JPS59670A - Optical fiber magnetic field sensor - Google Patents

Optical fiber magnetic field sensor

Info

Publication number
JPS59670A
JPS59670A JP57109140A JP10914082A JPS59670A JP S59670 A JPS59670 A JP S59670A JP 57109140 A JP57109140 A JP 57109140A JP 10914082 A JP10914082 A JP 10914082A JP S59670 A JPS59670 A JP S59670A
Authority
JP
Japan
Prior art keywords
magnetic field
light
optical fiber
wavelengths
detection means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57109140A
Other languages
Japanese (ja)
Inventor
Motoo Shimizu
清水 基夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP57109140A priority Critical patent/JPS59670A/en
Publication of JPS59670A publication Critical patent/JPS59670A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/032Measuring direction or magnitude of magnetic fields or magnetic flux using magneto-optic devices, e.g. Faraday or Cotton-Mouton effect
    • G01R33/0322Measuring direction or magnitude of magnetic fields or magnetic flux using magneto-optic devices, e.g. Faraday or Cotton-Mouton effect using the Faraday or Voigt effect

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Transform (AREA)
  • Measuring Magnetic Variables (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

PURPOSE:To reduce a measurement error and to improve reliability by propagating plural light beams with different wavelengths in the same optical path on time-division basis, and processing the difference in the influence of a magnetic field upon those light beams. CONSTITUTION:This system consists of a light source means 11 which has peaks for two wavelengths of lambda1 and lambda2 and sends out light beams with the wavelengths on time-division basis, an optical fiber 12, a polarizer means 13, a magnetooptic effect means 14, a photodetecting means 15, an optical fiber means 16, etc. The light beams of the lambda1 and lambda2 emitted from the light source 11 alternately for tens of mus by a signal from a control means 17 are varied in level and supplied to a photodetecting means 18 as outputs P1 and P2 of electric power. The photodetecting means 18 detects their levels synchronously with the generation timing of those two wavelengths and the results are processed by an analog or digital arithmetic means 19 to find a magnetic field H. Thus, the measurement error is reduced and the reliability is improved.

Description

【発明の詳細な説明】 本発明は磁界の変化に応じて偏光面が回転を行う磁気光
学効果を利用した高電圧領域における電流計測などに応
用される光ファイバ磁毘センサの改良に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in an optical fiber magnetic sensor that is applied to current measurement in a high voltage region, etc., using the magneto-optic effect in which the plane of polarization rotates in response to changes in the magnetic field. .

光源から発した光を偏光子手段により一定の偏光状態と
した後これを鉛ガラス等の磁気光学効果素子の1つであ
るいわゆるファラデー効果素子の内部を透過させると9
周囲の磁界に対応した偏光の変調をうけるため、その光
゛を検光子手段を通過させると、この偏光の変化に応じ
た光電力の変化がある。これを更にフォトダイオード等
の光検出手段で電気信号に変換することにより、逆に磁
界を求められるとい)計測法は広く知られている。
When the light emitted from a light source is made into a certain polarized state by a polarizer means and then transmitted through the inside of a so-called Faraday effect element, which is a type of magneto-optic effect element such as lead glass, 9
Since the polarized light is modulated in accordance with the surrounding magnetic field, when the light is passed through the analyzer means, there is a change in optical power corresponding to the change in polarized light. The magnetic field can be determined by converting this into an electrical signal using a photodetector such as a photodiode. This measurement method is widely known.

光フアイバ磁界センサはこの計測法を電気的絶縁性の高
い光ファイバと組合わせて構成したもので。
Fiber optic magnetic field sensors combine this measurement method with highly electrically insulating optical fibers.

数十万ないし百方ボルトの超高圧の電力設備の計測が可
能でちるため古くから研究が行われ成る程度実用化され
ている。
Since it is possible to measure ultra-high voltage power equipment of hundreds of thousands to 100 volts, it has been put into practical use to the extent that it has been studied for a long time.

しかし乍ら上記のような光フアイバ磁界センサにおいて
は、出力信号が検光子手段の出力光電力であるだめ、各
構成要素間における光結合損失や光フアイバ内の光伝送
損失などが温度変動や光ファイバの屈曲その他にょシ変
化すると直ちに測定誤差となり、正確な結果が得られず
長期的な測定信頼性に乏しいという欠点があった。
However, in the above-mentioned optical fiber magnetic field sensor, since the output signal is the output optical power of the analyzer means, optical coupling loss between each component and optical transmission loss within the optical fiber are affected by temperature fluctuations and optical fibers. Bending or other changes in the fiber immediately lead to measurement errors, making it difficult to obtain accurate results and lacking long-term measurement reliability.

