JPS601582A - Measuring apparatus for both ac and dc magnetic fields - Google Patents

Measuring apparatus for both ac and dc magnetic fields

Info

Publication number
JPS601582A
JPS601582A JP11042583A JP11042583A JPS601582A JP S601582 A JPS601582 A JP S601582A JP 11042583 A JP11042583 A JP 11042583A JP 11042583 A JP11042583 A JP 11042583A JP S601582 A JPS601582 A JP S601582A
Authority
JP
Japan
Prior art keywords
light
magnetic field
wavelength
faraday
field sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11042583A
Other languages
Japanese (ja)
Inventor
Yutaka Ohata
裕 大畠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP11042583A priority Critical patent/JPS601582A/en
Publication of JPS601582A publication Critical patent/JPS601582A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/032Measuring direction or magnitude of magnetic fields or magnetic flux using magneto-optic devices, e.g. Faraday or Cotton-Mouton effect
    • G01R33/0322Measuring direction or magnitude of magnetic fields or magnetic flux using magneto-optic devices, e.g. Faraday or Cotton-Mouton effect using the Faraday or Voigt effect

Abstract

PURPOSE:To achieve a higher reliability with a better temperature characteristic by making a combined light of two kinds of lights different in the wavelength incident into a Faraday rotary type magnetic field sensor to separate the light emitted for photoelectric conversion. CONSTITUTION:Lights different in the wavelength from light sources 1a and 1b are combined with a wavelength synthesizer 2 and enters a Faraday rotary type magnetic field sensor with polarizing elements 4a and 4b and a Faraday element 5 via an optical fiber 3c so that the light different in the wavelength is rotated at the angle of Faraday rotation according to a magnetic field. Then, the light is separated with an optical fiber 3d and a wavelength separator 6 and converted into electricity with light receiving elements 7c and 7d. With such an arrangement, temperature characteristic or the like of fibers 3c and 3d and a magnetic sensor will be the same with respect to lights with a different wavelength and the number of the optical fibers also are reduced thereby improving the reliability with a better temperature characteristic of a measuring apparatus for both AC and DC magnetic fields.

Description

【発明の詳細な説明】 本発明は交直側磁界計測装置に係り、特にファラデ一回
転形感界センサを用いた光学式の交直側磁界計測装置に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an alternating current magnetic field measuring device, and more particularly to an optical alternating current magnetic field measuring device using a Faraday one-rotation type field sensor.

第1図、第2図はそれぞれ従来のこの程交直両磁界計測
装置の構成図である。第1図において、1は光源、3は
光ファイバ、4α、4bはそれぞれ偏光板または偏光プ
リズムよりなる偏光素子、5は測定磁界を印加するファ
ラデー素子で、ファラデー素子5を偏光素子4a、4b
ではさ、んでファラデ一回転形感界センサを構成してい
る。
FIGS. 1 and 2 are block diagrams of conventional AC and DC magnetic field measuring devices, respectively. In FIG. 1, 1 is a light source, 3 is an optical fiber, 4α and 4b are polarizing elements each consisting of a polarizing plate or a polarizing prism, and 5 is a Faraday element for applying a measurement magnetic field.
Now, this constitutes a Faraday one-rotation type sensor.

7は受光素子、8は増幅器、9は減算器、10は割算器
、11は基準直流電圧発生器である。
7 is a light receiving element, 8 is an amplifier, 9 is a subtracter, 10 is a divider, and 11 is a reference DC voltage generator.

第1図においては、1つの波長の光を用い、受信側には
ファラデー素子5に測定磁界が印加されていないときに
増幅器8の出力電圧を打ち消す直流嵯圧を発生する基準
直流電圧発生器11を設けておき、その出力電圧と増幅
器8の出力電圧とを減算器9に人力させ、また、減算器
9の出力と基準直流電圧発生器11の出力電圧とを割算
器10に人力させ、ファラデー素子5に測定磁界を印加
したときに、v 、−v 、/v 2 (v□は増幅器
8の出力電圧、V2は基準直流電圧発生器11の出力電
圧)の演算を行い、その結果を測定磁界の測定値として
出力するようにしである。しかし、これには次の欠点が
ある。
In FIG. 1, light of one wavelength is used, and on the receiving side there is a reference DC voltage generator 11 that generates a DC pressure that cancels the output voltage of the amplifier 8 when no measurement magnetic field is applied to the Faraday element 5. is provided, the output voltage and the output voltage of the amplifier 8 are manually input to the subtracter 9, and the output of the subtracter 9 and the output voltage of the reference DC voltage generator 11 are manually input to the divider 10, When a measurement magnetic field is applied to the Faraday element 5, v, -v, /v2 (v□ is the output voltage of the amplifier 8, V2 is the output voltage of the reference DC voltage generator 11) are calculated, and the results are It is designed to be output as a measured value of the measured magnetic field. However, this has the following drawbacks.

