JPH0434387A - Radiation image receiving apparatus and method - Google Patents

Radiation image receiving apparatus and method

Info

Publication number
JPH0434387A
JPH0434387A JP2140922A JP14092290A JPH0434387A JP H0434387 A JPH0434387 A JP H0434387A JP 2140922 A JP2140922 A JP 2140922A JP 14092290 A JP14092290 A JP 14092290A JP H0434387 A JPH0434387 A JP H0434387A
Authority
JP
Japan
Prior art keywords
radiation
radiation detector
measured
image receiving
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2140922A
Other languages
Japanese (ja)
Other versions
JPH0833449B2 (en
Inventor
Matsuki Baba
末喜 馬場
Hiroshi Tsutsui
博司 筒井
Yasuichi Oomori
大森 康以知
Tetsuo Ootsuchi
大土 哲郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP14092290A priority Critical patent/JPH0833449B2/en
Publication of JPH0434387A publication Critical patent/JPH0434387A/en
Publication of JPH0833449B2 publication Critical patent/JPH0833449B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Radiation (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Closed-Circuit Television Systems (AREA)
  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)

Abstract

PURPOSE:To minimize the generation of an error by fixing an objective region per one unit element during an image measuring period and substantially enhancing resolving power per a pixel. CONSTITUTION:In a radiation image receiving apparatus constituted of a radiation source 1 and a radiation detector 4 arranged within the plane vertical to the advance direction of a moving object 3 to be measured so as to hold the object 3 to be measured there between, the radiation detector 4 is moved in the same direction as the object 3 to be measured during an image measuring period to obtain image data. By this constitution, an objective region per one unit element is made substantially equal to the size of one unit element by moving the radiation detector 4 in the same direction as the object 3 to be measured at the time of the measurement of an image and the generation of an error due to the movement of the object to be measured can be minimized.

Description

【発明の詳細な説明】 産業上の利用分野 本発明1よ 医療爪 工業用などの放射線受像装置およ
び放射線受像方法に関すム 従来の技術 計測すべき物体(以下、被計測物体と称する)を移動さ
せなか収 被計測物体による放射線の吸収像または反射
像を撮像することは医療分野や工業分野において多用さ
れている。
DETAILED DESCRIPTION OF THE INVENTION Industrial field of application Invention 1 Medical nails Conventional technology related to industrial radiation image receiving apparatuses and radiation image receiving methods Moving an object to be measured (hereinafter referred to as the object to be measured) Capturing absorption or reflection images of radiation by an object to be measured is frequently used in the medical and industrial fields.