したがって本発明の目的は光フアイバ磁界センサにおけ
る上記の測定誤差を可及的に小さくした信頼性の高い光
フアイバ磁界センサを得ようとするものである。
Therefore, an object of the present invention is to obtain a highly reliable optical fiber magnetic field sensor in which the above-mentioned measurement error in the optical fiber magnetic field sensor is minimized.

本発明は前述の偏光の変調が伝波光波長により異ること
に着目し、同一の光路内に互いに波長の異る複数の光を
伝搬させ、これらの光が磁界Hによシ受ける影響の差異
を演算処理することにょシ磁界を求めようとするもので
ある。
The present invention focuses on the fact that the above-mentioned modulation of polarized light differs depending on the wavelength of the propagating light, and by propagating a plurality of lights with different wavelengths in the same optical path, the difference in the influence of the magnetic field H on these lights is calculated. The purpose of this method is to calculate the magnetic field by calculating the .

すなわち本発明によれば、複数の波長の偏光を時分割的
に送出する手段と、外部磁界の変化に対応してその内部
を通過する偏光に変化を与える磁気光学効果手段と、検
光子手段と、光フアイバ手段と、光検出手段と、この光
検出手段の出方電気信号を前記光波長との対応のもとに
演算処理して前記磁界を求める演算手段とを順次配設し
て成る光フアイバ磁界センサが得られる。また前記の光
送出手段から光検出手段までのほかに、前記光送出手段
の出力または内部における光の一部を分岐する光分岐手
段と1分岐された一部の光を検出するモニタ光検出手段
と、このモニタ光検出手段の検出した出力電気信号と前
記光検出手段の発する出力電気信号を用いて演算処理し
て前記磁界を求める演算手段とを有する光フアイバ磁界
センサが得られる。
That is, according to the present invention, means for time-divisionally transmitting polarized light of a plurality of wavelengths, magneto-optic effect means for changing the polarized light passing therethrough in response to changes in an external magnetic field, and analyzer means. , an optical fiber means, a light detection means, and a calculation means for computing the output electric signal of the light detection means based on the correspondence with the light wavelength to obtain the magnetic field. A fiber magnetic field sensor is obtained. In addition to the above-mentioned light transmitting means to light detecting means, there is also a light branching means for branching part of the output or internal light of the light transmitting means, and a monitor light detecting means for detecting a part of the branched light. An optical fiber magnetic field sensor is obtained, which includes arithmetic processing means for calculating the magnetic field by performing arithmetic processing using the output electric signal detected by the monitor light detection means and the output electric signal emitted by the light detection means.

次に図面を参照して詳細に説明する。Next, a detailed explanation will be given with reference to the drawings.

第1図は従来の光フアイバ磁界センサのト渉→−4補成
を示した図である。第1図において、レーザダイオード
(LD)や発光ダイオード(LED)等の光源1から発
した光を光ファイバ2および偏光子3を介して鉛ガラス
等の磁気光学効果手段4に導き、その出力光を検光子手
段5および光ファイバ6を介し、光検出手段7によシミ
気信号に変換出力する。いま磁気光学効果手段4の長さ
をlとし、これが光線と平行な磁界成分Hを有する磁界
内におかれているとすると、偏光子3により直線偏光と
された光はいわゆるファラデー効果によりα=VH1”
   ・・・・・・・・・(1)で表される角度αだけ
の偏光面回転をうける。ここでVはベルデ定数と呼ばれ
るもので、材料にょシ異なる磁気光学効果の影響の強さ
を表わす定数である。(1)式から分るように、磁界H
の変化に対するαの関係は直線の関係となる。この回転
の結果検光子手段5の出力光レベルPoは磁気光学効果
手段4への入力すなわち偏光子手段3の出力光の偏波面
方向と検光子手段5の偏光方向の設定によシ、磁界Hの
変化に対し特異な関係を示す。
FIG. 1 is a diagram illustrating a conventional fiber optic magnetic field sensor with a -4 compensation. In FIG. 1, light emitted from a light source 1 such as a laser diode (LD) or a light emitting diode (LED) is guided to a magneto-optic effect means 4 such as lead glass through an optical fiber 2 and a polarizer 3, and its output light is is converted into a stain signal and outputted by the light detection means 7 via the analyzer means 5 and the optical fiber 6. Assuming that the length of the magneto-optic effect means 4 is l, and that it is placed in a magnetic field having a magnetic field component H parallel to the light beam, the light linearly polarized by the polarizer 3 becomes α= due to the so-called Faraday effect. VH1”
......The plane of polarization is rotated by the angle α expressed in (1). Here, V is called the Verdet constant, and is a constant representing the strength of the influence of the magneto-optic effect, which varies depending on the material. As can be seen from equation (1), the magnetic field H
The relationship of α to the change in is a linear relationship. As a result of this rotation, the output light level Po of the analyzer means 5 depends on the input to the magneto-optic effect means 4, that is, the polarization direction of the output light of the polarizer means 3 and the setting of the polarization direction of the analyzer means 5. shows a unique relationship with changes in