(1) たとえ光源1の出力光レベルを安定にしても、
磁界センサの温度変化、光ファイバ6の温度特性および
振動、応力変化等により光ファイバ6からの出射光が変
動し、これが増幅器8の出力電圧に影響を与え、高梢度
の計測ができない。
(1) Even if the output light level of light source 1 is stabilized,
The light emitted from the optical fiber 6 fluctuates due to temperature changes in the magnetic field sensor, temperature characteristics, vibrations, stress changes, etc. of the optical fiber 6, and this affects the output voltage of the amplifier 8, making it impossible to measure a high degree of aperture.

(2) また、この方式の変形である2本の光ファイバ
を用い、一方は磁界センサを経由させないようにしたも
のにおいても上記(1)と同様の欠点がある。
(2) Furthermore, a modification of this method in which two optical fibers are used, one of which does not pass through the magnetic field sensor, has the same drawbacks as in (1) above.

第2図においては、ファラデー回i云形磁界センザの出
口側の偏光素子を分波形の素子4cとして、それぞれの
光を光ファイバ6α、?llによって受光素子7a、7
bに導びき、受光素子7α、7bの出力電流をそれぞれ
増幅器8α、8bで増幅するとともに電圧に変換し、増
幅器8αと8bの出力電圧をそれぞれ減算器9と加算器
12に人力し、減算器9の出力と加算器12の出力とを
割算器10に人力して、割算器10の出力を測定磁界の
測定値としている。第2図は第1図を改良したもので、
磁界センサからの出射光に不平衡が生じなければ非常に
安定であり、光源1および入射倶1光ファイバ乙の特性
に影響されないという利点があるが、磁界センサの光学
系、光軸の温度変化により出力側光ファイバ3a、、3
bへの結合損失に不平衡を生じ、また、2本の出力1則
光フアイバ6cL、6bの伝送損失に相違があったり、
両光ファイバ6α、3bに対して異なる振動、応力がか
かった場合には出力光レベルに不平衡を生じ、増幅器8
αと8bの出力電圧が大きく変化するという欠点がある
In FIG. 2, the polarizing element on the exit side of the Faraday cycle i-type magnetic field sensor is used as a wave splitting element 4c, and the respective lights are connected to optical fibers 6α, ? ll, the light receiving elements 7a, 7
The output currents of the light-receiving elements 7α and 7b are amplified and converted into voltage by amplifiers 8α and 8b, respectively, and the output voltages of the amplifiers 8α and 8b are input to the subtracter 9 and adder 12, respectively. The output of 9 and the output of adder 12 are input to a divider 10, and the output of the divider 10 is used as the measured value of the measured magnetic field. Figure 2 is an improved version of Figure 1.
If there is no imbalance in the emitted light from the magnetic field sensor, it is very stable and has the advantage of not being affected by the characteristics of the light source 1 and the input optical fiber B. The output side optical fibers 3a, 3
There may be an unbalance in the coupling loss to b, and there may be a difference in transmission loss between the two output one-law optical fibers 6cL and 6b.
When different vibrations and stresses are applied to both optical fibers 6α and 3b, an imbalance occurs in the output light level, and the amplifier 8
There is a drawback that the output voltages of α and 8b vary greatly.

本発明は上記に鑑みてなされたもので、その目的とする
ところは、温度特性が良好で信頼性が旨い交直両磁界計
測装置を提供することにある。
The present invention has been made in view of the above, and an object of the present invention is to provide an AC/DC magnetic field measuring device with good temperature characteristics and high reliability.