これは放射線検出器に対して相対的に移動する被計測物
体に放射線を照射し 被計測物体による放射線の吸収や
反射の変化を放射線検出器で検出し 被計測物体の検査
・分析をするものであもこの受像方法は 工業用非破壊
検査において(友コンベアライン上に置かれた被計測物
体を挟んでX線源と放射線検出器を配置し 一定の周期
で画像計測を行へ 被計測物体の画像化を行っていム放
射線検出器としては線状のものや面状のものが一般的で
あa 返電 放射線受像においても技術の向上は目覚ましく、
高解像度の放射線検出器が開発されていも 例えば 半
導体検出器をアレイ状に配置し放射線量子を面で検知し
 その信号の計数値を画素濃度として、画像を表示する
方法が開発されている(特開昭59−100885号公
報)。この方法によれ(′L 各検出素子のダイナミッ
クレンジが大幅に向上するた取 高精度の画像を得るこ
とができも さら&二 画像データ処理により、被計測物体の化学組
成や元素分析などの検査・分析が可能となっていも 以下に従来の放射線受像装置および放射線受像方法につ
いて説明すも 第7図は従来の放射線受像装置および放射線受像方法を
説明するための構成図であム 同図では放射線としてX
線を使用した例について説明すも図において、 3は被
計測物$3aは低吸収材料ff1L  3bは高吸収材
料部 4は放射線検出器であム 放射線検出器4の位置
と出力信号との対比を明確にするために 被計測物体3
として低吸収材料部3aと高吸収材料部3bがはっきり
分離したものを想定し九 また放射線検出器4の位置と
出力信号とを対比させ易いようへ 被計測物体3を固定
し 放射線検出器4を移動させたものとして、横軸に放
射線検出器4の位置を、縦軸に放射線検出器4の出力信
号を示し九 このような構成において、放射線検出器4が第7図の位
置にある時は照射X線が直接放射線検出器4に入射する
ため出力信号はSlとなa 次に放射線検出器4が紙面
に向かって右方向へ移動し放射線検出器4が被計測物体
3の端にかかると出力が低下し始める。放射線検出器4
が完全に被計測物体3の中の低吸収材料部3aに入って
しまうと出力信号はS2となも さらに放射線検出器4
が右方向へ移動し 高吸収材料部3bにかかると出力信
号は低下し始めて、放射線検出器4が完全に高吸収材料
部3bに入ってしまうと出力信号は最低値Ssとなも 発明が解決しようとする課題 しかしながら上記従来の構成では放射線検出器が固定さ
れているた敦 被計測物体の移動により1単位素子あた
りの対象領域が拡大され 画像上のぼけとなり、測定上
の誤差となってい九 このため番ミ  微細な部分の精
密な分析においては 被計測物体3を一時的に停止させ
るステップ送りがなされていた力丈 医療に使用する機
器では 患者用のベツドが大型であり、また工業用に使
用する機器でL コンベアの慣性が大きいためステップ
送りが困難であり、高精度の計測が不可能であるという
課題を有してい九 本発明にL 上記従来の課題を解決するもので、移動し
ている物体の受像において、放射線検出器と被計測物体
との位置ずれによって発生する画素端部の画像上のぼけ
を最小にし 微細な部分の精密な分析においてk 高精
度な性能が得られる放射線受像装置を提供することを目
的とすム課題を解決するための手段 この目的を達成するために本発明の放射線受像装置は 
移動する被計測物体の進行方向に垂直な面内にあって、
被計測物体を挟んで配置された放射線源と放射線検出器
で構成される放射線受像装置において、画像計測の間は
放射線検出器が被計測物体と同一方向に移動して画像情
報を得るように構成したものである。
This is a method in which radiation is irradiated onto an object to be measured that moves relative to a radiation detector, and the radiation detector detects changes in radiation absorption and reflection by the object to be measured, thereby inspecting and analyzing the object. Amoko's image reception method is used in industrial nondestructive testing (an X-ray source and a radiation detector are placed across the object to be measured placed on a conveyor line, and image measurements are performed at regular intervals. The radiation detectors that perform imaging are generally linear or planar ones.In the field of radiation image reception, technological improvements have also been remarkable.
Even though high-resolution radiation detectors have been developed, methods have also been developed to display images by arranging semiconductor detectors in an array to detect radiation quanta on a surface, and using the count value of the signal as the pixel density. Publication No. 59-100885). With this method, the dynamic range of each detection element is greatly improved, and high-precision images can be obtained.・The conventional radiation image receiving apparatus and radiation image receiving method will be explained below. as X
In the figure to explain an example using lines, 3 is the object to be measured 3a is the low absorption material ff1L 3b is the high absorption material portion 4 is the radiation detector Comparison between the position of the radiation detector 4 and the output signal To clarify the measured object 3
Assuming that the low-absorption material part 3a and the high-absorption material part 3b are clearly separated, the object to be measured 3 is fixed and the radiation detector 4 is Assuming that the radiation detector 4 has been moved, the horizontal axis shows the position of the radiation detector 4, and the vertical axis shows the output signal of the radiation detector 4.9 In such a configuration, when the radiation detector 4 is in the position shown in FIG. Since the irradiated X-rays directly enter the radiation detector 4, the output signal becomes Sl.A Next, when the radiation detector 4 moves rightward toward the page and the radiation detector 4 touches the edge of the object to be measured 3, Output begins to decrease. Radiation detector 4
When the radiation completely enters the low absorption material part 3a in the object to be measured 3, the output signal becomes S2.Furthermore, the radiation detector 4
When the radiation detector 4 moves to the right and hits the high absorption material section 3b, the output signal begins to decrease, and when the radiation detector 4 completely enters the high absorption material section 3b, the output signal becomes the lowest value Ss, which is the solution to the invention. However, in the conventional configuration described above, the radiation detector is fixed, and as the object to be measured moves, the target area per unit element is expanded, resulting in blurring of the image and measurement errors. For this reason, in precise analysis of minute parts, step feed is used to temporarily stop the object to be measured. The present invention solves the above-mentioned conventional problems, and it is difficult to perform step feeding due to the large inertia of the conveyor, making it impossible to measure with high precision. A radiation image receiving device that minimizes image blurring at the pixel edges caused by positional misalignment between the radiation detector and the object to be measured, and provides high-precision performance in precise analysis of minute areas. In order to achieve this object, the radiation image receiving apparatus of the present invention provides a means for solving the problem.
Located in a plane perpendicular to the direction of movement of the moving measured object,
A radiation image receiving device consisting of a radiation source and a radiation detector placed across an object to be measured is configured so that during image measurement, the radiation detector moves in the same direction as the object to be measured to obtain image information. This is what I did.

