JPH0434479B2 - - Google Patents

Info

Publication number
JPH0434479B2
JPH0434479B2 JP61185284A JP18528486A JPH0434479B2 JP H0434479 B2 JPH0434479 B2 JP H0434479B2 JP 61185284 A JP61185284 A JP 61185284A JP 18528486 A JP18528486 A JP 18528486A JP H0434479 B2 JPH0434479 B2 JP H0434479B2
Authority
JP
Japan
Prior art keywords
water
fish
tobermorite
porous
shellfish
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61185284A
Other languages
Japanese (ja)
Other versions
JPS6342788A (en
Inventor
Yukio Fukaya
Kazuyuki Hatano
Kazuhiro Sainohira
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Clion Co Ltd
Original Assignee
Onoda ALC Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Onoda ALC Co Ltd filed Critical Onoda ALC Co Ltd
Priority to JP61185284A priority Critical patent/JPS6342788A/en
Publication of JPS6342788A publication Critical patent/JPS6342788A/en
Publication of JPH0434479B2 publication Critical patent/JPH0434479B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Farming Of Fish And Shellfish (AREA)
  • Biological Treatment Of Waste Water (AREA)
  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

<産業上の利用分野> 本発明は、魚介類が生息する水、例えば、微生
物又は藻類が発生する養魚用水槽の水等を浄化す
るのに使用される魚介類生息水域用の多孔質浄化
材に関するものである。 <従来の技術及び発明が解決しようとする課題> 水槽で魚類を育てる場合、餌の残渣や魚類の排
泄物から由来する有機物及びその有機物の分解に
より発生する窒素及びリンは水槽に溜まつて水を
汚ごすだけでなく、微生物や藻の発生の原因にも
なる。もし、微生物や藻が発生すると、水槽中の
水が酸素不足又は酸素過剰になり、水槽に飼われ
ている魚類が死滅する。 そこで、従来からこの問題を解消するために、
水槽に水の濾過装置を設置して前記水の循環濾過
をするという技術が一般に採用されている。 この技術は相応の効果を発揮しているが、前記
装置を常時運転管理する必要があるだけでなく、
同装置に組み込まれている濾過材としての活性炭
やバクハン石等の浄化能力に限界があるという問
題がある。 また、主材料のゼオライトに発泡材とバインダ
ーを混合した造形物を、発泡、乾燥させる多孔質
浄化材の製造方法(特開昭50−48746号公報)が
知られている。しかし、この発明の主材料である
ゼオライトには魚介類の生息する水域におけるPH
の変化を小さく抑える作用、すなわちPH緩衝作用
は認められず、またリンを除去する作用もない。 従つて、本発明は魚介類が生息する水域におい
て、餌の残滓及び魚介類が排泄する排泄物に由来
する有機物及びこの有機物の分解により発生する
窒素及びリンを除去して水域を浄化する多孔質浄
化材を提供することを目的とする。 <課題を解決するための手段> 本発明は、珪酸質原料及び石灰質原料を主成分
とする水スラリーに発泡剤を添加して発泡・硬化
させて得た硬化物を高温高圧下で水熱反応処理し
て得られ且つ50〜90%の空〓率を有するトバモラ
イトを主成分とする魚介類生息水域用の多孔質浄
化材を提供することによつて、前記の問題を解決
するものである。 ここで、本発明の作用を説明する。 魚介類が生息する水域では、魚介類の排泄物や
食べ残しの餌などにより水が酸化して水腐りの原
因となつている。そして、その様な環境において
は生息する魚介類の活力は衰え、病害を生じやす
くなる。その水の酸化の目安としてPHの低下があ
げられる。このPHの酸化を小さく抑えて、養魚等
に好適なる環境を長く維持することは魚介類の生
息にとつて極めて重要である。 そこで、本発明にかかる特定のトバモライトを
その水の中に投入すると、該多孔質浄化材の主成
分であるトバモライトが有するPH緩衝作用により
水のPH低下が抑制されるとともに多孔質の表面に
汚れの原因物質の一部、例えばアンモニアなどの
悪臭成分が吸着され、その結果、魚介類が生息す
る水の汚染が抑制される。 また、前記多孔質浄化材が水中に放置される
と、その多孔に微生物も生息し始める。その微生
物中には有機物を分解する微生物も生息するか
ら、この微生物が水の汚染源である前記有機物を
分解し、水や炭酸ガスに変換するので、魚介類が
生息できる水域環境が維持される。 さらに例えば、水域中のアンモニアは魚類の
糞、分解した残餌、尿などの排泄物等から生成さ
れる。このような水域に生息する魚介類がアンモ
ニアを吸収すると鰓組織及び鰓の毛細血管に影響
があらわれ呼吸不全となつて衰弱する。このアン
モニアが微生物などの作用によつて酸化される過
程で亜硝酸が生成されるが、この亜硝酸の魚介類
に対する毒性は強く、血液中のヘモグロビンが酸
素と結合できなくなり、メトヘモグロビン症とな
る。本発明の多孔質浄化材はアンモニアの硝化を
促進する作用を有するので、アンモニアは亜硝酸
を経て硝酸へ変化する。本発明が適用される魚介
類生息下水域における硝酸は魚介類に対して毒性
がほとんど無いとされている(「淡水養魚と用水
魚」第88頁、昭和55年日本水産学会)から、この
ような硝化作用は魚介類の生息する水域環境にと
つて極めて重要である。 また、魚介類が生息する水域においてリン酸が
多量に蓄積されると、その水域中にアオコが大量
発生しやすくなる。アオコは適度に安定した量で
繁殖すれば魚介類が生息するのに非常に良い環境
状態となるが、大量に発生したとき魚介類の生息
を脅かすこととなる。 本発明にかかるトバモライトを魚介類が生息す
る養殖分野の水域に投入すると、魚介類に与える
餌の残滓やその餌を食べた魚介類の排泄物などか
らのリン酸が多孔質浄化材表面から供給されるカ
ルシウムイオン(Ca2+)と反応して、カルシウ
ムヒドロキシアパタイトの形で晶析される。こう
して水中のリン酸イオンが晶析除去され、藻類の
発生が抑制される。しかもこのカルシウムイオン
は多孔質浄化材の表面から供給されるため適度に
リン酸を晶析除去し、アオコなどの藻類は常に安
定した繁殖状態となる。 このような多孔質浄化材の作用には、その空〓
率が大きく寄与しているので、本発明に用いる多
孔質浄化材の空〓率は50〜90%、好ましくは60〜
80%がよい。これは、空〓率が50%未満では比表
面積が小さいため微生物の着床が悪く、リンの除
去率が小さくなるため、魚類に良好な環境を与え
る効果が小さくなり、また90%を超えると用水表
面に浮き上りを生じて好ましくないからである。 以下、本発明の構成を詳述する。 本発明に係る多孔質浄化材は、更に具体的に説
明すると、例えば、珪酸質原料と石灰質原料とを
主原料とする水スラリーにアルミニウム粉末など
の起泡剤を添加して高温高圧下で水熱反応処理し
て得られるトバモライトを主成分とする成形物、
あるいはこの成形物を破砕して得られる破砕物で
空〓率が50〜90%のものである。 前記トバモライトは珪酸質原料と石灰質原料と
を所定のCaO/SiO2モル比(0.5〜2.0程度)で常
法に従つてオートクレーブにて所要の圧力・温度
下で高温高圧養生することによつて得られる。珪
酸質原料としては珪石、珪砂、クリストバライ
ト、無定形シリカ、珪藻土、フエロシリコンダス
ト、白土などの粉末、石灰質原料としては生石
灰、消石灰、セメントなどの粉末が挙げられる。
このようにして得られるトバモライトは、弱アル
カリ性でPH緩衝能が高く、比表面積が20〜400
m2/gと大きいので特に好ましい。 本発明に係る多孔質浄化材は50〜90%の空〓率
を有するが、この空〓をトバモライトの生成時に
得る場合には珪酸質原料と石灰質原料とを水スラ
リー状にしたものに泡剤としてアルミニウム粉末
などの金属発泡剤やAE剤などの起泡剤を添加し
た後高温高圧下で水熱反応処理すればよい。ここ
で金属発泡剤は化学反応によつてガスを発生する
もので、その使用割合は水スラリー中の巻き込み
気泡や水の量によつて変化するが化学反応式から
導くことができる。また起泡剤としては具体的に
は樹脂せつけん類、サポニン、合成界面活性剤
類、加水分解たんぱく質、高分子界面活性剤など
があり、主として界面活性作用により物理的に気
泡を導入するもので、単に原料と混合して撹拌す
ることにより泡を生じさせる場合と、特殊な撹拌
槽又は起泡装置を使用して安定した泡をつくり、
この泡を体積計量して原料に混合する場合とがあ
る。このような起泡剤を用いる場合には泡の安定
性を試験した上、その添加量を決定する必要があ
る。また、ここで、粉末状のトバモライトとして
は、上記のように空〓を入れて成形したものを破
砕したときに得られる粉末を用いてもよい。な
お、空〓率の高い多孔質浄化材とする場合には、
型枠成形を採用するのがよい。 このようにして製造される多孔質浄化材の中に
は、水槽に入れて使用する場合、それを構成する
トバモライトが弱アルカリ性であるので用水のPH
を9程度まで高める場合があるが、この場合には
この多孔質浄化材の表面の一部を中性化して使用
することができる。この中性化処理は多孔質浄化
材を炭酸ガス雰囲気中に放置することにより簡単
に行なうことができる。しかしこの中性化処理に
より炭酸カルシウム(CaCO3)含有量が30重量
%を超えると、トバモライトはその結晶をくずし
て水に溶出しやすくなり、その結果、水槽の水の
PHが上昇し易くなるだけでなく、ひいては水の浄
化性能の持続時間が短かくなるので、中性化処理
はCaCO3含有量が30重量%を超えないように行
