JPH0434480B2 - - Google Patents

Info

Publication number
JPH0434480B2
JPH0434480B2 JP61081940A JP8194086A JPH0434480B2 JP H0434480 B2 JPH0434480 B2 JP H0434480B2 JP 61081940 A JP61081940 A JP 61081940A JP 8194086 A JP8194086 A JP 8194086A JP H0434480 B2 JPH0434480 B2 JP H0434480B2
Authority
JP
Japan
Prior art keywords
membrane separation
reducing agent
ion exchange
water
separation device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61081940A
Other languages
Japanese (ja)
Other versions
JPS62237907A (en
Inventor
Motomu Koizumi
Kazumi Yagishita
Kaoru Ishikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP61081940A priority Critical patent/JPS62237907A/en
Publication of JPS62237907A publication Critical patent/JPS62237907A/en
Publication of JPH0434480B2 publication Critical patent/JPH0434480B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は原水に酸化剤を添加して膜分離処理及
びイオン交換処理することにより純水又は超純水
を製造する方法の改良に関するものである。 [従来の技術] 近年、逆浸透膜分離装置の膜分離装置は多くの
分野に適用されており、相当数の装置が稼動して
いる。逆浸透膜分離装置においては、従来より酢
酸セルロール系膜や、ポリアミド系の複合膜が用
いられている。 ところで、膜分離処理を行うに際しては、スラ
イムの付着や生物アタツクによる膜の劣化を防ぐ
ことが効率のよい処理を行う上で重要である。そ
こで、従来、酢酸セルロース系の膜の場合、原水
に酸化剤を連続的に添加して殺菌し、スライムや
生物アタツクを防止することが行われている。 [発明が解決しようとする問題点] 一般に酢酸セルロース系の膜は酸化剤を連続的
に添加しても酸化劣化を受けにくいと言われてき
ている。しかしながら、本発明者らが種々の酢酸
セルロース系膜の性能低下機構について検討した
ところ、重金属等の膜面蓄積により徐々に膜が酸
化劣化を受け、膜分離性能が低下することが見出
された。 また、前記複合膜の多くは、酸化剤に対して耐
性がないところから、酸化剤の添加は行われてお
らず、配管や膜面にスライムが多く発生するとい
う問題があつた。なお該複合膜は、生物アタツク
に対しては強いという特性を有している。 [問題点を解決するための手段] 本発明の純水又は超純水の製造方法は、原水に
酸化剤を添加して逆浸透膜分離装置及び該逆浸透
膜分離装置の後段に設置されたイオン交換装置に
て処理することにより純水又は超純水を製造する
方法において、該原水に環元剤を間欠的に添加す
ると共に、原水への還元剤の添加を停止した際
に、前記イオン交換装置に還元剤を添加すること
を特徴とする。 なお、本発明において、処理対象とする原水は
地下水、市水、工水、一般廃水等各種のものが挙
げられる。このような原水を前処理した後、膜分
離装置に供給するのが好ましい。この前処理装置
としては、原水中の濁質成分を取り除くための凝
集反応装置、沈殿槽装置、濾過装置等が挙げられ
る。更に、膜によつては、必要なPHの調整、残留
塩素を取り除くための活性炭吸着装置、或いはハ
イポ注入装置等が用いられる。また、例えば鉄イ
オンの除去にはマンガンゼオライトが用いられ、
シリカの除去には電解アルミによる凝集装置が用
いられ、更に硫酸カルシウムスケールの発生を防
ぐためにポリリン酸系の添加剤の注入装置が用い
られる。 また、本発明において、逆浸透膜分離装置の膜
のタイプとしては、スパイラル型、管型、キヤピ
ラリ型、平膜型等のいずれのタイプのものも適用
可能である。 酸化剤としてはNaClO、H2O2、I2等が挙げら
れる。また、本発明において添加する還元剤とし
ては、Na2SO3、NaHSO3、N2H4、Na2S2O5
K2S2O5等が挙げられる。この還元剤としては酸
化剤に対して1〜3当量添加するのが好適であ
る。 還元剤は原水に間欠的に添加するのであるが、
膜が酢酸セルロース系の膜やポリビニルアルコー
ル系の膜である場合には、還元剤を3〜15時間添
加した後、1〜2時間程度還元剤添加を停止し、
以下これを繰り返すのが好ましい。また、膜がポ
リアミド系、ポリエーテル炭素系、PAN系、
PBIL系等の複合膜である場合には、還元剤を20
〜40時間添加し、その後0.2〜0.5時間該添加を停
止し、これを順次繰り返すのが好適である。 [作用] 本発明は、逆浸透膜分離装置(以下、「膜分離
装置」と略すことがある。)に導入される原水に、
還元剤を間欠的に添加すると共に、膜分離装置へ
の還元剤非添加時には還元剤を膜分離装置の後段
のイオン交換装置に添加するものである。これに
より、膜の酸化劣化の防止とスライムの増加の防
止が共に実現され、かつ、イオン交換樹脂の劣化
も防止され、安定した性能が長期間に亙つて維持
できるようになる。 即ち、例えば水道水等を原水としてイオン交換
法により純水或いは超純水を製造する場合、水道
水中には塩素が残留しており、この残留塩素によ
りイオン交換樹脂が酸化劣化し、次第に処理水水
質が低下するという問題がある。このため、従来
イオン交換樹脂を用いて純水或いは超純水を製造
するシステムにおいては、原水中の残留塩素を減
少させるために還元剤を添加することが行われて
いる。 本発明においては、特に、イオン交換装置を膜
分離装置の後段に設置しているため、例えば還元
剤供給装置からの配管を分岐させて膜分離装置に
接続し、該イオン交換装置の還元剤供給装置を利
用して原水への還元剤の添加を行うことが可能と
なる。 [実施例] 以下に、図面を参照して本発明の実施例につい
て詳細に説明する。 第1図は本発明の実施に好適な装置の構成を示
す系統図である。 本発明は、第1図に示すように、膜分離装置の
後段にイオン交換装置を設置している場合に適用
される。この場合、イオン交換装置の還元剤供給
装置を利用して膜分離装置の原水に還元剤を供給
することができる。 第1図の装置においては、符号1は原水の供給
管であり、PHを調整するためのH2SO4などを添
加する配管2と、酸化剤(例えばNaClOなど)
を添加するための配管3とが接続されている。こ
の原水供給管1は前処理装置4に接続されてお
り、更にポンプ5を有する配管6によつて逆浸透
膜分離装置7に接続されている。更に、この逆浸
透膜分離装置7はポンプ8を有する配管9によつ
てイオン交換装置10に接続されている。符号1
1は還元剤の供給装置であつて、ポンプ12を有
する配管13によつてイオン交換装置10へ還元
剤の溶液を供給可能としている。しかして、逆浸
透膜分離装置7へ還元剤を添加するために、配管
13から配管14を分岐させ、これら配管13,
14の途中に弁(第1図の例では電磁弁15,1
6)を設置し、タイマによりこれら弁15,16
の開閉作動を行わせ、還元剤を第1図のの部位
又はの部位に切り換えて添加するように構成し
てある。 このような第1図の装置において、逆浸透膜分
離装置7の膜が酢酸セルロース系或いはポリビニ
ルアルコール系である場合には、3〜15時間還元
剤を逆浸透膜分離装置7側に供給し、その後1〜
2時間程度イオン交換装置10側に還元剤の添加
を行い、順次これを繰り返すのが好ましい。また
膜が複合膜である場合には、20〜40時間程度逆浸
透膜分離装置側に還元剤の供給を行つた後0.2〜
0.5時間程度イオン交換装置10側に還元剤供給
を行い、順次これを繰り返すのが好適である。 以下、具体的な実験例及び比較実験例について
説明する。説明の便宜上まず比較実験例から説明
する。 比較実験例 1 第1図において、イオン交換装置10を省略し
たタイプの膜分離装置によつ地下水の処理を行つ
た。即ち、地下水は前処理及び逆浸透膜処理で処
理されている。 この前処理としては、脱炭酸と砂濾過装置によ
り構成されている。主な条件は次の通りである。
逆浸透膜分離装置7への給水量:24m3/Hr、回
収率50〜55%、分離膜:酢酸セルロース系のスパ
イラルエレメント、逆浸透膜分離装置への給水
量:180〜220μs/cm、PH:5.8〜6.2、水温:18〜
21℃、残留塩素:0.3〜0.6mg/、運転圧力:20
〜24Kg/cm2。なお酸化剤としてはNaClOを用い、
