JPH04344469A - Light-applied direct current transformer - Google Patents
Light-applied direct current transformerInfo
- Publication number
- JPH04344469A JPH04344469A JP3117596A JP11759691A JPH04344469A JP H04344469 A JPH04344469 A JP H04344469A JP 3117596 A JP3117596 A JP 3117596A JP 11759691 A JP11759691 A JP 11759691A JP H04344469 A JPH04344469 A JP H04344469A
- Authority
- JP
- Japan
- Prior art keywords
- light
- wavelength
- component
- optical
- light wave
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000012545 processing Methods 0.000 claims abstract description 25
- 230000003287 optical effect Effects 0.000 claims description 46
- 239000013307 optical fiber Substances 0.000 claims description 24
- 230000000694 effects Effects 0.000 claims description 16
- 239000004020 conductor Substances 0.000 claims description 11
- 230000005540 biological transmission Effects 0.000 claims description 10
- 238000000034 method Methods 0.000 claims description 9
- 238000006243 chemical reaction Methods 0.000 claims description 5
- 238000000926 separation method Methods 0.000 claims description 3
- 230000010287 polarization Effects 0.000 description 16
- 238000005259 measurement Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 4
- 239000000835 fiber Substances 0.000 description 3
- 238000003672 processing method Methods 0.000 description 3
- 230000008054 signal transmission Effects 0.000 description 3
- 238000009499 grossing Methods 0.000 description 2
- 101000743811 Homo sapiens Zinc finger protein 85 Proteins 0.000 description 1
- 102100039050 Zinc finger protein 85 Human genes 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
Landscapes
- Measuring Magnetic Variables (AREA)
- Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は電力用変成器に係り、特
に直流成分を有する電流の測定に好適な光応用直流電流
変成器に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power transformer, and more particularly to an optical DC current transformer suitable for measuring a current having a DC component.
【0002】0002
【従来の技術】近年、オプトエレクトロニクスの進展に
より光学的な手法により電磁気量の計測、すなわち電圧
や電流などの測定などができるようになってきた。この
様な光学的手法による電圧や電流の計測原理や構成シス
テムなどについては、たとえば久間和生、布下正宏
共著「光ファイバセンサ」(情報調査会発行、昭和60
年1月)などに記載されている。この中ではその多くが
交流信号の測定について述べられているが、直流電流の
測定についても記載されている。この中で2光出力方式
としてセンサの出力信号を二つの直交する偏光成分、す
なわちP偏光成分とS偏光成分とに分け、それらの和と
差で除算する処理方法が述べられているが、光の伝送路
や信号処理回路等での光量変動が測定誤差となり、この
ままの方式では高精度の直流電流測定ができにくい問題
がある。2. Description of the Related Art In recent years, with the advancement of optoelectronics, it has become possible to measure electromagnetic quantities, ie, voltage, current, etc., using optical methods. Regarding the measurement principles and configuration systems of voltage and current using such optical methods, see, for example, Kazuo Kuma and Masahiro Nunoshita.
Co-authored “Optical Fiber Sensor” (Published by Information Research Committee, 1986)
(January 2013), etc. Most of this describes the measurement of alternating current signals, but also describes the measurement of direct current. Among them, a processing method is described as a dual-light output method in which the output signal of the sensor is divided into two orthogonal polarization components, that is, a P-polarization component and an S-polarization component, and the processing method is divided by the sum and difference of these components. Fluctuations in the amount of light in the transmission lines, signal processing circuits, etc. cause measurement errors, making it difficult to measure DC current with high precision if the method is used as is.
【0003】このため、特開昭57−141562号公
報に記載のごとく、直流信号に高周波信号を重畳させた
光源を用い、光源変動を補正する方法が提案されている
が、この方法では高周波分の光量が被測定直流電流の大
きさによって変化するという点に配慮されていないため
、十分な変動補正ができにくい問題がある。また、特開
昭59−190668号公報には異なる2波長の光を用
い、第1の光はセンサ内で偏光を受け、第2の光はセン
サ内で偏光されない様にし、両光の受信強度の比から変
動分を補正しようとする方法が提案されているが、測定
範囲が広くないことや、光源の変動補正が配慮されてい
ない問題がある。[0003] Therefore, as described in Japanese Patent Laid-Open No. 57-141562, a method has been proposed that uses a light source in which a high-frequency signal is superimposed on a DC signal to correct the light source fluctuation. Since this method does not take into account that the amount of light changes depending on the magnitude of the DC current to be measured, there is a problem in that it is difficult to sufficiently correct for fluctuations. Furthermore, in Japanese Patent Application Laid-Open No. 59-190668, light of two different wavelengths is used, the first light is polarized within the sensor, the second light is not polarized within the sensor, and the received intensity of both lights is A method has been proposed in which the variation is corrected from the ratio of
【0004】0004
【発明が解決しようとする課題】上記したように、従来
の光学的な直流電流測定においては、光源から光信号伝
送路、信号処理回路に亘る各部での光量変動に対する有
効な補正が行われておらず、高精度の直流電流測定がで
きない問題があった。本発明の課題は、たとえ光源、光
信号伝送部などで光量の変動があっても、直流電流を広
い範囲で高精度に測定するにある。[Problems to be Solved by the Invention] As mentioned above, in conventional optical direct current measurement, effective correction is not performed for variations in light intensity at various parts from the light source to the optical signal transmission line and the signal processing circuit. Therefore, there was a problem in that it was not possible to measure DC current with high accuracy. An object of the present invention is to measure DC current with high precision over a wide range even if the amount of light varies in the light source, optical signal transmission unit, etc.