う必要がある。 このような多孔質浄化材を水槽中に浸漬してお
くだけで、その水槽中の水は浄化される。この場
合、多孔質浄化材は網状の袋に入れて使用しても
そのまま槽内底部に沈めて使用してもよい。また
環境濾過装置に充填して用いてもよい。 本発明にかかる多孔質浄化材を養魚用水槽の浄
化に用いた場合には、魚類の生息に不都合な物
質、すなわち餌のくずや魚類の排泄物などによる
PHの変化を小さく抑さえ、またこれらに含まれる
ところの、有機物を分解し、アンモニアを硝化
し、リン酸を晶析するなどして魚介類が生息する
のに非常に良い清澄な状態が長時間に亘つて維持
される。 本発明にかかる多孔質浄化材を長期に亘つて使
用して浄化効果が低下してきた場合には、この浄
化材の表面を水洗して肥大老化した生物膜を除去
することにより、再度供用することが可能とな
る。 次に、本発明にかかる多孔質浄化材の製造例を
示す。 (多孔質浄化材の製造例) (1) トバモライト浄化材 珪石粉末5重量部、生石灰粉末2重量部及び
普通ポルトランドセメント3重量部(CaO/
SiO2モル比=0.8)に金属アルミニウム粉末
0.008重量部を加えてなる混合物に水7重量部
を加えてスラリーにした。このスラリーを型枠
に注入して4時間静置後脱型したものをオート
クレーブにて180℃10気圧下で10時間水熱処理
した。得られた成形物をクラツシヤーで粗砕し
て5〜10mmの粒径にふるいわけた。その後、炭
酸ガスを充満させた容器中に4時間放置して表
面の一部を炭酸化処理し、水洗いしたものを多
孔質浄化材とした。この浄化材の空〓率は75
%、CaCO3含有率は5.2%であつた。 (2) 種々の空〓率を有するトバモライト浄化材 上記に示した製造方法において、金属アルミ
ニウム粉末及び水の添加割合を第1表に示すよ
うに変化させることにより各種トバモライト浄
化材を得た。
<Industrial Application Field> The present invention is directed to a porous purification material for fish and shellfish habitats, which is used to purify water inhabited by fish and shellfish, for example, water in fish tanks where microorganisms or algae grow. It is related to. <Problems to be solved by the prior art and the invention> When raising fish in an aquarium, organic matter derived from food residue and fish excrement, as well as nitrogen and phosphorus generated by the decomposition of the organic matter, accumulate in the aquarium and drain the water. It not only pollutes the water, but also causes the growth of microorganisms and algae. If microorganisms or algae occur, the water in the aquarium will be deficient in oxygen or in excess of oxygen, and the fish kept in the aquarium will die. Therefore, in order to solve this problem,
Generally, a technique is employed in which a water filtration device is installed in an aquarium and the water is circulated and filtered. Although this technology has shown considerable effectiveness, it not only requires constant operation and management of the device;
There is a problem in that there is a limit to the purifying ability of activated carbon, Bakhan stone, etc., which are used as filtering materials built into the device. Also known is a method for producing a porous purifying material (Japanese Patent Application Laid-open No. 48746/1983) in which a shaped article made by mixing zeolite as the main material with a foaming material and a binder is foamed and dried. However, zeolite, which is the main material of this invention, has a pH value in water areas where fish and shellfish live.
There is no effect of suppressing changes in pH, that is, a PH buffering effect, and there is no effect of removing phosphorus. Therefore, the present invention provides a porous material that purifies water bodies in water areas where fish and shellfish live by removing organic matter derived from feed residue and excrement excreted by fish and shellfish, as well as nitrogen and phosphorus generated by the decomposition of these organic substances. The purpose is to provide purification materials. <Means for Solving the Problems> The present invention involves adding a foaming agent to an aqueous slurry mainly composed of silicic raw materials and calcareous raw materials, and then foaming and curing the resulting cured product, which is subjected to a hydrothermal reaction at high temperature and high pressure. The above-mentioned problem is solved by providing a porous purifying material for fish and shellfish habitat water bodies, which is obtained by processing and has tobermorite as a main component and has a vacancy rate of 50 to 90%. Here, the operation of the present invention will be explained. In waters where fish and shellfish live, the water is oxidized by fish and shellfish excrement and uneaten food, causing water rot. In such an environment, the vitality of the fish and shellfish that live there declines, making them more susceptible to disease. A decrease in pH can be cited as an indicator of water oxidation. It is extremely important for the survival of seafood to keep this PH oxidation low and maintain an environment suitable for fish farming for a long time. Therefore, when the specific tobermorite according to the present invention is poured into the water, the PH buffering effect of tobermorite, which is the main component of the porous purifying material, suppresses the drop in the pH of the water and removes dirt on the porous surface. Some of the causative substances, such as ammonia, are adsorbed, and as a result, pollution of the water inhabited by seafood is suppressed. Furthermore, when the porous purifying material is left in water, microorganisms also begin to inhabit its pores. Among these microorganisms, there are also