その添加量は1mg/とした。 この条件で膜分離装置を行つたところ、初期脱
塩率は96.3〜96.7%程度であり、5ケ月経過後の
脱塩保持率(初期の脱塩率を保持している割合)
は94%であつた。なお膜面へのスライム発生状況
は第1表に示す通りであつた。 実験例 1 上記比較実験例1において、逆浸透膜分離装置
の入口部分でNa2SO3を1.5mg/の割合で5時間
添加し、1時間該添加を停止することを繰り返
し、運転を5ケ月間行つた。5ケ月経過後の脱塩
保持率は100%であつた。なおスライムの膜面付
着状況は第1表に示す通りである。 比較実験例 2 比較実験例1において、逆浸透膜分離装置の入
口部分で1.5mg/の割合でNa2SO3を連続的に添
加した。その結果、2ケ月経過後の脱塩保持率は
80%であり、膜面へのスライム付着状況は第1表
に示す通りであつた。 比較実験例 3 上記比較実験例1において塩素添加を5時間停
止し、その後1時間塩素添加を行うことを順次繰
り返し2ケ月運転を行つた。その結果、脱塩保持
率は100%であつた。またスライム付着状況は第
1表に示す通りである。 第1表に示す通り、実験例1によれば、還元剤
を間欠的に添加することによりスライムの増加及
び膜の酸化劣化を抑制でき、長期間に亙つて安定
した膜分離性能が維持できることが明らかであ
る。また、比較実験例2、3においてはスライム
の付着が大きく、しかも比較実験例2においては
生物アタツクに起因すると思われる膜分離性能の
大幅な低下が生じている。
[Industrial Application Field] The present invention relates to an improvement in a method for producing pure water or ultrapure water by adding an oxidizing agent to raw water and subjecting it to membrane separation treatment and ion exchange treatment. [Prior Art] In recent years, membrane separation devices such as reverse osmosis membrane separation devices have been applied to many fields, and a considerable number of devices are in operation. In reverse osmosis membrane separation devices, cellulose acetate-based membranes and polyamide-based composite membranes have conventionally been used. By the way, when performing membrane separation treatment, it is important to prevent membrane deterioration due to slime adhesion and biological attack in order to perform efficient treatment. Therefore, conventionally, in the case of cellulose acetate-based membranes, an oxidizing agent is continuously added to the raw water to sterilize it and prevent slime and biological attack. [Problems to be Solved by the Invention] Generally, cellulose acetate-based membranes are said to be less susceptible to oxidative deterioration even when an oxidizing agent is continuously added. However, when the present inventors investigated the performance deterioration mechanism of various cellulose acetate membranes, it was found that the membrane gradually undergoes oxidative deterioration due to the accumulation of heavy metals etc. on the membrane surface, resulting in a decrease in membrane separation performance. . Furthermore, since most of the composite membranes have no resistance to oxidizing agents, oxidizing agents are not added to them, resulting in the problem that a lot of slime is generated on the pipes and membrane surfaces. Note that the composite membrane has the property of being strong against biological attack. [Means for Solving the Problems] The method for producing pure water or ultrapure water of the present invention includes a reverse osmosis membrane separation device and a reverse osmosis membrane separation device installed after the reverse osmosis membrane separation device by adding an oxidizing agent to raw water. In a method for producing pure water or ultrapure water by treating it with an ion exchange device, a cyclic agent is intermittently added to the raw water, and when the addition of a reducing agent to the raw water is stopped, the ion It is characterized by adding a reducing agent to the exchange device. In the present invention, various types of raw water to be treated include groundwater, city water, industrial water, and general wastewater. It is preferable that such raw water is pretreated and then supplied to a membrane separation device. Examples of this pretreatment device include a flocculation reaction device, a sedimentation tank device, a filtration device, and the like for removing suspended matter components from raw water. Further, depending on the membrane, an activated carbon adsorption device, a hypo-injection device, etc. may be used to adjust the necessary pH and remove residual chlorine. In addition, for example, manganese zeolite is used to remove iron ions.