【0005】[0005]
【課題を解決するための手段】上記の課題は、一定の出
力光を発生する光源と、該光源から発せられた光を直線
偏光させる偏光子と、磁気光学効果を有し被測定電流導
体の周囲に配置された媒質と、検光子と、これから出射
する光信号を電気信号に変換し、演算・処理する信号処
理回路とを備えて成る光応用電流変成器において、前記
光源として波長λ1の光波を発する光源と、波長λ2の
光波を発する光源と、波長λ1の光波を該磁気光学効果
を有する媒質中を被測定電流導体を囲むように周回透過
させる手段と、波長λ2の光波を該媒質中を通過させる
ことのないよう該媒質への入射口で分岐させる手段と、
前記媒質中を通過した波長λ1の光波と前記媒質中を通
過しない波長λ2の光波とを合流させたのちP偏光成分
及びS偏光成分に分離する手段と、該P偏光成分及びS
偏光成分をそれぞれ伝送する伝送路と、該伝送されたP
偏光成分及びS偏光成分をそれぞれ波長λ1と波長λ2
とに分離する手段と、この分離された光出力信号を和差
演算処理し被測定電流と同極性の電気出力信号を得る信
号処理回路とを備えることにより達成される。[Means for Solving the Problems] The above problems require a light source that generates a constant output light, a polarizer that linearly polarizes the light emitted from the light source, and a current conductor to be measured that has a magneto-optic effect. In an optical current transformer comprising a surrounding medium, an analyzer, and a signal processing circuit that converts an optical signal emitted from the light signal into an electrical signal and performs arithmetic and processing, the light source is a light wave with a wavelength λ1. a light source that emits a light wave with a wavelength λ2; a means for transmitting a light wave with a wavelength λ1 through the medium having the magneto-optical effect so as to surround the current conductor to be measured; and a light source that emits a light wave with a wavelength λ2 through the medium. means for branching at the entrance to the medium so that the medium does not pass through;
means for combining a light wave with a wavelength λ1 that has passed through the medium and a light wave with a wavelength λ2 that has not passed through the medium and then separating it into a P-polarized light component and an S-polarized light component;
A transmission line that transmits each polarized light component and the transmitted P
The polarized light component and the S-polarized light component have wavelengths λ1 and λ2, respectively.
This is achieved by comprising means for separating the optical output signals into two, and a signal processing circuit that performs sum-difference calculation processing on the separated optical output signals to obtain an electrical output signal having the same polarity as the current to be measured.
【0006】上記の課題はまた、波長λ1の光波を発す
る光源から発した光波と波長λ2の光波を発する光源か
ら発した光波とを重畳させる光合波器と、該光合波器で
重畳された光波を磁気光学効果を有する媒質に導く光フ
ァイバと、該媒質入り口に配置され波長λ1の光波を該
媒質内に通過させるとともに波長λ2の光波を該媒質内
を通過させないで検光子に入射させるダイクロイックと
を備えた請求項1に記載の光応用直流電流変成器によっ
ても達成される。The above problem also requires an optical multiplexer that superimposes a light wave emitted from a light source that emits a light wave with wavelength λ1 and a light wave emitted from a light source that emits a light wave with wavelength λ2, and a an optical fiber that guides the light into a medium having a magneto-optic effect; and a dichroic that is disposed at the entrance of the medium and allows a light wave with a wavelength λ1 to pass into the medium and allows a light wave with a wavelength λ2 to enter the analyzer without passing through the medium. This is also achieved by the optical DC current transformer according to claim 1, which comprises:
【0007】上記の課題はさらに、λ1とλ2を同一波
長とし、磁気光学効果を有する媒質内を通過しない方の
光に高周波を重畳させる手段と、検光子から出力された
P偏光成分とS偏光成分を光電変換する光電変換手段と
、該光電変換手段の出力をそれぞれ直流分と交流分に分
離する分離手段と、該分離手段の出力を演算処理する演
算回路とを備えた請求項1に記載の光応用直流電流変成
器によっても達成される。[0007] The above-mentioned problem is further solved by means of making λ1 and λ2 the same wavelength and superimposing a high frequency on the light that does not pass through a medium having a magneto-optic effect, and a means for superimposing a high frequency on the light that does not pass through a medium having a magneto-optic effect, and a means for superimposing a high frequency on the light that does not pass through a medium that has a magneto-optic effect, and a means for superimposing a high frequency on the light that does not pass through a medium that has a magneto-optic effect, 2. The method according to claim 1, further comprising a photoelectric conversion means for photoelectrically converting the component, a separation means for separating the output of the photoelectric conversion means into a DC component and an AC component, and an arithmetic circuit for processing the output of the separation means. This can also be achieved by optically applied DC current transformers.