microorganisms that decompose organic matter, so these microorganisms decompose the organic matter, which is a source of water contamination, and convert it into water and carbon dioxide, thereby maintaining an aquatic environment where fish and shellfish can live. Furthermore, for example, ammonia in water bodies is generated from fish excreta, decomposed leftover feed, urine, and other excreta. When fish and shellfish that live in such water bodies absorb ammonia, the gill tissues and gill capillaries are affected, leading to respiratory failure and weakness. Nitrite is produced when this ammonia is oxidized by the action of microorganisms, but this nitrite is highly toxic to seafood, making it impossible for hemoglobin in the blood to combine with oxygen, resulting in methemoglobinopathies. . Since the porous purifying material of the present invention has the effect of promoting nitrification of ammonia, ammonia changes to nitric acid via nitrous acid. It is said that nitric acid in the sewage water area inhabited by fish and shellfish, to which the present invention is applied, has almost no toxicity to fish and shellfish ("Freshwater Fish Culture and Water Fish", p. 88, Japan Society of Fisheries Science, 1981). Nitrification is extremely important for aquatic environments where fish and shellfish live. Furthermore, if a large amount of phosphoric acid accumulates in a water area where fish and shellfish live, large amounts of blue-green algae are likely to occur in the water area. If blue-green algae grows in a moderate and stable amount, it will create a very good environment for fish and shellfish to live in, but when it occurs in large numbers, it threatens the habitat of fish and shellfish. When the tobermorite according to the present invention is introduced into a water area in the aquaculture field where fish and shellfish live, phosphoric acid from the residue of the feed given to the fish and the excrement of the fish and shellfish that have eaten the feed is supplied from the surface of the porous purifying material. It reacts with calcium ions (Ca 2+ ) that are present, and is crystallized in the form of calcium hydroxyapatite. In this way, phosphate ions in the water are crystallized and removed, and the growth of algae is suppressed. Moreover, since the calcium ions are supplied from the surface of the porous purifying material, phosphoric acid is appropriately crystallized and removed, and algae such as blue-green algae are always in a stable breeding state. The action of such a porous purifying material depends on its vacancy.
The porosity of the porous purifying material used in the present invention is 50 to 90%, preferably 60 to 90%.
80% is good. This is because when the vacancy rate is less than 50%, the specific surface area is small, making it difficult for microorganisms to settle on it, and the phosphorus removal rate is low, making it less effective in providing a good environment for fish. This is because it causes floating on the surface of the water, which is undesirable. Hereinafter, the configuration of the present invention will be explained in detail. More specifically, the porous purifying material according to the present invention can be produced by adding a foaming agent such as aluminum powder to a water slurry whose main raw materials are silicic raw materials and calcareous raw materials, and then watering the slurry with foaming agent such as aluminum powder under high temperature and high pressure. Molded products whose main component is tobermorite obtained by thermal reaction treatment,
Alternatively, a crushed product obtained by crushing this molded product has a void ratio of 50 to 90%. The tobermorite is obtained by curing silicic raw materials and calcareous raw materials at a predetermined CaO/SiO 2 molar ratio (approximately 0.5 to 2.0) in an autoclave at high temperature and high pressure under the required pressure and temperature according to a conventional method. It will be done. Examples of siliceous raw materials include powders such as silica stone, silica sand, cristobalite, amorphous silica, diatomaceous earth, ferrosilicon dust, and white clay, and examples of calcareous raw materials include powders such as quicklime, slaked lime, and cement.
Tobermorite obtained in this way is weakly alkaline, has high PH buffering ability, and has a specific surface area of 20 to 400.