A flocculation device using electrolytic aluminum is used to remove silica, and a device for injecting polyphosphoric acid additives is used to prevent the formation of calcium sulfate scale. Further, in the present invention, any type of membrane such as a spiral type, a tube type, a capillary type, a flat membrane type, etc. can be applied as the type of membrane of the reverse osmosis membrane separation device. Examples of the oxidizing agent include NaClO, H 2 O 2 , I 2 and the like. In addition, the reducing agents added in the present invention include Na 2 SO 3 , NaHSO 3 , N 2 H 4 , Na 2 S 2 O 5 ,
Examples include K 2 S 2 O 5 and the like. The reducing agent is preferably added in an amount of 1 to 3 equivalents relative to the oxidizing agent. Reducing agents are added intermittently to raw water,
If the membrane is a cellulose acetate-based membrane or a polyvinyl alcohol-based membrane, after adding the reducing agent for 3 to 15 hours, stop adding the reducing agent for about 1 to 2 hours,
It is preferable to repeat this process thereafter. In addition, the membrane is polyamide-based, polyether carbon-based, PAN-based,
If it is a composite membrane such as PBIL type, reduce the reducing agent by 20%.
It is preferred to add for ~40 hours, then stop the addition for 0.2 to 0.5 hours, and repeat this sequentially. [Function] The present invention provides raw water introduced into a reverse osmosis membrane separation device (hereinafter sometimes abbreviated as “membrane separation device”).
The reducing agent is added intermittently, and when the reducing agent is not added to the membrane separation device, the reducing agent is added to the ion exchange device downstream of the membrane separation device. This prevents both oxidative deterioration of the membrane and increase of slime, and also prevents deterioration of the ion exchange resin, making it possible to maintain stable performance over a long period of time. In other words, when pure water or ultrapure water is produced by the ion exchange method using raw water such as tap water, chlorine remains in the tap water, and this residual chlorine causes oxidation and deterioration of the ion exchange resin, which gradually degrades the treated water. There is a problem that water quality deteriorates. For this reason, in conventional systems for producing pure water or ultrapure water using ion exchange resins, reducing agents are added to reduce residual chlorine in raw water. In the present invention, in particular, since the ion exchange device is installed after the membrane separation device, for example, the pipe from the reducing agent supply device is branched and connected to the membrane separation device, and the reducing agent is supplied to the ion exchange device. It becomes possible to add a reducing agent to raw water using the device. [Examples] Examples of the present invention will be described in detail below with reference to the drawings. FIG. 1 is a system diagram showing the configuration of an apparatus suitable for carrying out the present invention. The present invention is applied to a case where an ion exchange device is installed downstream of a membrane separation device, as shown in FIG. In this case, the reducing agent can be supplied to the raw water of the membrane separation device using the reducing agent supply device of the ion exchange device. In the apparatus shown in Fig. 1, reference numeral 1 is a supply pipe for raw water, a pipe 2 for adding H 2 SO 4 etc. to adjust the pH, and a pipe 2 for adding an oxidizing agent (for example, NaClO, etc.).
A pipe 3 for adding is connected. This raw water supply pipe 1 is connected to a pretreatment device 4, and further connected to a reverse osmosis membrane separation device 7 by a pipe 6 having a pump 5. Further, this reverse osmosis membrane separation device 7 is connected to an ion exchange device 10 by a pipe 9 having a pump 8. code 1
Reference numeral 1 denotes a reducing agent supply device, which allows a reducing agent solution to be supplied to the ion exchange device 10 through a pipe 13 having a pump 12. Therefore, in order to add the reducing agent to the reverse osmosis membrane separation device 7, the pipe 14 is branched from the pipe 13, and these pipes 13,