本発明の特徴は、測定磁界を印加するファラデー素子を
偏光素子ではさんだ構成のファラデー回転形磁界十ンサ
に人力する光は、発生する光の波長が異なる2個の光源
からの光を合波器を通した光とし、上記一方の光源は上
記ファラデー素子におけるファラデー回転角が上記他方
の光源から発生する光のファラデー回転角より充分小さ
くなる波長の光を発生するようにし、上記磁界センサか
らの光は1本の光ファイバで伝送し、出射光を2波長分
離後それぞれ覚醒変換する構成としだ点にある。
A feature of the present invention is that the light input to the Faraday rotary magnetic field sensor, which has a configuration in which a Faraday element for applying a measurement magnetic field is sandwiched between polarizing elements, is generated by combining light from two light sources with different wavelengths. The one light source generates light of a wavelength such that the Faraday rotation angle in the Faraday element is sufficiently smaller than the Faraday rotation angle of the light generated from the other light source, and the light from the magnetic field sensor The current configuration is such that it is transmitted through a single optical fiber, and the output light is separated into two wavelengths and then subjected to wake conversion.

以下本発明を第6図に示した実施例を用いて詳細に説明
する。
The present invention will be explained in detail below using the embodiment shown in FIG.

第6図は本発明の交直両磁界割測装置の一実施例を示す
構成図である。第6図において、1α。
FIG. 6 is a configuration diagram showing an embodiment of the AC/DC magnetic field dividing measuring device of the present invention. In Figure 6, 1α.

1bはそれぞれ発生する光の波長が異なる光源で、例え
ば、光源1aは波長λ 、用半導体レーザ、光源1bは
波長λ 、用半導体レーザである。2は光源1aと1b
からの光を合成する波長合成器で、波長合成器2から光
は光ファイバ6Cによって伝送され、偏光素子4αと測
定磁界を印加するファラデー素子5と偏光素子4bとか
らなるファラデー回転型磁界センサに入射する。この磁
界センサからの光は1本の光ファイバ6dによって伝送
され、光ファイバ6dからの出射光は波長分波器乙によ
って2波長分離され、波長λ 1の光は、波長λ 、の
受光素子7cで覚醒変換され、増幅器8αを通って減算
器9および割算器10に与えられる。
Light sources 1b each emit light of a different wavelength; for example, the light source 1a is a semiconductor laser with a wavelength of λ, and the light source 1b is a semiconductor laser with a wavelength of λ. 2 is light source 1a and 1b
The light from the wavelength synthesizer 2 is transmitted through an optical fiber 6C, and is sent to a Faraday rotation type magnetic field sensor consisting of a polarizing element 4α, a Faraday element 5 that applies a measurement magnetic field, and a polarizing element 4b. incident. The light from this magnetic field sensor is transmitted by one optical fiber 6d, the light emitted from the optical fiber 6d is separated into two wavelengths by a wavelength demultiplexer B, and the light with a wavelength λ 1 is transmitted to a light receiving element 7c with a wavelength λ . The output signal is subjected to awakening conversion at , and is applied to a subtracter 9 and a divider 10 through an amplifier 8α.

一方、波長λ2の光は、波長λ 2の受光素子7dで光
醒変喚され、増幅器8bを通って減p二器9に与えられ
る。
On the other hand, the light having the wavelength λ2 is converted by the light receiving element 7d having the wavelength λ2, passes through the amplifier 8b, and is applied to the p-attenuator 9.

なお、光源1α、lbの安定化は、両レーザを同一ケー
スに収納して温度安定化をはかることによって行う。ま
た、光源1α、1bのうち一方の光源1cLは、ファラ
デー素子5におけるファラデ−回転角が他方の光源1b
から発生する光のそれよりも充分小さくなる波長の光を
発生する光源とし、波長合成器2は、−ファラデー効果
に有効な波長の光に対しては無反射コートで、無効な波
長の光に対してはその光を完全に反射する膜を有するも
のとする。
Note that the light sources 1α and lb are stabilized by housing both lasers in the same case to stabilize the temperature. Further, one of the light sources 1α and 1b, 1cL, has a Faraday rotation angle in the Faraday element 5 that is different from that of the other light source 1b.
The wavelength combiner 2 is a light source that generates light with a wavelength that is sufficiently smaller than that of the light generated by the Faraday effect. In contrast, it shall have a film that completely reflects that light.

また、光ファイバ3c、3dは両波長帯において低損失
のものを用いる。また、受光素子7a、ハとしては、例
えば、シリコンホトダイオード、InGaAsホトダイ
オードを用いる。また、受光素子7α、7bおよび信号
処理回路は同一ケースに収納し、温度変化があ捷りない
0〜40℃の場所に設置する。
Further, the optical fibers 3c and 3d have low loss in both wavelength bands. Further, as the light receiving elements 7a and 7, for example, a silicon photodiode or an InGaAs photodiode is used. Further, the light receiving elements 7α, 7b and the signal processing circuit are housed in the same case, and installed in a place where the temperature is constant from 0 to 40°C.