It is particularly preferable because it has a large value of m 2 /g. The porous purifying material according to the present invention has a porosity of 50 to 90%, but when this porosity is obtained during the production of tobermorite, a foaming agent is added to a water slurry of silicic raw materials and calcareous raw materials. After adding a foaming agent such as a metal foaming agent such as aluminum powder or a foaming agent such as an AE agent, a hydrothermal reaction treatment may be performed at high temperature and high pressure. Here, the metal foaming agent generates gas through a chemical reaction, and its usage ratio varies depending on the amount of bubbles and water entrained in the water slurry, but can be derived from the chemical reaction equation. Specific examples of foaming agents include resin soaps, saponins, synthetic surfactants, hydrolyzed proteins, and polymeric surfactants, which mainly introduce air bubbles physically through surfactant action. In some cases, foam is created by simply mixing and stirring raw materials, and in other cases, stable foam is created using a special stirring tank or foaming device.
This foam may be volumetrically measured and mixed into the raw material. When using such a foaming agent, it is necessary to test the stability of the foam and then determine the amount to be added. Further, here, as the powdered tobermorite, a powder obtained by crushing a molded product with voids in it as described above may be used. In addition, when using a porous purification material with a high porosity,
It is better to use formwork molding. When using porous purification materials manufactured in this way in an aquarium, the tobermorite that makes up the material is weakly alkaline, so the pH level of the water
may be increased to about 9. In this case, a part of the surface of this porous purifying material can be neutralized before use. This neutralization treatment can be easily carried out by leaving the porous purifying material in a carbon dioxide atmosphere. However, if the calcium carbonate (CaCO 3 ) content exceeds 30% by weight as a result of this neutralization treatment, tobermorite will break down its crystals and easily dissolve into water, resulting in the loss of water in the aquarium.
The neutralization process must be carried out so that the CaCO 3 content does not exceed 30% by weight, as this not only makes it easier for the pH to rise, but also shortens the duration of water purification performance. Simply by immersing such a porous purifying material in an aquarium, the water in the aquarium is purified. In this case, the porous purifying material may be placed in a mesh bag or may be used as is by being submerged at the bottom of the tank. It may also be used by filling it into an environmental filtration device. When the porous purification material according to the present invention is used to purify a fish tank, it is possible to remove substances that are inconvenient for fish habitat, such as food scraps and fish excrement.
By suppressing changes in pH and decomposing organic matter, nitrifying ammonia, and crystallizing phosphoric acid contained in these substances, it maintains a clear state that is excellent for seafood to live in for a long time. maintained over time. If the porous purification material according to the present invention has been used for a long period of time and its purification effect has decreased, the surface of the purification material can be washed with water to remove the enlarged and aged biofilm, and then used again. becomes possible. Next, an example of manufacturing the porous purifying material according to the present invention will be shown. (Manufacturing example of porous purification material) (1) Tobermorite purification material 5 parts by weight of silica powder, 2 parts by weight of quicklime powder, and 3 parts by weight of ordinary Portland cement (CaO/
SiO2 molar ratio = 0.8) to metallic aluminum powder
A slurry was prepared by adding 7 parts by weight of water to the mixture obtained by adding 0.008 parts by weight. This slurry was poured into a mold, left to stand for 4 hours, and then removed from the mold, which was then hydrothermally treated in an autoclave at 180° C. and under 10 atmospheric pressure for 10 hours. The obtained molded product was crushed using a crusher and sieved to a particle size of 5 to 10 mm. Thereafter, a portion of the surface was carbonated by leaving it in a container filled with carbon dioxide gas for 4 hours, and the resulting material was washed with water and used as a porous purifying material. The emptiness rate of this purification material is 75
%, and the CaCO 3 content was 5.2%. (2) Tobermorite purification materials having various vacancies In the production method shown above, various tobermorite purification materials were obtained by changing the addition ratios of metal aluminum powder and water as shown in Table 1.