第2図は上に説明した偏光回転角αと出力光レベルPa
の磁界Hに対する関係すなわち磁界センサの磁気光学効
果をあられした図である。これらの関係を用いて超高圧
の電流Iが生起する磁界Hの中にこのセンサを配置すれ
ば、出力光レベルPoを測定することによシ磁界H従っ
て電流■を測定することが可能である。この構成では通
常絶縁のために光ファイバ2および6が用いられる。
Figure 2 shows the polarization rotation angle α and the output light level Pa explained above.
FIG. 3 is a diagram showing the relationship between the magnetic field H and the magneto-optical effect of the magnetic field sensor. By using these relationships and placing this sensor in a magnetic field H generated by an ultra-high voltage current I, it is possible to measure the magnetic field H and therefore the current ■ by measuring the output light level Po. . Optical fibers 2 and 6 are typically used for insulation in this configuration.

ここで偏光子手段3は、もし光源1がLDやIIe−N
eレーザ等で既に十分な偏光特性を有しておシその偏光
が例えばファイバ2を用いないで直接磁気光学効果素子
4に導入可能である場合、或いは特殊な偏光保存ファイ
バ等の利用によシ十分に偏光が維持されている場合には
無くて済むものであるが1通常は必要となるものである
Here, the polarizer means 3 is used if the light source 1 is an LD or IIe-N.
If the e-laser already has sufficient polarization characteristics and its polarized light can be directly introduced into the magneto-optic effect element 4 without using the fiber 2, or by using a special polarization-maintaining fiber, etc. Although it can be omitted if the polarization is sufficiently maintained, it is usually necessary.

さて、上記のような構成の光フアイバ磁界センサにおい
ては、出力信号が出力光レベルそのものであるため、先
に簡単に説明したように1例えば光ファイバ6が屈曲や
温度変化をうけて伝搬損失に変化がでたシ各手段の間で
の結合損失が変動したりすると、それはただちに測定誤
差となる欠点があったのである。
Now, in the optical fiber magnetic field sensor with the above configuration, the output signal is the output light level itself, so as briefly explained earlier, for example, the optical fiber 6 may be bent or changed in temperature, resulting in propagation loss. This has the disadvantage that if there is a change in the coupling loss between the various means, this will immediately result in a measurement error.

第3図は本発明の詳細な説明する図である。第3図にお
いて、簡単のために入射側でのλl。
FIG. 3 is a diagram explaining the present invention in detail. In FIG. 3, λl on the incident side for simplicity.

λ2の2つの波長の光レベルが同図(A)の様に共にP
oであるとすると、出射側では通常短波長側(λ1 )
の方がベルデ定数が大なため、λl側の方が磁界の影響
をうけ易く同図(B)の様な結果を得る。いま波長λl
、λ2に対するベルデ定数を■I + v2 とし、さ
らに P=f(α) ・Po −= f(VHl)・P。
The light levels of the two wavelengths of λ2 are both P as shown in the same figure (A).
o, the output side is usually on the short wavelength side (λ1)
Since the Verdet constant is larger, the λl side is more susceptible to the influence of the magnetic field, resulting in the result shown in FIG. Now the wavelength λl
, the Verdet constant for λ2 is ■I + v2, and further P=f(α)・Po−=f(VHl)・P.