14 (in the example in Fig. 1, there is a solenoid valve 15, 1)
6) and set these valves 15, 16 by a timer.
The structure is such that the opening and closing operations are carried out, and the reducing agent is selectively added to the part or the part shown in FIG. In the apparatus shown in FIG. 1, if the membrane of the reverse osmosis membrane separation device 7 is cellulose acetate-based or polyvinyl alcohol-based, the reducing agent is supplied to the reverse osmosis membrane separation device 7 side for 3 to 15 hours, After that 1~
It is preferable to add the reducing agent to the ion exchanger 10 side for about 2 hours and repeat this process one after another. In addition, if the membrane is a composite membrane, after supplying the reducing agent to the reverse osmosis membrane separation device for about 20 to 40 hours,
It is preferable to supply the reducing agent to the ion exchanger 10 side for about 0.5 hours and repeat this process sequentially. Hereinafter, specific experimental examples and comparative experimental examples will be explained. For convenience of explanation, a comparative experimental example will be explained first. Comparative Experimental Example 1 Groundwater was treated using a membrane separation device of the type shown in FIG. 1, in which the ion exchange device 10 was omitted. That is, groundwater is treated by pretreatment and reverse osmosis membrane treatment. This pretreatment consists of decarboxylation and a sand filtration device. The main conditions are as follows.
Amount of water supplied to the reverse osmosis membrane separation device 7: 24 m 3 /Hr, recovery rate 50-55%, separation membrane: cellulose acetate-based spiral element, amount of water supplied to the reverse osmosis membrane separation device: 180-220 μs/cm, PH : 5.8~6.2, water temperature: 18~
21℃, residual chlorine: 0.3 to 0.6mg/, operating pressure: 20
~24Kg/ cm2 . Note that NaClO was used as the oxidizing agent.
The amount added was 1 mg/. When the membrane separation device was operated under these conditions, the initial desalination rate was about 96.3 to 96.7%, and the desalination retention rate after 5 months (percentage that maintained the initial desalination rate)
was 94%. The situation of slime generation on the membrane surface was as shown in Table 1. Experimental Example 1 In Comparative Experimental Example 1 above, Na 2 SO 3 was added at a rate of 1.5 mg/hour for 5 hours at the inlet of the reverse osmosis membrane separation device, and the addition was stopped for 1 hour, and the operation was repeated for 5 months. I went between. The desalination retention rate after 5 months was 100%. The adhesion status of the slime to the film surface is shown in Table 1. Comparative Experimental Example 2 In Comparative Experimental Example 1, Na 2 SO 3 was continuously added at a rate of 1.5 mg/at the inlet portion of the reverse osmosis membrane separation device. As a result, the desalination retention rate after 2 months was
80%, and the state of slime adhesion to the membrane surface was as shown in Table 1. Comparative Experimental Example 3 In Comparative Experimental Example 1, chlorine addition was stopped for 5 hours, and then chlorine addition was continued for 1 hour, which was repeated sequentially for 2 months. As a result, the desalting retention rate was 100%. Further, the slime adhesion status is as shown in Table 1. As shown in Table 1, according to Experimental Example 1, the increase in slime and oxidative deterioration of the membrane can be suppressed by adding a reducing agent intermittently, and stable membrane separation performance can be maintained over a long period of time. it is obvious. Further, in Comparative Experimental Examples 2 and 3, slime adhesion was large, and in Comparative Experimental Example 2, there was a significant decrease in membrane separation performance, which was thought to be caused by biological attack.