【0008】[0008]
【作用】異なる波長λ1,λ2の二光源からの入射光が
光ファイバによる光伝送路で磁気光学効果を有する媒質
(以下ファラディ素子という)(磁界センサ)に導かれ
る。波長λ1の第1の光波はファラディ素子の入射端に
配された偏光子で直線偏光された後、素子中を被測定電
流導体を囲むように周回通過することで電流値に応じた
ファラディ回転を受ける。一方、波長λ2の第2の光波
はファラディ素子の入射端でファラディ素子中を通らな
いように分岐されるため被測定電流の影響は受けない。
そして、上記ファラディ素子からの光出射端では、(λ
1+λ2)の光信号を互いに直交するP偏光成分とS偏
光成分に分け、さらに該P偏光成分とS偏光成分それぞ
れに含まれる(λ1+λ2)の光成分をそれぞれに分波
して、合計で四つの光信号成分、つまり波長λ1のP偏
光成分Iλ1pとS偏光成分Iλ1s,波長λ2のP偏
光成分Iλ2pとS偏光成分Iλ2pが得られる。得ら
れた二つのP偏光成分は光ファイバを含む同一のP偏光
用の光伝送路で、また二つのS偏光成分もS偏光用の同
一光伝送路で信号処理回路まで伝送される。[Operation] Incident light from two light sources with different wavelengths λ1 and λ2 is guided to a medium having a magneto-optic effect (hereinafter referred to as a Faraday element) (magnetic field sensor) through an optical transmission line using an optical fiber. The first light wave with wavelength λ1 is linearly polarized by a polarizer placed at the input end of the Faraday element, and then passes around the current conductor to be measured through the element, causing Faraday rotation according to the current value. receive. On the other hand, the second light wave having the wavelength λ2 is branched at the input end of the Faraday element so as not to pass through the Faraday element, and therefore is not affected by the current to be measured. At the light output end of the Faraday element, (λ
1+λ2) optical signal is divided into mutually orthogonal P-polarized light component and S-polarized light component, and the (λ1+λ2) light component included in each of the P-polarized light component and S-polarized light component is demultiplexed into four components in total. Optical signal components, that is, P-polarized light components Iλ1p and S-polarized light components Iλ1s of wavelength λ1, and P-polarized light components Iλ2p and S-polarized light components Iλ2p of wavelength λ2 are obtained. The two obtained P-polarized light components are transmitted to the signal processing circuit through the same optical transmission path for P-polarized light including an optical fiber, and the two S-polarized light components are also transmitted through the same optical transmission path for S-polarized light.
【0009】ここで、Ip,Isを被測定電流導体に電
流が流れていないときに得られる波長λ1の光波のP偏
光成分及びS偏光成分とし、第1の波長λ1の光波によ
るファラディ素子中でのファラディ回転角をΔφとする
と、上記の四つの光信号成分はそれぞれ次式で表わすこ
とができる。Here, Ip and Is are the P-polarized component and the S-polarized component of the light wave of wavelength λ1 obtained when no current flows through the current conductor to be measured, and the light wave of the first wavelength λ1 is generated in the Faraday element. Letting the Faraday rotation angle of Δφ, the above four optical signal components can be respectively expressed by the following equations.
【0010】0010
【数1】波長λ1の光波のP偏光成分 Iλ1p
=Ip・(1−sinΔφ)[Equation 1] P polarization component of light wave with wavelength λ1 Iλ1p
=Ip・(1−sinΔφ)
【0011】[0011]
【数2】波長λ1の光波のS偏光成分 Iλ1s
=Is・(1+sinΔφ)[Equation 2] S polarization component of light wave with wavelength λ1 Iλ1s
=Is・(1+sinΔφ)
【0012】0012
【数3】
波長λ2の光波のP偏光成分 Iλ2p=Ip′
[Formula 3] P polarization component of light wave with wavelength λ2 Iλ2p=Ip'
【0013】[0013]
【数4】
波長λ2の光波のS偏光成分 Iλ2s=Is′
ここで、[Formula 4] S polarization component of light wave with wavelength λ2 Iλ2s=Is'
here,
【0014】[0014]
【数5】Kp=Ip/Ip′
Ks=Is/Is′
とおくと、波長λ1とλ2の光波のP偏光成分及びS偏
光成分はそれぞれ同一光伝送路をたどっているため、光
源を含む光伝送路で光量変動があってもKp,Ksは同
一割合で変動することになる。すなわち信号処理回路で
[Equation 5] Kp=Ip/Ip'Ks=Is/Is' Since the P-polarized light component and the S-polarized light component of the light waves with wavelengths λ1 and λ2 respectively follow the same optical transmission path, the light including the light source Even if there is a change in the amount of light in the transmission path, Kp and Ks will change at the same rate. In other words, in the signal processing circuit
【0015】[0015]
【数6】K=Kp=Ks
となるようにKpとKsを一度設定すれば、光源及び光
伝送路の途中で何らかの理由で光量変動がおきても、常
に一定のKとすることが可能となる。その結果、ファラ
ディ素子の出力は、P偏光成分をJp,S偏光成分をJ
sとすれば、それぞれ次式で表される。[Equation 6] Once Kp and Ks are set so that K=Kp=Ks, it is possible to always keep K constant even if the light intensity fluctuates for some reason in the light source and the optical transmission path. Become. As a result, the output of the Faraday element is Jp for the P polarization component and Jp for the S polarization component.
s, each is expressed by the following formula.
【0016】[0016]
【数7】[Math 7]
【0017】[0017]
【数8】[Math. 8]
【0018】これらの和と差をとり、除算すると、出力
Voutは、次のようになる。When these sums and differences are taken and divided, the output Vout becomes as follows.
【0019】[0019]
【数9】[Math. 9]
【0020】ここでΔφ≪1にすれば、 sinΔφ
≒Δφ とおけるため、上記のような演算を行えば、
たとえ光源及び光伝送路の各部で光量変動があってもフ
ァラディ回転角Δφが正確に求められ、直流電流が広い
範囲で高精度に測定できるようになる。[0020] Here, if Δφ≪1, sinΔφ
≒Δφ, so if we perform the above calculation, we get
Even if there is a variation in light intensity at each part of the light source and optical transmission path, the Faraday rotation angle Δφ can be accurately determined, and the direct current can be measured with high precision over a wide range.