いま、増幅器8αの出力に圧をT72、増幅器8bの出
力電圧をV、としたとき、ファラデー素子5に測定磁界
が印加してないときは、V 1=V。
Now, when the voltage at the output of the amplifier 8α is T72 and the output voltage of the amplifier 8b is V, when no measurement magnetic field is applied to the Faraday element 5, V1=V.

となるようにあらかじめ瑠1陥器8bの利得を調整して
おく。ここで、ファラデー素子5に測定磁界を印加し、
そのときの波長λ2の光のファラデー回転角をψとすれ
ば、 V2キV。
The gain of the 1st converter 8b is adjusted in advance so that . Here, a measurement magnetic field is applied to the Faraday element 5,
If the Faraday rotation angle of the light with wavelength λ2 at that time is ψ, then V2kiV.

ここに、Vo;測定磁界がないときの出力電圧となる。Here, Vo is the output voltage when there is no measurement magnetic field.

そこで、減算器9でvl−v2の演算を行い、割算器1
0でV□−V2/V’、、の演算を行えば、出力電圧と
して5in2ψに比例した電圧が得られる。
Therefore, the subtracter 9 calculates vl-v2, and the divider 1
If the calculation of V□-V2/V' is performed at 0, a voltage proportional to 5in2ψ can be obtained as an output voltage.

そして、上記した実施例によれば、光ファイバ3C,6
dの伝送特性の変化および磁界センサの温度特性が波長
λ 1.λ2の光について同様となるので、これらの影
響を受けることがない。特に温度特性については優れて
いる。したがって、高精度の磁界測定が可能である。し
かも、磁界センサには1本の光ファイバ6Cによって光
を導ひき、また、磁界センサからの光は1本の光ファイ
バ6dによって伝送するようにしであるから、取り扱い
が容易である。また、ファラデー効果に無効々波長の光
を用いて磁界情報を含んた光信号に影響を与えることな
く伝送系の診断を行うこともできる。
According to the embodiment described above, the optical fibers 3C, 6
The change in the transmission characteristics of d and the temperature characteristics of the magnetic field sensor are determined by the wavelength λ 1. The same holds true for the light of λ2, so it is not affected by these effects. In particular, it has excellent temperature characteristics. Therefore, highly accurate magnetic field measurement is possible. Furthermore, since light is guided to the magnetic field sensor through one optical fiber 6C, and light from the magnetic field sensor is transmitted through one optical fiber 6d, handling is easy. Further, it is also possible to diagnose the transmission system without affecting the optical signal containing magnetic field information by using light with a wavelength that is ineffective for the Faraday effect.

以上説明したように、本発明てよれば、温度特性が良好
で信頼性が扁く、高精度の磁界測定が可能であるという
効果がある。
As explained above, according to the present invention, there are advantages in that temperature characteristics are good, reliability is low, and highly accurate magnetic field measurement is possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、g2図はそれぞれ従来の交直両磁界計測装置の
構成図、第6図は本発明の交直両磁界計i1+、lI装
置の一実施例を示す構成図である。 1α、1b;光源、2;波長合成器、 6 c、 3 d ;光ファイバ、4a、4b:iB光
素子、5;ファラデー素子、6;波長分波器、7c、7
d:受光素子、8 a r 8 b:増幅器、9−減算
器、10;割算器。 第 1 目
FIGS. 1 and g2 are block diagrams of conventional AC/DC magnetic field measuring devices, respectively, and FIG. 6 is a block diagram showing an embodiment of the AC/DC magnetic field meters i1+ and lI of the present invention. 1α, 1b; Light source, 2; Wavelength combiner, 6 c, 3 d; Optical fiber, 4a, 4b: iB optical element, 5; Faraday element, 6; Wavelength demultiplexer, 7c, 7
d: light receiving element, 8 a r 8 b: amplifier, 9 - subtracter, 10: divider. 1st item

Claims (2)