【表】 [発明の効果] 以上の実験例からも明らかな通り、本発明によ
れば、原水に酸化剤を添加して膜分離処理及びイ
オン交換処理することにより純水又は超純水を製
造する方法において、前処理を特別に強化するこ
となく安価に膜の酸化劣化の防止が図れ、かつス
ライムの発生の増加を防止でき、長期間に亙つて
安定した膜分離性能の維持が図れ、しかも、イオ
ン交換樹脂の酸化劣化も防止される。特に、本発
明によれば、膜分離装置の後段側に設置したイオ
ン交換装置に付設されている還元剤添加装置を利
用して、イオン交換装置への還元剤添加と共に、
膜分離装置への還元剤添加を行うことができ、装
置構成コストの低減化を図ることも可能である。
[Table] [Effects of the invention] As is clear from the above experimental examples, according to the present invention, pure water or ultrapure water can be produced by adding an oxidizing agent to raw water and subjecting it to membrane separation treatment and ion exchange treatment. In this method, oxidative deterioration of the membrane can be prevented at low cost without special reinforcement of pretreatment, the increase in slime generation can be prevented, and stable membrane separation performance can be maintained for a long period of time. , oxidative deterioration of the ion exchange resin is also prevented. In particular, according to the present invention, the reducing agent addition device attached to the ion exchange device installed on the downstream side of the membrane separation device is used to add the reducing agent to the ion exchange device, and
It is possible to add a reducing agent to the membrane separation device, and it is also possible to reduce the device configuration cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を実施するに好適な装置の構成
を示す系統図である。 4……前処理装置、7……逆浸透膜分離装置、
10……イオン交換装置、11……還元供給装
置。
FIG. 1 is a system diagram showing the configuration of an apparatus suitable for carrying out the present invention. 4... Pretreatment device, 7... Reverse osmosis membrane separation device,
10...Ion exchange device, 11...Reduction supply device.