の関係があるとすれば* Vt7 = K+ + V2
1=に2として。
If there is a relationship *Vt7 = K+ + V2
1 = as 2.

P+=f(α1)・Po=f(V+H6)Po=f(K
tH)P。
P+=f(α1)・Po=f(V+H6)Po=f(K
tH)P.

P2=f(α2) Po = f (V2Hl) Po
 = f (K2H) P。
P2=f(α2) Po=f(V2Hl) Po
= f (K2H) P.

から1両出力の比YミPl/P2は Y”” f(KtH)/f(K2H)  ・・・曲・・
(2)であられされる。通常f(α)は正弦又は余弦関
数であるので、成る測定範囲では、(2)式のYの値は
Hに対し1価の非線形関数となり、YとHに1対1の関
係をとることができ、従って両川力の比Yを測定するこ
とによシ磁界Hを求めることができる。而もこの場合フ
ァイバ系およびその結合部の損失変動に起因する誤差は
除去できるので、従来より精度よく磁界Hを求めること
ができる。
The ratio of the outputs of both Ymi Pl/P2 is Y”” f(KtH)/f(K2H)...Song...
(2) Hail. Since f(α) is usually a sine or cosine function, the value of Y in equation (2) becomes a monovalent nonlinear function with respect to H within the measurement range, and there is a one-to-one relationship between Y and H. Therefore, by measuring the ratio Y of both forces, the magnetic field H can be determined. Moreover, in this case, since errors caused by loss fluctuations in the fiber system and its coupling portion can be removed, the magnetic field H can be determined more accurately than in the past.

第4図は本発明の一実施例の構成を示した図である。は
じめに概要について説明すると、11はλ1.λ2の2
波長にピークを有しかつ後述の様に時分割的にこの2波
長を送出する光源手段。
FIG. 4 is a diagram showing the configuration of an embodiment of the present invention. First, to give an overview, 11 is λ1. 2 of λ2
A light source means having a peak wavelength and transmitting these two wavelengths in a time-divisional manner as described later.

12〜16は第1図の従来例と同様に光ファイバ。12 to 16 are optical fibers similar to the conventional example shown in FIG.

偏光子手段、磁気光学効果手段、検光子手段および光フ
アイバ手段をそれぞれあられしている。この系において
、制御手段17の信号によシ例えば交互に数十μsの開
光源11より発した光λ1゜λ2はそれぞれレベル変化
をうけて光電力Pl。
Polarizer means, magneto-optic effect means, analyzer means and optical fiber means are provided respectively. In this system, depending on the signal from the control means 17, the light λ1 and λ2 emitted from the open light source 11, for example, alternately for several tens of microseconds, undergo level changes and have an optical power Pl.

P2として光検出手段18に入射する。光検出手段18
はλl、λ2の制御手段17による2つの波長の発生の
タイミングに同期してそれぞれのレベルを検出し、その
結果をアナログ又はマイクロコンピュータなどのデジタ
ル演算手段19で演算処理することによシ磁界Hを求め
ることができる。
The light enters the light detection means 18 as P2. Light detection means 18
The magnetic field H is determined by detecting the respective levels in synchronization with the timing of generation of the two wavelengths by the control means 17 for λl and λ2, and calculating the results by the digital calculation means 19 such as an analog or microcomputer. can be found.

いうまでもなく、λl 、λ2の交互に発生する間隔が
短ければ、ファイバ等への外乱の影響は無視可能となる
Needless to say, if the interval at which λl and λ2 occur alternately is short, the influence of disturbance on the fiber etc. can be ignored.

次に部分的に説明すると、光源手段11としては波長λ
l、λ2をそれぞれ発するLED 、 LD等矩形・ぞ
ルスにより交互に出力するようになっている。第5図は
光源手段11の他の例を示した図であって、λl、λ2
の2つの光源23a 、23bからの光を制御手段17
の信号にもとづいて高速光スイッチ24で交互に切替え
て光ファイバ12に結合するものである。以上の2つの
例は現状では実用的である。将来的には1発光波長を制
御可能なり、DやLEDも開発され利用可能と考えられ
る。
Next, to explain partially, the light source means 11 has a wavelength λ
The LEDs and LDs emit 1 and λ2, respectively, and are designed to output alternately by rectangular lights. FIG. 5 is a diagram showing another example of the light source means 11, in which λl, λ2
The control means 17 controls the light from the two light sources 23a and 23b.
The high-speed optical switch 24 alternately switches the signals based on the signals and couples them to the optical fiber 12. The above two examples are currently practical. In the future, it will be possible to control one emission wavelength, and it is thought that D and LEDs will be developed and available.