【表】 (3) 種々のCaCO3含有率を有するトバモライト
浄化材 上記(2)に示した製造方法において、炭酸ガス
を充満させた容器中での処理時間を第2表に示
すように変化させることにより各種トバモライ
ト浄化材を得た。
[Table] (3) Tobermorite purification materials with various CaCO 3 contents In the production method shown in (2) above, the treatment time in a container filled with carbon dioxide gas is varied as shown in Table 2. As a result, various tobermorite purification materials were obtained.

【表】 <実施例> 実施例 1 各種多孔質浄化材を500c.c.入れたプラスチツク
水槽(30×16×22cm)に、一昼夜くみ置きした水
道水を9注入した。これら水槽にそれぞれ金魚
(14〜6cmの和金種)を10匹ずつ入れ、室内で通
常、1日当り数時間直射日光を受ける場所に3月
上旬から約2カ月放置し、それぞれ同量の市販の
餌を与え、且つ市販のエアーポンプで500c.c./分
のエアーを送つて金魚を育てた。なお、蒸散した
水に常に一定量となるように追加した。 上述の製造例で製造した各種多孔質浄化材を用
いたものをAとし、また、比較のため、市販の小
石砂利、バクハン石、石灰石(いずれも粒径5〜
10mm)を上記多孔質浄化材の代りに使用した以外
は同様にして金魚を育てたものをB−1、B−
2、B−3とした。これらについて、水槽内の水
の状態及び金魚の生態について観察した。この結
果を第3表に示す。
[Table] <Examples> Example 1 A plastic water tank (30 x 16 x 22 cm) containing 500 c.c. of various porous purifying materials was injected with 9 tap water that had been kept for a day and a night. Place 10 goldfish (Japanese goldfish, 14 to 6 cm long) in each of these aquariums, leave them indoors in a place that usually receives several hours of direct sunlight per day for about two months from early March, and add the same amount of commercially available goldfish to each tank. Goldfish were raised by feeding them and sending air at 500 c.c./min using a commercially available air pump. In addition, a constant amount of water was added to the evaporated water. The material using the various porous purifying materials produced in the above production example is referred to as A, and for comparison, commercially available pebble gravel, Bakhan stone, and limestone (all with particle sizes of 5 to 5
B-1, B-
2. It was set as B-3. Regarding these, the water condition in the aquarium and the ecology of the goldfish were observed. The results are shown in Table 3.