Claims (1)

【特許請求の範囲】[Claims] 1 原水に酸化剤を添加して逆浸透膜分離装置及
び該逆浸透膜分離装置の後段に設置されたイオン
交換装置にて処理することにより純水又は超純水
を製造する方法において、該原水に還元剤を間欠
的に添加すると共に、原水への還元剤の添加を停
止した際に、前記イオン交換装置に還元剤を添加
することを特徴とする純水又は超純水の製造方
法。
1. In a method for producing pure water or ultrapure water by adding an oxidizing agent to raw water and treating it in a reverse osmosis membrane separation device and an ion exchange device installed after the reverse osmosis membrane separation device, the raw water A method for producing pure water or ultrapure water, which comprises intermittently adding a reducing agent to the ion exchange device, and adding the reducing agent to the ion exchange device when the addition of the reducing agent to the raw water is stopped.
JP61081940A 1986-04-09 1986-04-09 Membrane separation method Granted JPS62237907A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61081940A JPS62237907A (en) 1986-04-09 1986-04-09 Membrane separation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61081940A JPS62237907A (en) 1986-04-09 1986-04-09 Membrane separation method

Publications (2)

Publication Number Publication Date
JPS62237907A JPS62237907A (en) 1987-10-17
JPH0434480B2 true JPH0434480B2 (en) 1992-06-08

Family

ID=13760487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61081940A Granted JPS62237907A (en) 1986-04-09 1986-04-09 Membrane separation method

Country Status (1)

Country Link
JP (1) JPS62237907A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3727156B2 (en) * 1997-10-22 2005-12-14 オルガノ株式会社 Desalination equipment
ES2429098T3 (en) * 1998-07-21 2013-11-13 Toray Industries, Inc. Bacteriostasis or disinfection procedure for selective permeable membranes
JP5055662B2 (en) * 2001-05-11 2012-10-24 栗田工業株式会社 Ultrapure water production apparatus and ultrapure water production method
JP2008500152A (en) * 2004-03-05 2008-01-10 アルトラストリップ システムズ、インコーポレイテッド Modular wastewater purification system and method of use
JP2007260638A (en) * 2006-03-30 2007-10-11 Hitachi Zosen Corp Water treatment method using reverse osmosis membrane

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5474285A (en) * 1977-11-25 1979-06-14 Sasakura Eng Co Ltd Reverse osmotic pressure apparatus control method
JPS5621604A (en) * 1979-07-27 1981-02-28 Toray Ind Inc Separation of liquid by semipermeable composite membrane

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5474285A (en) * 1977-11-25 1979-06-14 Sasakura Eng Co Ltd Reverse osmotic pressure apparatus control method
JPS5621604A (en) * 1979-07-27 1981-02-28 Toray Ind Inc Separation of liquid by semipermeable composite membrane

Also Published As

Publication number Publication date
JPS62237907A (en) 1987-10-17

Similar Documents

Publication Publication Date Title
US8679347B2 (en) Multi-use high water recovery process
CN106587451B (en) Deionization integrated treatment method and device for micro-polluted water source water treatment
JP3646900B2 (en) Apparatus and method for treating boron-containing water
CN110540318A (en) Sewage recovery treatment system and treatment process
JP3227863B2 (en) Ultrapure water production method
CN104108813A (en) Refining and chemical sewage desalting integrated treatment process and device
JPH10272495A (en) Treatment of organic waste water containing salts of high concentration
JPH0434480B2 (en)
JPH0649190B2 (en) High-purity water manufacturing equipment
JP2001038390A (en) Production of ultrapure water
JPH0638953B2 (en) High-purity water manufacturing equipment
JP2006095425A (en) Method for purifying biological treatment water-containing water of waste water and apparatus for purifying the same
WO2002026362A1 (en) High recovery reverse osmosis process and apparatus
JPH0214794A (en) Treatment of waste liquid after regeneraton of ion exchange apparatus
JPH1199389A (en) Treatment of water containing organic component and manganese
JP3267468B2 (en) Operating method of reverse osmosis membrane device
JP3906855B2 (en) Method and apparatus for treating wastewater containing organic matter and oxidizing agent
JP2000301005A (en) Method for reutilizing effluent in regeneration of ion exchange resin
JPH0561992B2 (en)
JP5782675B2 (en) Water treatment method and ultrapure water production method
JPS586297A (en) Treatment of raw water of high content of silica
KR101098679B1 (en) Method of treating waste water containing organic substance and treating apparatus
JPH09294977A (en) Water purifying apparatus
CN216472645U (en) Soaking type full-automatic regeneration soft water preparation system
JPH11169852A (en) Pure water producing device