【0021】[0021]
【実施例】以下、本発明の第1の実施例を図面を参照し
て説明する。図1に示す、本発明に係る光応用電流変成
器は、異なる二つの波長λ1,λ2を発生する光源1,
2と、該光源1,2にそれぞれ接続された光ファイバ3
,4と、該光ファイバ3にプリズム16´及び偏光子5
を介して接続された磁気光学効果を有するファラディ素
子6と、該ファラディ素子6の光出口に接続された検光
子7と、該検光子7と前記光ファイバ4の間を接続する
プリズム16と、前記検光子7の光出口に接続された光
ファイバ8,9と、該光ファイバ8,9にそれぞれ接続
されて入射光を波長λ1,λ2に二つに分離して出力す
る光分波器10,11と、該光分波器10,11の出力
側に接続されて光電変換するフォトダイオード12,1
3,14,15と、該フォトダイオード12,13,1
4,15の出力側に接続された演算処理回路20とを含
んで構成されている。前記ファラディ素子6は被測定電
流導体21の周囲を囲んで形成され、該ファラディ素子
に入射した光は被測定電流導体21を周回したのち、前
記検光子7に入射するよう構成されている。前記フォト
ダイオード12,13,14,15と演算処理回路20
とで信号処理回路30を形成している。図2は、図1に
示すファラディ素子6への波長λ1,λ2の光波の入射
出部の詳細を示す。波長λ2の光波は非偏光の光で、フ
ァラデー素子を通らず直接、検光子7に入射される構造
となっている。プリズム16′,16″は光の方向付の
ための全反射プリズムである。DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described below with reference to the drawings. The optical current transformer according to the present invention shown in FIG. 1 includes a light source 1 that generates two different wavelengths λ1 and λ2;
2, and an optical fiber 3 connected to the light sources 1 and 2, respectively.
, 4, and a prism 16' and a polarizer 5 on the optical fiber 3.
a Faraday element 6 having a magneto-optic effect connected via a Faraday element 6, an analyzer 7 connected to a light exit of the Faraday element 6, and a prism 16 connecting between the analyzer 7 and the optical fiber 4; Optical fibers 8 and 9 are connected to the light exit of the analyzer 7, and an optical demultiplexer 10 is connected to the optical fibers 8 and 9, respectively, and separates the incident light into two wavelengths λ1 and λ2 and outputs the two. , 11, and photodiodes 12, 1 connected to the output sides of the optical demultiplexers 10, 11 for photoelectric conversion.
3, 14, 15, and the photodiodes 12, 13, 1
4 and 15. The Faraday element 6 is formed to surround the current conductor 21 to be measured, and the light incident on the Faraday element is configured so that it travels around the current conductor 21 to be measured and then enters the analyzer 7. The photodiodes 12, 13, 14, 15 and the arithmetic processing circuit 20
A signal processing circuit 30 is formed. FIG. 2 shows details of the input/output portion of light waves of wavelengths λ1 and λ2 into and out of the Faraday element 6 shown in FIG. The light wave of wavelength λ2 is non-polarized light and is structured to be directly incident on the analyzer 7 without passing through the Faraday element. Prisms 16', 16'' are total reflection prisms for directing light.
【0022】次に上記構成の装置における光波の流れを
説明する。光源1,2から波長λ1,λ2の異なる二つ
の光波(以下、光波λ1,光波λ2という)が発光され
、光波λ1は光ファイバ3に、光波λ2は光ファイバ4
に、それぞれ入射される。このうちの光波λ1は偏光子
5に導かれ偏光されて直線偏光となり、その後ファラデ
ィ素子6中を全反射しながら被測定電流導体21を周回
通過する。光波λ1は被測定電流導体21を周回通過す
ることで、上記被測定電流の大きさに比例したファラデ
ィ回転を受け、検光子7に入射する。一方、光波λ2は
光波λ1とは別の光ファイバ4でファラディ素子入り口
に導かれるものの、プリズム16によりファラディ素子
6を通らない様に分岐され、検光子7に直接入射する。
検光子7では、光波λ1,光波λ2とも二つの直交する
偏光成分、P偏光成分とS偏光成分に分けられる。この
様に分けられた偏光成分のうち、光波λ1のP偏光成分
及び光波λ2のP偏光成分はファイバ8により、また光
波λ1のS偏光成分及び光波λ2のS偏光成分はファイ
バ9により、それぞれ光分波器10,11に送られる。
光分波器10,11ではP偏光成分とS偏光成分が、そ
れぞれ二つの波長λ1,λ2の光信号に分離され、合計
4個の信号となって信号処理回路30に伝送される。信
号処理回路30に伝送される前記4個の光信号は、まず
フォトダイオード12,13,14,15により電気信
号に変換されたのち、演算処理回路20に伝達される。Next, the flow of light waves in the device having the above configuration will be explained. Two light waves with different wavelengths λ1 and λ2 (hereinafter referred to as light wave λ1 and light wave λ2) are emitted from light sources 1 and 2, light wave λ1 is transmitted to optical fiber 3, and light wave λ2 is transmitted to optical fiber 4.
, respectively. Of these, the light wave λ1 is guided by the polarizer 5 and polarized into linearly polarized light, and then passes around the current conductor 21 to be measured while being totally reflected in the Faraday element 6. The light wave λ1 passes through the current conductor 21 to be measured, undergoes Faraday rotation proportional to the magnitude of the current to be measured, and enters the analyzer 7. On the other hand, although the light wave λ2 is guided to the entrance of the Faraday element by an optical fiber 4 different from the light wave λ1, it is branched by the prism 16 so as not to pass through the Faraday element 6, and directly enters the analyzer 7. In the analyzer 7, both the light wave λ1 and the light wave λ2 are divided into two orthogonal polarization components, a P polarization component and an S polarization component. Of the polarized light components separated in this way, the P polarized light component of the light wave λ1 and the P polarized light component of the light wave λ2 are transmitted through the fiber 8, and the S polarized light component of the light wave λ1 and the S polarized light component of the light wave λ2 are transmitted through the fiber 9. The signal is sent to demultiplexers 10 and 11. The optical demultiplexers 10 and 11 separate the P-polarized light component and the S-polarized light component into two optical signals with wavelengths λ1 and λ2, respectively, and transmit the resulting four signals to the signal processing circuit 30. The four optical signals transmitted to the signal processing circuit 30 are first converted into electrical signals by the photodiodes 12, 13, 14, and 15, and then transmitted to the arithmetic processing circuit 20.