作用 この構成によって、画像計測時に放射線検出器を被計測
物体と同一の方向に移動させることにより、実質的に1
単位素子当りの対象領域を1単位素子の大きさになるよ
うにし 被計測物体の移動による誤差の発生を最小にす
ることができる。
Effect With this configuration, by moving the radiation detector in the same direction as the object to be measured during image measurement, substantially 1
By setting the target area per unit element to the size of one unit element, it is possible to minimize errors caused by movement of the object to be measured.

実施例 以下本発明の一実施例について、図面を参照しながら説
明する。
EXAMPLE An example of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例における放射線受像装置の構
成は 第2図は本発明の放射線受像装置に使用する放射
線検出器の一実施例を示す構成は第3図は本発明の放射
線受像装置に使用する放射線検出器の他の実施例を示す
構成医 第4図は本発明の放射線受像装置に使用する放
射線検出器の動作の一例を示す動作医 第5図は同放射
線検出器の動作の他の例を示す動作医 第6図(a)〜
(C)は放射線検出器位置と出力信号との関係を示す特
性図であも これらの図において、 1は放射線源 2は照射絞り、
 3は被計測物体 4は放射線検出器 5は被計測物体
3を載せて移動する移動台、6は移動台5を駆動する駆
動体 7は放射線検出器4を収納したケー人 8は放射
線検出器周辺回路数 9は放射線検出器固定台、 10
は放射線検出器駆動、ii’、11は支持台、 12は
信号ケーブノk  13は放射線検出器4を制御する駆
動制御部 14は入出力端子、 15は格子状構造体で
あも以上のように構成された放射線受像装置について、
以下その動作を説明すも 第1図で(上 放射線源1としてX線源を用いた例を示
した力交 その他にも可視光 赤外光 放射光 ベータ
颯 ガンマ楓 中性子線でも同じであム この放射線源
1から放射されるX線から照射絞り2により必要なX線
のみが取り出されも このX線は被計測物体3を通過し
て放射線検出器4で検出されも 被計測物体3は移動台
5の上に載せられて左右方向に移動すム 一方散射線検
出器4はケース7内に放射線検出器周辺回路8とともに
収納されていも ケース7は放射線検出器固定台9の上
に設置されて放射線検出器駆動源10に連結され かつ
放射線検出器固定台9は支持台11上に可動状態で設置
されていも 放射線源lは固定でも良い力(被計測物体
3の移動範囲が長い場合(よ 放射線検出器4とともに
移動させる必要があム また移動台5としてはコンベヤ
ベルト等が使用されも 放射線検出器4として検出素子を一次元に配列した一次
元ラインセンサを使用した場合、その−次元ラインセン
サは被計測物体3の移動方向に垂直に設置さ札 1ライ
ン毎に走査・移動して二次元の画像計測を行う。また放
射線検出器4として検出素子を面状に配列した二次元面
センサを使用した場合、二次元面センサを構成する画素
の1ピッチ分だけ放射線検出器4を移動させて二次元の
画像計測を行う。
FIG. 1 shows the configuration of a radiation image receiving device according to an embodiment of the present invention. FIG. 2 shows an example of the configuration of a radiation detector used in the radiation image receiving device of the present invention. FIG. 4 is a configuration doctor showing an example of the operation of the radiation detector used in the radiation image receiving apparatus of the present invention; FIG. Figure 6 (a) ~
(C) is a characteristic diagram showing the relationship between the radiation detector position and the output signal. In these diagrams, 1 is the radiation source, 2 is the irradiation aperture,
3 is an object to be measured; 4 is a radiation detector; 5 is a moving table on which the object to be measured 3 is mounted; 6 is a driver for driving the moving table 5; 7 is a case housing the radiation detector 4; 8 is a radiation detector. Number of peripheral circuits: 9 is the radiation detector fixed stand, 10
is a radiation detector drive, ii', 11 is a support stand, 12 is a signal cable nok, 13 is a drive control unit that controls the radiation detector 4, 14 is an input/output terminal, and 15 is a lattice structure, as described above. Regarding the configured radiation image receiving device,
The operation will be explained below in Figure 1. Even if only the necessary X-rays are extracted from the X-rays emitted from the radiation source 1 by the irradiation aperture 2, and even if these X-rays pass through the object to be measured 3 and are detected by the radiation detector 4, the object to be measured 3 moves. On the other hand, even if the radiation detector 4 is housed in the case 7 together with the radiation detector peripheral circuit 8, the case 7 is installed on the radiation detector fixing table 9. Even if the radiation detector fixing base 9 is movably installed on the support base 11, the radiation source l may be fixed (if the movement range of the measured object 3 is long). It is necessary to move the radiation detector 4 together with the radiation detector 4.Also, although a conveyor belt or the like is used as the moving stage 5, if a one-dimensional line sensor in which detection elements are arranged in one dimension is used as the radiation detector 4, the The line sensor is installed perpendicularly to the moving direction of the object to be measured 3. It scans and moves line by line to measure two-dimensional images.It also serves as a radiation detector 4, which is a two-dimensional surface with detection elements arranged in a planar shape. When a sensor is used, two-dimensional image measurement is performed by moving the radiation detector 4 by one pitch of pixels constituting the two-dimensional surface sensor.

