて、同−次波層Cのうち前記コアA側の肉厚
がその反対側の肉厚よりも薄(形成されてなることを特
徴とするものである。
Means for Solving Problems f) In the optical fiber for detecting gas, liquid, etc. of the present invention, as shown in FIG. In an optical fiber for detecting gas, liquid, etc., in which a primary covering RAC having a refractive index higher than that of the cladding B is provided on the outer periphery of the cladding B, the core A of the homogeneous wave layer C is provided. The wall thickness on one side is thinner than the wall thickness on the opposite side.

(作用) 本発明の気体、液体等の検知用光ファイバでは第1図の
ように一次被覆CのうちコアA側の肉厚が薄く形成され
ているので、コア光のうちコアの外周からはみ出して伝
播する光波は同−次被FWCに吸収されにく(なる、従
って、同−次被lWCを除去しな(とも、前記コア光の
コアの外周からはみ出して伝播する光波が一次被I′!
IC内に拡散或は膨潤した気体や液体に吸収され易くな
り、その吸収に伴う光出力の低下が明確になるため、そ
れらを検知し易い。
(Function) In the optical fiber for detecting gases, liquids, etc. of the present invention, as shown in Fig. 1, the thickness of the primary coating C on the core A side is formed thin, so that part of the core light protrudes from the outer periphery of the core. A light wave propagating through the core light is difficult to be absorbed by the co-order FWC, so the light wave propagating outside the core of the core light is difficult to absorb by the co-order FWC. !
It becomes easy to be absorbed by the gas or liquid that diffuses or swells within the IC, and the decrease in optical output accompanying the absorption becomes clear, making it easy to detect.

また、−次被F!ICのうちコアAと反対側の肉厚が反
対側よりも厚く形成されているので、クラッドB内を伝
播するタララドモード光は同−法被覆Cに吸収されて十
分除去される。
Also, - next received F! Since the thickness of the IC on the side opposite to the core A is thicker than that on the opposite side, the Talarado mode light propagating within the cladding B is absorbed by the cladding C and is sufficiently removed.

(実施例) 第1図は本発明の気体、液体等の検知用光ファイバの一
実施例である。
(Example) FIG. 1 shows an example of the optical fiber for detecting gas, liquid, etc. of the present invention.

同図に示すAはコア、Bはクラッド、Cは一次被覆、D
は二次被覆である。この検知用光ファイバは、クラッド
Bよりも高い屈折率を有するコア八が同クラッドBの外
周寄り偏心位置に配置され、同クラッドBの外周に同ク
ラッドBよりも高い屈折率を有する一次波WICが形成
されており、同−次mrmcのうちコアA側の肉厚が反
対側の肉厚に比べて薄く形成されている。更に、この実
施例では一次被1cの外周にクラッドBより屈折率の低
い二法被F!IDが形成されており、同二次被覆りのう
ちコアA側の肉厚が反対側の肉厚に比べて厚く形成され
ている。この実施例の前記各構成要素の諸元は次表1に
示す通りである。
In the figure, A is the core, B is the cladding, C is the primary coating, and D
is the secondary coating. In this optical fiber for detection, eight cores having a refractive index higher than that of the cladding B are arranged at an eccentric position near the outer periphery of the cladding B, and a primary wave WIC having a refractive index higher than that of the cladding B is placed on the outer periphery of the cladding B. is formed, and the wall thickness on the core A side of the same-order mrmc is formed to be thinner than the wall thickness on the opposite side. Furthermore, in this embodiment, two claddings F! having a lower refractive index than the cladding B are placed on the outer periphery of the primary cladding 1c. ID is formed, and the thickness of the secondary coating on the core A side is thicker than that on the opposite side. The specifications of each component of this embodiment are as shown in Table 1 below.

本発明の比較例として1次表1に示す諸元の第2図のよ
うな従来の偏心コアシングルモード光ファイバを用意し
、次のようにして両者を比較した。
As a comparative example of the present invention, a conventional eccentric core single mode optical fiber as shown in FIG. 2 with the specifications shown in Table 1 was prepared, and the two were compared in the following manner.