【0023】図3は、図1の演算処理回路20の実施例
を構成を示したもので、フォトダイオード12,13,
14,15にそれぞれ接続された増幅器31,32,3
3,34と、該増幅器31,32の出力側に接続された
除算器35と、増幅器33,34の出力側に接続された
除算器36と、該除算器35,36両者の出力側にとも
に接続された加算器37と、同じく除算器35,36両
者の出力側にともに接続された減算器38と、前記加算
器37及び減算器38の出力側に接続された除算器39
とを含んで構成されている。FIG. 3 shows the configuration of an embodiment of the arithmetic processing circuit 20 of FIG. 1, in which photodiodes 12, 13,
Amplifiers 31, 32, 3 connected to 14, 15, respectively
3, 34, a divider 35 connected to the output sides of the amplifiers 31, 32, a divider 36 connected to the output sides of the amplifiers 33, 34, and a divider 36 connected to the output sides of the dividers 35, 36. An adder 37 connected, a subtracter 38 connected to the output sides of both the dividers 35 and 36, and a divider 39 connected to the output sides of the adder 37 and the subtracter 38.
It is composed of:
【0024】光波λ1のP偏光成分Iλ1pはフォトダ
イオード12により、またS偏光成分Iλ1sはフォト
ダイオード14により、そして光波λ2のP偏光成分I
λ2p,S偏光成分Iλ2sはそれぞれフォトダイオー
ド13,15によりそれぞれ電気信号に変換され、増幅
器31,32,33,34で増幅される。そして除算器
35,36にてP,S偏光成分ごとの除算Iλ1p/I
λ2p,Iλ1s/Iλ2sが行われる。さらに次段の
加算回路37でIλ1p/Iλ2p+Iλ1s/Iλ2
sなる加算が、減算回路38でIλ1p/Iλ2p−I
λ1s/Iλ2sなる減算が行われた後、除算器39で
次の数10に示す出力信号Voutが得られる。The P polarization component Iλ1p of the light wave λ1 is transmitted by the photodiode 12, the S polarization component Iλ1s is transmitted by the photodiode 14, and the P polarization component I of the light wave λ2 is transmitted by the photodiode 12.
The λ2p and S-polarized components Iλ2s are converted into electric signals by photodiodes 13 and 15, respectively, and amplified by amplifiers 31, 32, 33, and 34, respectively. Then, in the dividers 35 and 36, division Iλ1p/I for each P and S polarization component
λ2p, Iλ1s/Iλ2s are performed. Further, in the next stage adder circuit 37, Iλ1p/Iλ2p+Iλ1s/Iλ2
The addition s is performed by the subtraction circuit 38 as Iλ1p/Iλ2p−I
After the subtraction λ1s/Iλ2s is performed, the divider 39 obtains the output signal Vout shown in Equation 10 below.
【0025】[0025]
【数10】[Math. 10]
【0026】この出力信号は前記した如くファラディ回
転角に比例しており、光量変動の影響を受けないので、
高精度の直流電流測定が可能となる。As described above, this output signal is proportional to the Faraday rotation angle and is not affected by variations in the amount of light.
Highly accurate DC current measurement becomes possible.
【0027】図4に本発明の第2の実施例を示す。本実
施例が前記第1の実施例と異なるのは、光源1,2から
発光された異なる二つの波長λ1,λ2の光波は光合波
器18に導かれ、一本の光ファイバ19に入射されて偏
光子5に導かれる点と、該偏光子5で直線偏光された光
波λ1,λ2の光軸上にダイクロイック(以下光フィル
タ17という)が配置されている点である。偏光子5で
はそれぞれの光波が直線偏光となるが、続いて設けられ
た光フィルタ17で光波λ1はファラディ素子6の中に
導かれ、全反射しながら被測定電流導体21を周回した
のち検光子7に入射するものの、光波λ2は上記光フィ
ルタ17の作用でファラディ素子中を通らない様に分岐
され、検光子7に入射する。以下検光子7を通りP偏光
成分とS偏光成分とに分けられて伝送され、各種の信号
処理を施される作用は、図1〜図3で述べたものと同様
で、かつ同一構成となっている。本実施例によっても前
記第1の実施例と同様の効果が得られる。FIG. 4 shows a second embodiment of the present invention. The difference between this embodiment and the first embodiment is that the light waves of two different wavelengths λ1 and λ2 emitted from light sources 1 and 2 are guided to an optical multiplexer 18 and input into one optical fiber 19. and a point where a dichroic (hereinafter referred to as an optical filter 17) is arranged on the optical axis of the light waves λ1 and λ2 linearly polarized by the polarizer 5. Each light wave becomes linearly polarized light in the polarizer 5, and the light wave λ1 is guided into the Faraday element 6 by the subsequently provided optical filter 17, and after going around the current conductor 21 to be measured while being totally reflected, it is sent to the analyzer. However, the light wave λ2 is branched by the optical filter 17 so as not to pass through the Faraday element, and is incident on the analyzer 7. The operation in which the P-polarized light component and the S-polarized light component are transmitted after passing through the analyzer 7 and subjected to various signal processing is similar to that described in FIGS. 1 to 3 and has the same configuration. ing. This embodiment also provides the same effects as the first embodiment.