【表】【table】

【表】 この結果、比較例として用いた小石砂利、バク
ハン石、石灰石のいずれも約2ケ月で金魚が死滅
したのに対して本発明の多孔質浄化材を入れたも
のは極めて高い生存率であつた。これは比較例で
は20日目頃から槽内の微生物が多く観察されるよ
うになり、25日目頃から藻が急速に発生し透視度
も悪くなり外からの観察は困難となつた。その
後、金魚の皮ふに白斑を生じる吸虫病やまわたの
ような白い膜におおわれる水カビ病などでつぎつ
ぎと死んでいつた。これに対して、本発明の多孔
質浄化材を入れたものは藻の発生が40日頃から槽
の壁面につき始め、多少槽内にも浮遊はしたが、
比較例のように浮遊微生物が非常に少なく、金魚
の上記のような病気の発生はなかつた。また、比
較例に対して、本発明ではPHの変化が小さく、窒
素・リンの溶存量は低く、養魚に好環境を長い間
維持していた。 実施例 2 実施例1と同様にして、上記製造例(2)で製造し
た空〓率の異なる5種類の多孔質浄化材の効果の
違いを試験した。 なお、試験期間は5月上旬から1ケ月とし、1
ケ月後の金魚の生存率、水質及び浮遊微生物の状
態と藻の発生時期を観察した。この結果を第4表
に示す。
[Table] As a result, goldfish died in about 2 months using pebble gravel, Bakhan stone, and limestone used as comparative examples, whereas goldfish containing the porous purifying material of the present invention had an extremely high survival rate. It was hot. This is because in the comparative example, many microorganisms were observed in the tank from around the 20th day, and from around the 25th day, algae began to grow rapidly and visibility became poor, making observation from the outside difficult. After that, goldfish died one by one from diseases such as fluke disease, which causes white spots on the skin, and water mold disease, which causes a white film to appear on the goldfish's skin. On the other hand, in the case containing the porous purification material of the present invention, algae began to grow on the walls of the tank from around 40 days onwards, and although some were floating inside the tank,
As in the comparative example, there were very few airborne microorganisms, and there was no outbreak of the above-mentioned diseases in goldfish. In addition, compared to the comparative example, in the present invention, the change in pH was small, the amount of dissolved nitrogen and phosphorus was low, and a favorable environment for fish farming was maintained for a long time. Example 2 In the same manner as in Example 1, the differences in effectiveness of the five types of porous purifying materials having different porosity produced in Production Example (2) above were tested. The test period will be one month from early May, and the test period will be one month from early May.
After several months, the survival rate of the goldfish, the water quality, the state of suspended microorganisms, and the time of algae outbreak were observed. The results are shown in Table 4.

【表】 :普通程度に出現
+:わずかに出現
第4表に示すように、多孔質浄化材の空〓率は
微生物の着床、有機物の分解に大きく関与してお
り、空〓率が50%以下では水槽内の浮遊微生物が
多くなるとともに藻の発生が早くなり、水質が悪
化して金魚の生存率が低かつた。 実施例 3 実施例1と同様にして、上記製造例(3)で製造し
た中性化の状態が異なる6種類の多孔質浄化材の
効果の違いを試験した。 試験期間は6月上旬から1ケ月とし、1ケ月後
の金魚の生存率、水質及び浮遊微生物の状態と藻
の発生期間を観察した。この結果を第5表に示
す。
[Table]: Normal appearance +: Slight appearance As shown in Table 4, the vacancy rate of porous purification material is greatly involved in the settlement of microorganisms and decomposition of organic matter, % or less, the number of floating microorganisms in the aquarium increased, algae grew faster, the water quality deteriorated, and the survival rate of goldfish was low. Example 3 In the same manner as in Example 1, the six types of porous purifying materials produced in Production Example (3) above and having different states of carbonation were tested for differences in effectiveness. The test period was one month from early June, and after one month, the survival rate of goldfish, water quality, state of suspended microorganisms, and period of algae growth were observed. The results are shown in Table 5.