■ 両光ファイバにおける波長1.33umの伝播光の
伝送損失を測定したところ1本発明の実施例の光ファイ
バの伝送損失は2.5dB/kmであり、十分に長尺で
も光伝送路として使用できることが判明した。これに対
して比較例の光ファイバの伝送損失は30 d B /
 k m以上であり、長尺での使用は不可能であった。
■ When the transmission loss of propagating light with a wavelength of 1.33 um was measured in both optical fibers, the transmission loss of the optical fiber according to the embodiment of the present invention was 2.5 dB/km, and even if it was long enough, it could not be used as an optical transmission line. It turns out it can be done. On the other hand, the transmission loss of the comparative optical fiber is 30 dB/
km or more, and it was impossible to use it in a long length.

08両光フアイバの濃度50%のメタンガスに対する検
知感度を測定したところ1本発明の実施例の光ファイバ
では二法被IWDも一次波1’ficも除去しなくとも
同ガスを検知でき、しかもその検知感度は−0,5dB
/100mmと優れた数値を示し、光フアイバ全長に亙
って検知できることが判明した。これに対して比較例の
光ファイバは、被覆を剥取らない状態では全くメタンガ
スを検知できなかった。
08 The detection sensitivity of both optical fibers to methane gas at a concentration of 50% was measured. 1. The optical fiber of the embodiment of the present invention can detect the same gas without removing both the IWD and the primary wave 1'fic. Detection sensitivity is -0.5dB
It showed an excellent value of /100 mm, and it was found that detection could be performed over the entire length of the optical fiber. In contrast, in the optical fiber of the comparative example, no methane gas could be detected without the coating being stripped off.

(表1) なお、前記二法被iDはクラッドBよりも屈折率が低い
ので、従来と同様に伝播光の透過・反射には関与しない
、但し、気体や液体が二次被FIID内に拡散或は膨潤
してから一次被FIIc内に拡散或は膨潤して検知され
るので、その間の所要時間を短縮して検知感度を向上さ
せるためには、同二次被覆りは所望される機械的強度を
満足させながらできるだけ薄肉であることが好ましい。
(Table 1) Note that because the refractive index of the secondary cladding iD is lower than that of the cladding B, it does not participate in the transmission and reflection of propagating light as in the conventional case.However, gas and liquid are diffused into the secondary cladding FIID. Alternatively, the secondary coating is detected by being swollen and then diffused or swollen into the primary target FIIc, so in order to shorten the time required and improve detection sensitivity, the secondary coating must be coated with the desired mechanical properties. It is preferable that the wall be as thin as possible while still satisfying strength.

(発明の効果) 本発明の気体、液体等の検知用光ファイバは以下のよう
な効果がある。
(Effects of the Invention) The optical fiber for detecting gas, liquid, etc. of the present invention has the following effects.

■、−次被法被のうち偏心しているコアA側の肉厚が反
対側に比べて薄く形成されているので、コアの外周には
み出して伝播する光波が同−吹抜lcに吸収されにくく
なるため、コア光の伝送損失が飛躍的に小さくなって長
尺での使用が可能となり、光伝送路としても使用するこ
とができる。
■Since the wall thickness on the eccentric core A side of the second coat is thinner than that on the opposite side, light waves propagating outside the core are difficult to be absorbed by the same atrium LC. Therefore, the transmission loss of the core light is dramatically reduced, making it possible to use it in a long length, and it can also be used as an optical transmission line.

■、ココア外周にはみ出して伝播する光波の一次被覆C
への吸収によるコア光の伝送損失が小さくなるので、同
光波の気体や液体への吸収による光出力の低下が明確に
なり、その比率が大きくなって検知し易くなるため、従
来のようにセンサ部の被覆を除去する面倒がなくなり、
強度や寿命等の問題が一掃される。
■, Primary coating C of light waves propagating outside the cocoa periphery
Since the transmission loss of the core light due to absorption in the gas or liquid becomes smaller, the decrease in optical output due to the absorption of the same light wave in gas or liquid becomes clearer, and the ratio becomes larger, making it easier to detect. There is no need to remove the coating on the parts,
Problems such as strength and lifespan are eliminated.