【特許請求の範囲】[Claims] (1) 測定磁界を印加するファラデー素子を偏光素子
ではさんだ構成のファラデ一回転形感界センサを用いて
磁界を計測する交直側磁界計測装置において、前記磁界
センサに人力する光は、発生する光の波長が異なる2個
の光源からの光を合波器を通した光とし、前記一方の光
源は前記ファラデー素子におけるファラデー回転角が前
記イ冨方の光源から発生する光のファラデー回転角より
充分小さくなる波長の光を発生するものとしであること
を%徴とする交直側磁界計測装置。
(1) In an alternating orthogonal side magnetic field measuring device that measures a magnetic field using a Faraday single rotation type sensitive field sensor configured by sandwiching a Faraday element that applies a measurement magnetic field between polarizing elements, the light that is manually applied to the magnetic field sensor is the generated light. Light from two light sources with different wavelengths is passed through a multiplexer, and one of the light sources has a Faraday rotation angle in the Faraday element that is more than the Faraday rotation angle of the light generated from the second light source. An orthogonal side magnetic field measurement device that generates light with a decreasing wavelength.
(2)前記磁界センサからの出射光は受光側で分波器を
用いて三波長に分離した後、それぞれの波長に合致した
2つの受光素子で光電変換し、それぞ扛の光電流を前記
ファラデー素子に磁界が印加されていないときにそれぞ
れの出力電圧が等しくなるように利得を調節された増幅
器を通してから、ファラデ〜回転に有効な波長の光量を
Pl、前記ファラデー回転に無効な波長の光量をP2と
しだとき、(P□−P2)/P2の演算を行い、その結
果を磁界計測値として出力する構成としである特許請求
の範囲第1項記載の交直側磁界計測装置。
(2) The light emitted from the magnetic field sensor is separated into three wavelengths using a demultiplexer on the light receiving side, and then photoelectrically converted by two light receiving elements that match each wavelength. After passing through an amplifier whose gain is adjusted so that the respective output voltages are equal when no magnetic field is applied to the Faraday element, the amount of light at a wavelength that is effective for Faraday rotation is Pl, and the amount of light at a wavelength that is ineffective for Faraday rotation. The alternating current side magnetic field measuring device according to claim 1, wherein when P2 is determined, the calculation of (P□-P2)/P2 is performed and the result is output as a magnetic field measurement value.
JP11042583A 1983-06-20 1983-06-20 Measuring apparatus for both ac and dc magnetic fields Pending JPS601582A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11042583A JPS601582A (en) 1983-06-20 1983-06-20 Measuring apparatus for both ac and dc magnetic fields

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11042583A JPS601582A (en) 1983-06-20 1983-06-20 Measuring apparatus for both ac and dc magnetic fields

Publications (1)

Publication Number Publication Date
JPS601582A true JPS601582A (en) 1985-01-07

Family

ID=14535426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11042583A Pending JPS601582A (en) 1983-06-20 1983-06-20 Measuring apparatus for both ac and dc magnetic fields

Country Status (1)

Country Link
JP (1) JPS601582A (en)

Similar Documents

Publication Publication Date Title
EP0088419B1 (en) Apparatus for optically measuring a current
JP4853474B2 (en) Photosensor and photocurrent / voltage sensor
US5834933A (en) Method for magnetooptic current measurement and magnetooptic current-measuring device
JP2000515979A (en) Optical fiber device and method for precision current sensing
JPS62297716A (en) Method and device for measuring magnitude of physical quantity
US6208129B1 (en) Optical method and arrangement for measuring a periodic value having at least one frequency component
GB2046434A (en) Optical-fibre interferometric gyrometer
JP2002098719A (en) Device for measuring current by faraday effect
JP2605385B2 (en) Optical wavelength resolution measurement device
JPS601582A (en) Measuring apparatus for both ac and dc magnetic fields
JPS59669A (en) Optical fiber magnetic field sensor
JP3151672B2 (en) Optical DC current transformer
JPS599526A (en) Temperature measuring device
JP3011244B2 (en) Optical applied DC current transformer
JPH0115808B2 (en)
JP3041637B2 (en) Optical applied DC current transformer
JPS5988665A (en) Light applied magnetic field sensor
JPS59159076A (en) Optical type magnetic field sensor
JPH01276074A (en) Optical demodulator
JPS61186861A (en) Optical fiber applied sensor device
JP2580443B2 (en) Optical voltage sensor
JPH01153924A (en) Coherent light measuring instrument
JPS59670A (en) Optical fiber magnetic field sensor
JP2638312B2 (en) Light sensor
JP3410015B2 (en) Optical applied current transformer