ここで第4図に戻って、光検出手段18は光ファイバ1
6の出力端に結合されたフォトダイオード(PD)等の
光検出素子31と、制御手段17の信号によ多動作する
デマルチブレフサ32を用いてレベルP1+P1 を検
出するようになっている。この光検出手段18の出力は
制御手段17の信号にもとすいて波長λl、λ2に対応
したデータがアナログ形又はデジタル形の演算手段19
に入力され演算処理される。
Returning to FIG. 4, the light detection means 18 is connected to the optical fiber 1.
The level P1+P1 is detected by using a photodetecting element 31 such as a photodiode (PD) coupled to the output terminal of the control means 17, and a demultiplexer 32 which operates according to a signal from the control means 17. The output of this photodetection means 18 is also the signal of the control means 17, and the data corresponding to the wavelengths λl and λ2 is in analog or digital form in the calculation means 19.
is input and processed.

第6図は光検出手段18の他の1つの例を示した図であ
って、光検出素子33(31と同じ)の出力をサンプル
ホールド回路34を介してA/D変換回路35に送るよ
うになっている。この回路の出力はこの場合デジタル形
の演算手段に送出される。
FIG. 6 is a diagram showing another example of the photodetection means 18, in which the output of the photodetection element 33 (same as 31) is sent to the A/D conversion circuit 35 via the sample and hold circuit 34. It has become. The output of this circuit is sent to arithmetic means, in this case digital.

第7図は光検出手段18の更に他の例を示した図であっ
て、光フアイバ分波器36によシλ1゜λ2の波長に分
波し、光検出素子37a、37bの出力を制御手段17
の信号によ多動作するサンプルホールド回路38a 、
38bを介して演算手段19に出力するようになってい
る。
FIG. 7 is a diagram showing still another example of the photodetecting means 18, in which the optical fiber demultiplexer 36 separates the light into wavelengths of λ1 and λ2, and controls the outputs of the photodetecting elements 37a and 37b. Means 17
A sample hold circuit 38a that operates based on the signal of
The signal is output to the calculation means 19 via 38b.

ここで再度第4図に戻って、この第4図の装置には偏光
子13が設けられているが、もし光源11がLDのよう
な一定の偏光特性を有し且つ光ファイバ12が偏光保全
性光ファイバであって磁気光学光学素子に送られる光が
偏光である場合は。
Returning to FIG. 4 again, the device shown in FIG. 4 is equipped with a polarizer 13, but if the light source 11 has certain polarization characteristics such as an LD and the optical fiber 12 maintains polarization. If it is a polarized optical fiber and the light sent to the magneto-optic optical element is polarized light.

偏光子13は必ずしも設けなくてよいものである。The polarizer 13 does not necessarily need to be provided.

第8図は本発明の他の実施例の構成を示す図である。こ
の実施例は特に測定精度を向上させるだめのものである
。すなわち、前記の4図の例では2つの波長の光の磁気
光学効果手段14への入射レベルを共にPoとして同一
としていたが、これは実質的に調整がかなり困難であシ
、さらに光フ、γイバ12についても光ファイバ16と
同様温度変化で伝搬特性の変動をうける。この場合単に
光1言号レベルの変化については2つの波長がある程度
近似していればその影響は相殺的に働くため問題は少い
といえるが、光ファイバ12における偏波面の回転等の
影響は測定結果に直接影響する。
FIG. 8 is a diagram showing the configuration of another embodiment of the present invention. This embodiment is particularly intended to improve measurement accuracy. That is, in the example shown in FIG. 4, the incident levels of the two wavelengths of light to the magneto-optic effect means 14 are both set to be the same as Po, but this is actually quite difficult to adjust, and furthermore, the optical Like the optical fiber 16, the γ fiber 12 is also subject to variations in propagation characteristics due to temperature changes. In this case, if the two wavelengths are close to each other to some extent, the change in the level of one optical signal is not a problem because the effect will cancel out, but the effect of rotation of the plane of polarization in the optical fiber 12, etc. can be measured. directly affect the results.