【0028】図5は、本発明の第3の実施例を示すもの
で、本実施例は前記第1の実施例とは、光源及び検光子
7を出たあとの信号の処理方式が異なる。本実施例にお
いて、光源1は波長λ1の第1の光波を発光するもので
構成され、光源2は波長λ1の光波に高周波を重畳させ
た第2の光波を発光するもので構成されている。また、
S偏光成分を伝送する光ファイバ9は光電変換器12A
に、P偏光成分を伝送する光ファイバ8は光電変換器1
4Aに、それぞれ接続されている。光電変換器12Aの
出力側には、さらに、ローパスフィルタLPF40A及
びハイパスフィルタHPF40Bが互いに並列に接続さ
れ、該ローパスフィルタLPF40Aの出力側は除算器
35に、ハイパスフィルタHPF40Bの出力側は平滑
回路を介して該除算器35に接続されている。光電変換
器14Aの出力側にも、ローパスフィルタLPF40C
及びハイパスフィルタHPF40Dが互いに並列に接続
され、該ローパスフィルタLPF40Cの出力側は除算
器36に、ハイパスフィルタHPF40Dの出力側は平
滑回路を介して該除算器36に接続されている。除算器
35,36の出力側は、和差回路39Aに接続されてい
る。FIG. 5 shows a third embodiment of the present invention, and this embodiment differs from the first embodiment in the processing method of the signal after leaving the light source and analyzer 7. In this embodiment, the light source 1 is configured to emit a first light wave with a wavelength λ1, and the light source 2 is configured to emit a second light wave in which a high frequency is superimposed on the light wave of the wavelength λ1. Also,
The optical fiber 9 that transmits the S-polarized light component is a photoelectric converter 12A.
, the optical fiber 8 transmitting the P-polarized light component is connected to the photoelectric converter 1.
4A, respectively. Further, a low-pass filter LPF40A and a high-pass filter HPF40B are connected in parallel to the output side of the photoelectric converter 12A, and the output side of the low-pass filter LPF40A is connected to the divider 35, and the output side of the high-pass filter HPF40B is connected to the divider 35 through a smoothing circuit. and is connected to the divider 35. A low pass filter LPF40C is also installed on the output side of the photoelectric converter 14A.
and high-pass filter HPF40D are connected in parallel with each other, the output side of low-pass filter LPF40C is connected to divider 36, and the output side of high-pass filter HPF40D is connected to divider 36 via a smoothing circuit. The output sides of the dividers 35 and 36 are connected to a sum-difference circuit 39A.
【0029】第1の光源から発光された第1の光波の光
量をJo、第2の光源から発光された第2の光波の光量
をJ1+dsinωt、光ファイバ3,4の光減衰率を
ηA,ηc、ファラディ素子6の光減衰率をηB、光フ
ァイバ8,9の光減衰率をηp,ηs、ファラディ素子
6の回転角をΔφとして、本実施例の光の動作を説明す
る。第1の光源から発光された第1の光波は前記第1の
実施例と同様、偏光子を経てファラディー素子に入射さ
れ、高周波を重畳させた第2の光波はファラディー素子
に入射することなく、直接検光子7に入射される。ファ
ラディー素子を経て検光子に入射された第1の光波と直
接検光子7に入射された第2の光波は、ともに検光子で
P偏光成分とS偏光成分に分けられ、P偏光成分は光フ
ァイバ9を経て光電変換器12Aに、S偏光成分は光フ
ァイバ8を経て光電変換器14Aに、伝送される。Jo is the amount of the first light wave emitted from the first light source, J1+dsinωt is the amount of second light wave emitted from the second light source, and ηA, ηc are the optical attenuation rates of the optical fibers 3 and 4. , the optical attenuation rate of the Faraday element 6 is ηB, the optical attenuation rates of the optical fibers 8 and 9 are ηp, ηs, and the rotation angle of the Faraday element 6 is Δφ, and the operation of light in this embodiment will be described. As in the first embodiment, the first light wave emitted from the first light source is incident on the Faraday element via a polarizer, and the second light wave on which a high frequency has been superimposed is incident on the Faraday element. Instead, it enters the analyzer 7 directly. The first light wave that is incident on the analyzer via the Faraday element and the second light wave that is directly incident on the analyzer 7 are separated by the analyzer into a P-polarized light component and an S-polarized light component, and the P-polarized light component is The S-polarized light component is transmitted via fiber 9 to photoelectric converter 12A, and the S-polarized component is transmitted via optical fiber 8 to photoelectric converter 14A.
【0030】今、光ファイバ8を経て光電変換器12A
に入射する光量をJp、光ファイバ9を経て光電変換器
14Aに入射する光量をJsとすると、Jp,Jsは次
の式で示される。Now, the photoelectric converter 12A is connected via the optical fiber 8.
When the amount of light incident on the optical fiber 9 is Jp, and the amount of light incident on the photoelectric converter 14A via the optical fiber 9 is Js, Jp and Js are expressed by the following equations.