【表】 :普通程度に出現
+:わずかに出現
第5表に示すように、中性化処理を192時間し
たものは他のものに比べて浄化能力が低下してい
た。このものは炭酸カルシウム含有率が36.2%と
高く、トバモライトの結晶がくずれて表面を完全
に被たことによると考えられる。よつて中性化処
理する場合にはCaCO3含有率が30%以下とする
のが好ましい。 実施例 4 まず、PHを4以下に調整した水150mlにトバモ
ライトとセオライトを各0.2gずつ投入した。第
1図に示すように、トバモライトを添加した水の
PHは徐々に上昇してゆき、生物が健全に生息でき
る下限のPH6を越え良好なPH値を示す結果となつ
た。これに対し、ゼオライトを添加した水のPHは
投入直後には多少の上昇はあるもののその後の変
化は見られず、ついに生物が健全に生息できる下
限PH6を越えることはなかつた。 次にPH7の水500mlにトバモライトとゼオライ
トを各10mgずつ投入しこれに塩酸を0.05mlずつ添
加していつた。第2図に示すように、なにも投入
しなかつた水においては、1Nの塩酸を0.05mlず
つ添加していくことにより急激にPH値が低下し
た。そして、トバモライトを添加した水のPHは、
塩酸の添加量が徐々に増していつても安定したア
ルカリ性値を示していた。 これに対し、ゼオライトを添加した水のPHは塩
酸の添加量0.1ml以前から酸性値を示し、塩酸の
添加量0.2ml時点からはPH6を下回つて緩やかに
低下していつた。 <発明の効果> 以上詳述したように、本発明に係る魚介類生息
水域用の多孔質浄化材は、その主成分であるトバ
モライトがPH緩衝作用を発揮して魚介類の排泄物
等の有機物に起因するPH低下を抑制するとともに
多孔質の表面に汚れの原因物質の一部を吸着し
て、その結果、水を浄化するという優れた効果を
発揮する。 また、水中のリン酸が本発明の多孔質浄化材表
面から供給されるカルシウムイオンと反応して適
度に晶析除去される。 さらに、前記多孔質浄化材が水中に放置される
と、その多孔に微生物が生息し、水域中に生成さ
れたアンモニアを酸化して亜硝酸から魚介類にと
つて毒性がほとんどないと言われている硝酸へと
硝化していく。加えて、この微生物が水の汚染源
である有機物を分解して水や炭酸ガスに変換する
ので、魚介類が生息可能な水域環境の維持が可能
になる。 従つて、本発明によると、単に多孔質浄化材を
魚類の生息する水中に散布するだけでよいので、
従来技術と比較して簡単な作業により水環境の浄
化が可能になるという効果を奏する。
[Table]: Moderate appearance +: Slight appearance As shown in Table 5, the purification ability of the products that had been neutralized for 192 hours was lower than that of the others. This material has a high calcium carbonate content of 36.2%, which is thought to be due to the tobermorite crystals breaking down and completely covering the surface. Therefore, in the case of neutralization treatment, it is preferable that the CaCO 3 content is 30% or less. Example 4 First, 0.2 g each of tobermorite and theolite were added to 150 ml of water whose pH was adjusted to 4 or less. As shown in Figure 1, water with tobermorite added
The PH gradually increased, and the result was a good PH value exceeding PH6, the lower limit at which living things can live healthily. On the other hand, although the pH of the zeolite-added water rose slightly immediately after it was added, no change was observed after that, and the pH never exceeded the lower limit of 6, at which living organisms can live healthily. Next, 10 mg each of tobermorite and zeolite were added to 500 ml of water with a pH of 7, and 0.05 ml of hydrochloric acid was added thereto. As shown in Figure 2, in the case of water to which nothing was added, the PH value decreased rapidly by adding 1N hydrochloric acid in 0.05ml increments. And the PH of the water to which tobermorite has been added is
As the amount of hydrochloric acid added was gradually increased, the alkalinity value remained stable. On the other hand, the pH of the water to which zeolite was added showed an acidic value before the addition of 0.1 ml of hydrochloric acid, and gradually decreased to below PH 6 after the addition of 0.2 ml of hydrochloric acid. <Effects of the Invention> As detailed above, in the porous purification material for fish and shellfish inhabited water areas according to the present invention, tobermorite, the main component thereof, exerts a PH buffering effect and removes organic matter such as fish and shellfish excrement. In addition to suppressing the pH drop caused by water, it also adsorbs some of the pollutants on its porous surface, resulting in an excellent water purification effect. Further, phosphoric acid in water reacts with calcium ions supplied from the surface of the porous purifying material of the present invention, and is appropriately crystallized and removed. Furthermore, when the porous purifying material is left in water, microorganisms inhabit its pores and oxidize the ammonia produced in the water, converting it into nitrous acid, which is said to be almost non-toxic to seafood. It nitrates to nitric acid. In addition, these microorganisms decompose organic matter that is a source of water contamination and convert it into water and carbon dioxide, making it possible to maintain an aquatic environment in which fish and shellfish can live. Therefore, according to the present invention, it is sufficient to simply spray the porous purifying material into the water where fish live.
This has the effect of making it possible to purify the water environment with simpler work compared to conventional techniques.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は酸化した水にトバモライトとゼオライ
トを投入した後のPHの変化を比較した図であり、
第2図はPH7の水にトバモライトとゼオライトを
投入した後、徐々に塩酸を加えていつたときのPH
の変化を比較した図である。
Figure 1 is a diagram comparing the changes in PH after adding tobermorite and zeolite to oxidized water.
Figure 2 shows the pH when tobermorite and zeolite were added to water with a pH of 7, and then hydrochloric acid was gradually added.
It is a diagram comparing changes in .

Claims (1)

【特許請求の範囲】 1 珪酸質原料及び石灰質原料を主成分とする水
スラリーに発泡剤を添加して発泡・硬化させて得
た硬化物を高温高圧下で水熱反応処理して得られ
且つ50〜90%の空〓率を有するトバモライトを主
成分とする魚介類生息水域用の多孔質浄化材。 2 前記トバモライトが、中性化処理されている
請求項1記載の魚介類生息水域用の多孔質浄化
材。 3 前記中性化処理が炭酸化処理である請求項2
記載の魚介類生息水域用の多孔質浄化材。
[Scope of Claims] 1. A foaming agent is added to an aqueous slurry mainly composed of silicic raw materials and calcareous raw materials, and the resulting cured product is foamed and hardened. A porous purification material for fish and shellfish habitat waters that has tobermorite as its main component and has a vacancy rate of 50 to 90%. 2. The porous purification material for fish and shellfish habitat water areas according to claim 1, wherein the tobermorite has been subjected to a neutralization treatment. 3. Claim 2, wherein the neutralization treatment is carbonation treatment.
A porous purification material for the water areas where fish and shellfish live.
JP61185284A 1986-08-08 1986-08-08 Cleaning method for water tank Granted JPS6342788A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61185284A JPS6342788A (en) 1986-08-08 1986-08-08 Cleaning method for water tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61185284A JPS6342788A (en) 1986-08-08 1986-08-08 Cleaning method for water tank