■、伝送損失が小さくて光伝送路として使用でき、しか
も−吹抜raCを除去しなくとも気体や液体を検知でき
るので1本発明の光ファイバを布設するだけでその全長
に互って気体や液体を検知することができ、同光ファイ
バの後方散乱光などを観察すれば分布計測も可能となる
■The transmission loss is small, so it can be used as an optical transmission line, and gases and liquids can be detected without removing the atrium RAC. can be detected, and by observing the backscattered light of the same optical fiber, it is also possible to measure the distribution.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の気体、液体等の検知用光ファイバの一
実施例の縦断面図、第2図は従来の気体、液体等の検知
用光ファイバの縦断面図である。 Aはコア Bはクラッド Cは一次被覆
FIG. 1 is a longitudinal sectional view of an embodiment of the optical fiber for detecting gas, liquid, etc. of the present invention, and FIG. 2 is a longitudinal sectional view of a conventional optical fiber for detecting gas, liquid, etc. A is the core B is the cladding C is the primary coating

Claims (1)

【特許請求の範囲】[Claims] クラッドBよりも高い屈折率を有するコアAが同クラッ
ドBの外周寄り偏心位置に配置され、同クラッドBの外
周に同クラッドBよりも高い屈折率を有する一次被覆C
が設けられてなる気体、液体等の検知用光ファイバにお
いて、同一次被覆Cのうち前記コアA側の肉厚がその反
対側の肉厚よりも薄く形成されてなることを特徴とする
気体、液体等の検知用光ファイバ。
A core A having a higher refractive index than the cladding B is placed at an eccentric position near the outer periphery of the cladding B, and a primary coating C having a higher refractive index than the cladding B is placed on the outer periphery of the cladding B.
An optical fiber for detecting gas, liquid, etc., which is provided with an optical fiber for detecting gas, liquid, etc., characterized in that the thickness of the core A side of the homogeneous coating C is formed to be thinner than the thickness of the opposite side. Optical fiber for detecting liquids, etc.
JP2141908A 1990-05-31 1990-05-31 Optical fiber for detecting gas, liquid or the like Pending JPH0434504A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2141908A JPH0434504A (en) 1990-05-31 1990-05-31 Optical fiber for detecting gas, liquid or the like

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2141908A JPH0434504A (en) 1990-05-31 1990-05-31 Optical fiber for detecting gas, liquid or the like

Publications (1)

Publication Number Publication Date
JPH0434504A true JPH0434504A (en) 1992-02-05

Family

ID=15302959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2141908A Pending JPH0434504A (en) 1990-05-31 1990-05-31 Optical fiber for detecting gas, liquid or the like

Country Status (1)

Country Link
JP (1) JPH0434504A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103732122A (en) * 2011-08-09 2014-04-16 爱尔康研究有限公司 Endoillumination using decentered fiber launch

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103732122A (en) * 2011-08-09 2014-04-16 爱尔康研究有限公司 Endoillumination using decentered fiber launch

Similar Documents

Publication Publication Date Title
US4474431A (en) Optical fibre directional coupler
CN103080797A (en) Multicore optical fiber
EP2905642B1 (en) Termination of optical fiber with low backreflection
EP1010024B1 (en) An optical element
JPH0434504A (en) Optical fiber for detecting gas, liquid or the like
CN104729628B (en) A kind of liquid level sensor and level measuring method based on optical fiber
JP2008170327A (en) Refractive index detector and liquid level detector
JPH02181707A (en) Optical fiber for detecting liquid, gas or the like
JP2000089042A (en) Optical fiber sensor and detection of information using the same
US7231120B2 (en) Tapered optical fibre with a reflective coating at the tapered end
US7819590B2 (en) Ferrule for an evanescence field sensor line
JPH04148836A (en) Liquid-leakage detecting apparatus
JPS6247531A (en) Optical fiber sensor for detecting leakage and its manufacture
WO2019073623A1 (en) Optical-fiber-type measurement device and optical-fiber-type measurement method
WO2024172092A1 (en) Method for measuring crosstalk between spatial channels, and device for measuring crosstalk between spatial channels
CN112114280B (en) Optical fiber magnetic field micro-nano sensor with temperature compensation function and manufacturing method
JPS62175706A (en) Contrasting method for tape type optical fiber core
JP3042557B2 (en) Gas and liquid detection method
JPS638536A (en) Liquid sensor
JPS58162831A (en) Method for measuring connection loss of optical fiber
Neumann et al. Higher-order modes
JPS61186836A (en) Liquid sensor
JPS6363846B2 (en)
JPH0446178Y2 (en)
Brückner Glass Fibers