従ってこの第8図の実施例ではこうした問題を排除する
ために、磁気光学効果手段14の入力側にて入射光を分
岐41で分岐し、そのレベルをモニターするモニタ光検
出手段42を取付け、このデータを演算手段43に入力
する。演算手段43では光検出手段18の出力をモニタ
光検出手段42の出力で割ってこれを正規化し、この正
規化した値から磁界Hを求めるようにしたものである。
Therefore, in the embodiment shown in FIG. 8, in order to eliminate such problems, the incident light is branched at the input side of the magneto-optic effect means 14 by a branch 41, and a monitor light detection means 42 for monitoring the level thereof is installed. The data is input to the calculation means 43. The calculation means 43 normalizes the output of the light detection means 18 by dividing it by the output of the monitor light detection means 42, and calculates the magnetic field H from this normalized value.

ここでモニタ光検出手段42としては制御手段17の信
号に対応して光検出手段18と同様の構成により2波長
λl 、λ2を独立に検出できるものが望ましいが、要
求される測定精度によってはλl。
Here, it is preferable that the monitor light detection means 42 be capable of independently detecting the two wavelengths λl and λ2 with the same configuration as the light detection means 18 in response to the signal from the control means 17; .

λ2のいずれか一波長かあるいはその和としての平均レ
ベルを検出して用いることも可能である。
It is also possible to detect and use the average level of any one wavelength of λ2 or the sum of the wavelengths.

第9図は本発明の更に他の実施例の構成を示した図であ
る。この種の装置を超高圧の電力設備の計測に用いると
きは、偏光子13.磁気光学効果素子14.および検光
子15は一体化して高圧部分に設置する。したがって光
ファイバ12によって生じる偏光特性の劣化を承知の上
で、磁気光学効果手段14の入射側ではなく光源52の
出力側に配置し、この分岐51にモニタ光検出手段53
を配置したものである。この構成では勿論測定精度は光
ファイバ12の分だけ低下するが、先に述べたように光
源11自体がLDのように一定の偏光特性を有し、光フ
ァイバ12が偏光保存性を有する場合には、測定精度の
低下は僅かで済むのでこの構成は有効である。しかもこ
の場合は偏光子13は設けなくてもよい。
FIG. 9 is a diagram showing the configuration of still another embodiment of the present invention. When using this type of device to measure ultra-high voltage power equipment, polarizer 13. Magneto-optic effect element 14. and the analyzer 15 are integrated and installed in the high pressure part. Therefore, while being aware of the deterioration of the polarization characteristics caused by the optical fiber 12, the optical fiber 12 is arranged not on the input side of the magneto-optic effect means 14 but on the output side of the light source 52, and the monitor light detection means 53 is connected to this branch 51.
is arranged. Of course, in this configuration, the measurement accuracy decreases by the amount of the optical fiber 12, but as mentioned earlier, when the light source 11 itself has a certain polarization characteristic like an LD and the optical fiber 12 has polarization preservation property, This configuration is effective because there is only a slight decrease in measurement accuracy. Moreover, in this case, the polarizer 13 does not need to be provided.

第10図は本発明の別の実施例の構成を示した図である
。第10図の装置において、検光子手段61の直交する
2つの出力光を例えばV偏波光とH偏波光に分け、それ
ぞれ別の光フアイバ手段62aおよび62bを経て、制
御手段17により制御される2組の光検出手段63a 
、63bへ伝送し、λ1.λ2のそれぞれのV偏波、H
偏波成分のデータを得てこれまだ制御手段17によ多制
御される演算手段64にて処理し、磁界Hが求められる
FIG. 10 is a diagram showing the configuration of another embodiment of the present invention. In the apparatus shown in FIG. 10, the two orthogonal output lights of the analyzer means 61 are divided into, for example, V-polarized light and H-polarized light, and the two are controlled by the control means 17 through separate optical fiber means 62a and 62b, respectively. set of light detection means 63a
, 63b, and λ1. Each V polarization of λ2, H
The polarized wave component data is obtained and processed by the calculation means 64, which is further controlled by the control means 17, to obtain the magnetic field H.