Publications (2)

Publication Number Publication Date
JPS6342788A JPS6342788A (en) 1988-02-23
JPH0434479B2 true JPH0434479B2 (en) 1992-06-08

Family

ID=16168148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61185284A Granted JPS6342788A (en) 1986-08-08 1986-08-08 Cleaning method for water tank

Country Status (1)

Country Link
JP (1) JPS6342788A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008206445A (en) * 2007-02-26 2008-09-11 Mitsubishi Heavy Industries Bridge & Steel Structures Engineering Co Ltd Structure for live rock and porous cement hardened body
TWI848099B (en) * 2019-07-05 2024-07-11 日商太平洋水泥股份有限公司 Aquaculture material and method of producing the same

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02211289A (en) * 1989-02-13 1990-08-22 Nippon Sekkai Kogyo Kumiai Improvement of excessively nutritious conditions of fresh water area using lime material
JPH0818031B2 (en) * 1990-03-24 1996-02-28 小野田エー.エル・シー株式会社 Sewage purification filter material and manufacturing method thereof
PL1982759T3 (en) * 2007-03-21 2012-04-30 Omya Int Ag Surface treated calcium carbonate and its use in waste water treatment
JP4929117B2 (en) * 2007-09-30 2012-05-09 住友林業クレスト株式会社 Sound insulation door
WO2015008398A1 (en) * 2013-07-16 2015-01-22 太平洋セメント株式会社 Water quality purification material, method for manufacturing same, and method for purifying water quality of fish and shellfish farm
MY174928A (en) * 2013-07-16 2020-05-22 Taiheiyo Cement Corp Method for purifying water quality of fish and shellfish farm
CN105585127A (en) * 2014-11-17 2016-05-18 上海能淦水产专业合作社 Pond blue algae outbreak system establishment method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49122889A (en) * 1973-03-29 1974-11-25
JPS5041792A (en) * 1973-08-16 1975-04-16
JPS5048746A (en) * 1973-08-31 1975-05-01
JPS5791786A (en) * 1980-11-29 1982-06-08 Shizuo Oga Purifying agent of water
JPS61174985A (en) * 1985-01-31 1986-08-06 Ube Ind Ltd Calcium silicate water treating agent

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49122889A (en) * 1973-03-29 1974-11-25
JPS5041792A (en) * 1973-08-16 1975-04-16
JPS5048746A (en) * 1973-08-31 1975-05-01
JPS5791786A (en) * 1980-11-29 1982-06-08 Shizuo Oga Purifying agent of water
JPS61174985A (en) * 1985-01-31 1986-08-06 Ube Ind Ltd Calcium silicate water treating agent

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008206445A (en) * 2007-02-26 2008-09-11 Mitsubishi Heavy Industries Bridge & Steel Structures Engineering Co Ltd Structure for live rock and porous cement hardened body
TWI848099B (en) * 2019-07-05 2024-07-11 日商太平洋水泥股份有限公司 Aquaculture material and method of producing the same

Also Published As

Publication number Publication date
JPS6342788A (en) 1988-02-23

Similar Documents

Publication Publication Date Title
TW201300327A (en) Fish and mussel cultivation method and purifying active agent for breeding water thereof
JPH0434479B2 (en)
JP6864452B2 (en) Material for promoting algae growth
TWI848099B (en) Aquaculture material and method of producing the same
KR100220652B1 (en) Magnesia type modifier of water quality and bottom material
KR20180002146A (en) Effervescent compositions for aquaculture water purification
JP6991726B2 (en) Materials for promoting algae growth
JP2007054732A (en) Sewage treatment material and its production method
JP2007075716A (en) Method for sinking carbonated/solidified body in water
JP2001121179A (en) Porous cleaning material and method for manufacturing the same
JP7154598B2 (en) Water purification material and water purification method using the same
US5447653A (en) Method for the production of water purifying substances
EP3024319B1 (en) New hybrid biodegradable polymer for efficient nitrogen and phosphate reduction
JP6812182B2 (en) Material for promoting algae growth
KR100571519B1 (en) Process for the preparation of underwater administration with water purification and green algae inhibition and removal
JPS607559B2 (en) wastewater treatment equipment
JP6198826B2 (en) Water purification method for seafood farms
JP7287813B2 (en) Water purification material
JP3304489B2 (en) Sintered sepiolite, filter material for water tank using the same, and method for producing the same
JPH0378157B2 (en)
JPH0683832B2 (en) Microorganism carrier
JP2003047974A (en) Underwater dephosphorizing agent composition and method for removing phosphor from water by using the same
JPS6118497A (en) Water purifying method in fish culture pond or the like
JP7364350B2 (en) Sediment improvement method
JP4014721B2 (en) Water purification agent

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term