【0031】[0031]
【数11】
Jp=〔Jo・ηA・ηB(1−Δφ)+ηc
・(J1+dsinwt〕ηp Js=〔Jo・
ηA・ηB(1+Δφ)+ηc・(J1+dsinwt
〕ηs
LPF40Aは、上記Jsの直流分を取り出し、H
PF40Bは、上記Jsの交流分を取り出す。同様にL
PF40Cは、上記Jpの直流分を取り出し、HPF4
0Dは、上記Jpの交流分を取り出す。除算器35,3
6は入力された直流分と交流分の比(直流分/交流分)
を算出し、次段の演算回路39Aに出力する。和差回路
39Aは、この入力信号を演算処理することによって被
測定電流、あるいは被測定磁界の大きさに比例した出力
電圧Eoutを次式により求める。(A′:和差回路の
増幅率)[Formula 11] Jp=[Jo・ηA・ηB(1−Δφ)+ηc
・(J1+dsinwt)ηp Js=[Jo・
ηA・ηB(1+Δφ)+ηc・(J1+dsinwt
]ηs LPF40A extracts the DC component of Js and converts it to H
PF40B takes out the alternating current portion of Js. Similarly L
PF40C takes out the DC component of the above Jp and converts it to HPF4
0D takes out the AC component of the above Jp. Divider 35,3
6 is the ratio of input DC and AC components (DC component/AC component)
is calculated and output to the next stage arithmetic circuit 39A. The sum-difference circuit 39A calculates an output voltage Eout proportional to the magnitude of the current to be measured or the magnetic field to be measured by calculating the input signal using the following equation. (A': amplification factor of sum-difference circuit)
【0032】[0032]
【数12】[Math. 12]
【0033】即ち、J1ηc/JoηA・ηB≪1とす
るか、これらが変動しても、その影響が小さければ良い
。
例えばJ1・ηc/Jo・ηA・ηB=0.1とすると
、光量10%変動に対してEoutの変動分は1%、1
/2減に対して9%程度の変動となる。That is, it is sufficient to set J1ηc/JoηA·ηB≪1, or even if these vary, the effect thereof is small. For example, if J1・ηc/Jo・ηA・ηB=0.1, for a 10% change in light intensity, the change in Eout is 1%, 1
This is a change of about 9% compared to a /2 decrease.
【0034】[0034]
【発明の効果】本発明によれば、二つの異なる波長の光
波を用い、一方の光波を直線偏光させてファラディ素子
を通過させたのちP偏光成分とS偏光成分に分離し、他
方の光波をファラディ素子を除いて前記光波と同様の経
路を通過させたのちP偏光成分とS偏光成分に分離し、
これら4個の信号を演算処理してファラディ素子の回転
角に比例した信号を取り出すので、光源や各光信号伝送
などで光量変動があっても、それらの影響を排除した出
力が得られ、精度の良い直流電流が測定できる効果があ
る。According to the present invention, light waves of two different wavelengths are used, one light wave is linearly polarized and passed through a Faraday element, and then separated into a P polarization component and an S polarization component, and the other light wave is After passing through the same path as the light wave except for the Faraday element, it is separated into a P polarized light component and an S polarized light component,
These four signals are processed and a signal proportional to the rotation angle of the Faraday element is extracted, so even if there are fluctuations in the light intensity due to the light source or each optical signal transmission, an output that eliminates the effects of these changes can be obtained, improving accuracy. It has the effect of being able to measure direct current with good quality.
【図1】本発明の第1の実施例の要部構成を示すブロッ
ク図である。FIG. 1 is a block diagram showing the main configuration of a first embodiment of the present invention.
【図2】図1の実施例でのファラディ素子光入出射部の
詳細を示す断面図と一部側面図側面図である。2 is a sectional view and a partial side view showing details of a Faraday element light input/output section in the embodiment of FIG. 1; FIG.
【図3】図1の実施例での信号処理回路の構成例を示す
ブロック図である。FIG. 3 is a block diagram showing a configuration example of a signal processing circuit in the embodiment of FIG. 1;
【図4】本発明の第2の実施例の要部構成を示すブロッ
ク図である。FIG. 4 is a block diagram showing the main configuration of a second embodiment of the present invention.
【図5】本発明の第3の実施例の要部構成を示すブロッ
ク図である。FIG. 5 is a block diagram showing the main configuration of a third embodiment of the present invention.
1,2 光源
3,4 光ファイバ
5 偏光子
6 ファラディ素子
7 検光子
8,9 光ファイバ
10,11 光分波器
12,13,14,15 フォトダイオード12A,
14A 光電変換器
16′,16″ プリズム
17 ダイクロイック(光フィルタ)18 光合波
器
20 演算処理回路
30 信号処理回路
31,32,33,34 増巾器
35,36,39 除算器
37 加算回路
38 減算回路
39A 和差回路
40A,40C ローパスフィルタ
40B,40D ハイパスフィルタ1, 2 Light sources 3, 4 Optical fiber 5 Polarizer 6 Faraday element 7 Analyzer 8, 9 Optical fibers 10, 11 Optical demultiplexer 12, 13, 14, 15 Photodiode 12A,
14A Photoelectric converter 16', 16'' Prism 17 Dichroic (optical filter) 18 Optical multiplexer 20 Arithmetic processing circuit 30 Signal processing circuit 31, 32, 33, 34 Amplifier 35, 36, 39 Divider 37 Addition circuit 38 Subtraction Circuit 39A Sum-difference circuit 40A, 40C Low-pass filter 40B, 40D High-pass filter
Claims (3)
源から発せられた光を直線偏光させる偏光子と、磁気光
学効果を有し被測定電流導体の周囲に配置された媒質と
、検光子とこれから出射する光信号を電気信号に変換し
、演算・処理する信号処理回路を備えて成る光応用電流
変成器において、前記光源として波長λ1の光波を発す
る光源と、波長λ2の光波を発する光源と、波長λ1の
光波を該磁気光学効果を有する媒質中を被測定電流導体
を囲むように周回透過させる手段と、波長λ2の光波を
該媒質中を通過させることのないよう該媒質への入射口
で分岐させる手段と、前記媒質中を通過した波長λ1の
光波と前記媒質中を通過しない波長λ2の光波とを合流
させたのちP偏光成分及びS偏光成分に分離する手段と
、該P偏光成分及びS偏光成分をそれぞれ伝送する伝送
路と、該伝送されたP偏光成分及びS偏光成分をそれぞ
れ波長λ1と波長λ2とに分離する手段と、この分離さ
れた光出力信号の和差演算処理により、被測定電流と同
極性の電気出力信号を得る信号処理回路とを備えたこと
を特徴とする光応用直流電流変成器。1. A light source that generates a constant output light, a polarizer that linearly polarizes the light emitted from the light source, a medium that has a magneto-optical effect and is placed around a current conductor to be measured, and a In an optical current transformer comprising a signal processing circuit that converts photons and optical signals emitted from the photons into electrical signals, and performs arithmetic and processing, the light source includes a light source that emits a light wave with a wavelength λ1, and a light source that emits a light wave with a wavelength λ2. a light source, a means for transmitting a light wave with a wavelength λ1 through the medium having a magneto-optic effect so as to surround the current conductor to be measured, and a means for transmitting a light wave having a wavelength λ1 through the medium so as to prevent the light wave having a wavelength λ2 from passing through the medium. means for splitting at an entrance; means for combining a light wave with a wavelength λ1 that has passed through the medium and a light wave with a wavelength λ2 that has not passed through the medium, and then separating the light wave into a P-polarized light component and an S-polarized light component; A transmission path for transmitting the polarized light component and the S polarized light component, means for separating the transmitted P polarized light component and the S polarized light component into wavelengths λ1 and λ2, respectively, and sum-difference calculation of the separated optical output signals. An optical DC current transformer characterized by comprising a signal processing circuit which obtains an electrical output signal of the same polarity as the current to be measured through processing.