以上の説明では説明の都合上波長はλ1.λ2の2つと
したが実用に適した範囲で波長数を増大し、演算入力デ
ータを増加させることは測定精度の向上に有益であり本
発明の主旨に沿うものである。
In the above explanation, for convenience of explanation, the wavelength is λ1. Although two wavelengths λ2 are used, increasing the number of wavelengths within a practical range and increasing the calculation input data is useful for improving measurement accuracy and is in line with the gist of the present invention.

なお9本発明の説明に直接関係のないレンズや光学位相
板等については記述を省略した。また本発明の構成はノ
・−ドウエアの選択と光波長の発生のタイミングと各光
検出手段の信号出力や演算回路のタイミングとの組合せ
により多様な形式を採用できる。
Note that descriptions of lenses, optical phase plates, etc. that are not directly related to the description of the present invention have been omitted. Furthermore, the configuration of the present invention can adopt various forms depending on the combination of the selection of the hardware, the timing of the generation of the optical wavelength, the signal output of each photodetecting means, and the timing of the arithmetic circuit.

また以上の説明では磁気光学効果手段として鉛ガラスブ
ロックを例として示したが、これはその他の材料のもの
および光ファイバの如く上記の例とは異なった構造・形
態のものであっても本質的に本発明に含まれるものであ
る。また第4図についての説明で述べたように、偏光子
は必ずしも必要としないものである。
In addition, in the above explanation, a lead glass block was shown as an example of the magneto-optic effect means, but this also applies even if it is made of other materials or has a structure or form different from the above example, such as an optical fiber. are included in the present invention. Further, as described in the explanation regarding FIG. 4, a polarizer is not necessarily required.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の光フアイバ磁界センサの轟i嘔構成の一
例を示す図、第2図は上記の磁界センサにおける磁気光
学効果を説明する図、第3図は本発明の詳細な説明する
図、第4図は本発明の一実施例の構成を示す図、第5図
は本発明に適した光源手段の構成の一例を説明する図、
第6図は本発明に適した光検出手段の構成の一例を説明
する図、第7図は本発明に適した光検出手段の構成の他
の例を説明する図、第8図は本発明の他の実施例の構成
を示す図、第9図は本発明の更に他の実施例の構成を示
す図、第10図は本発明の別の実施例の構成を示す図で
ある。
FIG. 1 is a diagram showing an example of the configuration of a conventional optical fiber magnetic field sensor, FIG. 2 is a diagram explaining the magneto-optical effect in the above-mentioned magnetic field sensor, and FIG. 3 is a diagram explaining the present invention in detail. , FIG. 4 is a diagram showing the configuration of an embodiment of the present invention, FIG. 5 is a diagram illustrating an example of the configuration of a light source means suitable for the present invention,
FIG. 6 is a diagram illustrating an example of the configuration of a light detection means suitable for the present invention, FIG. 7 is a diagram illustrating another example of the configuration of a light detection means suitable for the present invention, and FIG. 8 is a diagram illustrating an example of the configuration of a light detection means suitable for the present invention. FIG. 9 is a diagram showing the configuration of still another embodiment of the present invention, and FIG. 10 is a diagram showing the configuration of another embodiment of the present invention.

Claims (1)

【特許請求の範囲】 1、 複数の波長の偏光を時分割的に送出する手段と、
外部磁界の変化に対応してその内部を通過する偏光に変
化を与える磁気光学効果手段と、検光子手段と、光フア
イバ手段と、光検出手段と。 この光検出手段の出力電気信号を前記光波長との対応の
もとに演算処理して前記磁界を求める演算手段とを順次
配設して成る光フアイバ磁界センサ。 2、複数の波長の偏光を時分割に送出する光送出手段と
、外部磁界の変化に対応してその内部を通過する偏光に
変化を与える磁気光学効果手段と。 検光子手段と、光フアイバ手段と、光検出手段と。 前記光送出手段の出力または内部における光の一部を分
岐する光分岐手段と1分岐された一部の光を検出するモ
ニタ光検出手段と、このモニタ光検出手段の検出した出
力電気信号と前記光検出手段の発する出力電気信号を用
いて演算処理して前記磁界を求める演算手段とを有する
光フアイバ磁界センサ。
[Claims] 1. Means for time-divisionally transmitting polarized light of a plurality of wavelengths;
Magneto-optical effect means for changing the polarization of light passing therethrough in response to changes in an external magnetic field, analyzer means, optical fiber means, and light detection means. An optical fiber magnetic field sensor comprising a calculation means for calculating the magnetic field by processing the output electric signal of the photodetection means in correspondence with the optical wavelength and calculating the magnetic field. 2. A light transmitting means that transmits polarized light of a plurality of wavelengths in a time-division manner, and a magneto-optic effect means that changes the polarized light passing therethrough in response to changes in an external magnetic field. Analyzer means, optical fiber means, and light detection means. a light branching means for branching a part of the output or internal light of the light sending means; a monitor light detection means for detecting the branched part of the light; an output electric signal detected by the monitor light detection means; 1. An optical fiber magnetic field sensor comprising: arithmetic means for performing arithmetic processing using an output electric signal emitted by a light detection means to obtain the magnetic field.
JP57109140A 1982-06-26 1982-06-26 Optical fiber magnetic field sensor Pending JPS59670A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57109140A JPS59670A (en) 1982-06-26 1982-06-26 Optical fiber magnetic field sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57109140A JPS59670A (en) 1982-06-26 1982-06-26 Optical fiber magnetic field sensor

Publications (1)

Publication Number Publication Date
JPS59670A true JPS59670A (en) 1984-01-05

Family

ID=14502608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57109140A Pending JPS59670A (en) 1982-06-26 1982-06-26 Optical fiber magnetic field sensor

Country Status (1)

Country Link
JP (1) JPS59670A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60149917A (en) * 1984-01-17 1985-08-07 Agency Of Ind Science & Technol Light-applied measuring apparatus
WO1989003046A1 (en) * 1987-09-30 1989-04-06 Kabushiki Kaisha Toshiba Fiberoptic sensor
CN107449471A (en) * 2017-09-29 2017-12-08 中国计量大学 A kind of magnetic field and temperature simultaneously measuring device based on highly doped germanium fibre-optical probe

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60149917A (en) * 1984-01-17 1985-08-07 Agency Of Ind Science & Technol Light-applied measuring apparatus
WO1989003046A1 (en) * 1987-09-30 1989-04-06 Kabushiki Kaisha Toshiba Fiberoptic sensor
US5021647A (en) * 1987-09-30 1991-06-04 Kabushiki Kaisha Toshiba Optical fiber sensor having function of compensating for all drifting components
CN107449471A (en) * 2017-09-29 2017-12-08 中国计量大学 A kind of magnetic field and temperature simultaneously measuring device based on highly doped germanium fibre-optical probe

Similar Documents

Publication Publication Date Title
EP0210716B1 (en) Drift compensation technique for a magneto-optic current sensor
US6952107B2 (en) Optical electric field or voltage sensing system
CN101427142B (en) Fiber-optic current sensor with polarimetric detection scheme
US5834933A (en) Method for magnetooptic current measurement and magnetooptic current-measuring device
US5021647A (en) Optical fiber sensor having function of compensating for all drifting components
JPS62297716A (en) Method and device for measuring magnitude of physical quantity
US6285182B1 (en) Electro-optic voltage sensor
KR0153277B1 (en) Wide bandwidth fiber optic accelerometer
US7057792B2 (en) Optical sensor unit for measuring current and voltage of high frequency
CA2122782C (en) Apparatus for measuring an ambient physical parameter applied to a highly birefringent sensing fiber and method
US5747793A (en) Variable light source compensated optical fiber sensing system
KR920700394A (en) Optoelectronic devices for remote measurement of physical size
US6297625B1 (en) Method and device for measuring a magnetic field
JPS59670A (en) Optical fiber magnetic field sensor
JPS59669A (en) Optical fiber magnetic field sensor
US6211982B1 (en) Remote sensor with waveguide optics telemetry
CN209279996U (en) Multi-channel optical fibre current sensor based on wavelength-division multiplex
JPH01163675A (en) Multipoint measuring instrument by multiplexed wavelength
JPS599526A (en) Temperature measuring device
JPS6160200A (en) Light-applied measuring apparatus
RU2715347C1 (en) Fiber-optic voltage meter
JPH01153924A (en) Coherent light measuring instrument
CN109405859A (en) Multi-channel optical fibre current sensor and its control method, system based on wavelength-division multiplex
JPS61118633A (en) Optical fiber sensor
JPS5862799A (en) Light-applied measuring apparatus