た光波と波長λ2の光波を発する光源から発した光波と
を重畳させる光合波器と、該光合波器で重畳された光波
を磁気光学効果を有する媒質に導く光ファイバと、該媒
質入り口に配置され波長λ1の光波を該媒質内に通過さ
せるとともに波長λ2の光波を該媒質内を通過させない
で検光子に入射させるダイクロイックとを備えたことを
特徴とする請求項1に記載の光応用直流電流変成器。2. An optical multiplexer that superimposes a light wave emitted from a light source that emits a light wave with a wavelength λ1 and a light wave that is emitted from a light source that emits a light wave with a wavelength λ2; an optical fiber that leads to a medium having a wavelength of The optical DC current transformer according to claim 1, characterized in that:
効果を有する媒質内を通過しない方の光に高周波を重畳
させる手段と、検光子から出力されたP偏光成分とS偏
光成分を光電変換する光電変換手段と、該光電変換手段
の出力をそれぞれ直流分と交流分に分離する分離手段と
、該分離手段の出力を演算処理する演算回路とを備えた
ことを特徴とする請求項1に記載の光応用直流電流変成
器。3. Means for making λ1 and λ2 the same wavelength and superimposing a high frequency on the light that does not pass through a medium having a magneto-optic effect, and photoelectrically converting the P polarized light component and the S polarized light component output from the analyzer. 2. The method according to claim 1, further comprising a photoelectric conversion means for separating the output of the photoelectric conversion means into a direct current component and an alternating current component, and an arithmetic circuit for processing the output of the separation means. The optical application DC current transformer described.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11759691A JP3151672B2 (en) | 1991-05-22 | 1991-05-22 | Optical DC current transformer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11759691A JP3151672B2 (en) | 1991-05-22 | 1991-05-22 | Optical DC current transformer |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04344469A true JPH04344469A (en) | 1992-12-01 |
JP3151672B2 JP3151672B2 (en) | 2001-04-03 |
Family
ID=14715727
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11759691A Expired - Lifetime JP3151672B2 (en) | 1991-05-22 | 1991-05-22 | Optical DC current transformer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3151672B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100294057B1 (en) | 1995-08-22 | 2001-09-17 | 모리시타 요이찌 | Semiconductor device comprising a silicon structure layer, method and method of manufacturing the layer and solar cell using the layer |
WO2008048232A2 (en) | 2005-08-22 | 2008-04-24 | Q1 Nanosystems, Inc. | Nanostructure and photovoltaic cell implementing same |
-
1991
- 1991-05-22 JP JP11759691A patent/JP3151672B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP3151672B2 (en) | 2001-04-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4564754A (en) | Method and apparatus for optically measuring a current | |
JP4853474B2 (en) | Photosensor and photocurrent / voltage sensor | |
JPS62297716A (en) | Method and device for measuring magnitude of physical quantity | |
CA2699017A1 (en) | Optical fiber electric current measurement apparatus and electric current measurement method | |
US6208129B1 (en) | Optical method and arrangement for measuring a periodic value having at least one frequency component | |
JP2000501187A (en) | Optical measuring method and optical measuring device for measuring an alternating magnetic field | |
JP2002098719A (en) | Device for measuring current by faraday effect | |
JPH04344469A (en) | Light-applied direct current transformer | |
JP2010025670A (en) | Optical signal sn ratio measuring apparatus | |
JPH10227814A (en) | Current measuring apparatus using faraday effect optical fiber | |
US6646746B1 (en) | Method and system for optical heterodyne detection of an optical signal | |
JP3011244B2 (en) | Optical applied DC current transformer | |
JP3704583B2 (en) | Optical fiber type current sensor | |
JPS6235627B2 (en) | ||
JPS59669A (en) | Optical fiber magnetic field sensor | |
JP3041637B2 (en) | Optical applied DC current transformer | |
KR100307639B1 (en) | Current / temperature measurement optical sensor using multi-wavelength light source and its method | |
JP2638312B2 (en) | Light sensor | |
JPH01163675A (en) | Multipoint measuring instrument by multiplexed wavelength | |
SU1137403A1 (en) | Device for touch-free measuring of current | |
JPS601582A (en) | Measuring apparatus for both ac and dc magnetic fields | |
SU1262392A1 (en) | Magnetooptical method for measuring current and device for effecting same | |
JPS585632A (en) | Atomic absorption analyzing device for sample | |
JPS5988665A (en) | Light applied magnetic field sensor | |
JPH0743397B2 (en) | Optical DC transformer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080126 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080126 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090126 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090126 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100126 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110126 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110126 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120126 Year of fee payment: 11 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120126 Year of fee payment: 11 |