第2図に本発明の放射線受像装置に使用する放射線検出
器の一実施例を示した力曵 放射線検出器4のみが放射
線検出器駆動源IOで前後に移動するように構成されて
いるため装置を小型化できも入出力端子14から外部信
号が供給され その信号は駆動制御部13から放射線検
出器駆動源10へ入り、放射線検出器4を制御する。一
方散射線検出器4からの出力は信号ケーブル12によっ
て放射線検出器周辺回路8へ導かれ 入出力端子14を
経て外部へ取り出されも 第3図に本発明の放射線受像装置に使用する放射線検出
器の他の実施例を示した力(放射線検出器4の前面に放
射線を遮蔽する格子状構造体15を設置し 格子状構造
体15のみが放射線検出器駆動源10で前後に移動され
るように構成されていも したがって、装置の小型化が
図れるだけでなく、放射線検出器4の移動がないた数 
信号ケーブル12などの電気系の配線を固定化でき、非
常に信頼性の高い放射線検出器を実現できも この場合
、放射線検出器4の単一画素の移動方向に対する長さ(
よ 放射線検出器4の上で画像が1画像計測期間に移動
する距離と放射線を遮蔽する格子状構造体の開口を加算
した長さよりも太きくずも 本発明の放射線受像装置において(よ 放射線検出器4
また格子状構造体15の移動が重要であも第4図に示す
ように 被計測物体3の位置は時間とともに移動する力
丈 放射線検出器4は画像計測期間は被計測物体3と同
じように移動し 戻るときは前進時よりも高速で移動す
ることにより画像計測回数を増加できる。また第5図に
示すようへ一定サイクルまたは一定距離の間は被計測物
体3の動きに沿って放射線検出器4を前進と停止または
低速前進を繰り返すことにより、高速に移動する被計測
物体3の高精度な測定が可能となも放射線検出器4の移
動距離ζ戴 1画像計測期間当りの被計測物体3の1画
素に当たる移動距離であり、X線を使用した場合の高精
細度の画像では1mm以下、また固体撮像素子上にレン
ズで光学画像を結像するような方式で(よ 固体撮像素
子の1画素ピッチ、すなわち10μm程度となり、放射
線検出器4の駆動装置も非常に小型にな4以上述べた実
施例における放射線検出器位置と出力信号の関係は第6
図に示すとおりであも この場合 被計測物体3は低吸
収材料部3aと高吸収材料部3bとから構成されている
ものを例としたまず理想的な場合の出力信号(よ 第6
図(a)に示すようく 被計測物体3の各部分に対応し
て明確に現れるべきであ4 −X  同図(1))に示
す従来例で11 出力信号が崩れてしまって画像データ
としては非常に悪く、高精度の計測はできな−l 同図
(c)には本発明の放射線受像装置による出力信号を示
した力交 高吸収材料部3bの部分で少し理想的な場合
 (二点鎖線で示す)からずれている力(コントラスト
の良いことが期待できも 以上 本発明を放射線透過画像に適用して記載したれ 
通常の光学画像の撮像や読み取りにおいても同様の効果
を得ることができも 発明の効果 以上のように本発明ζ友 画像計測期間中は1単位素子
当りの対象領域を固定しているた数 画素当りの解像度
を実質的に向上でき、被計測物体の移動による誤差の発
生を最小にできる優れた放射線受像装置および放射線受
像方法を実現できるものであム このたべ 高精度な画
像計測が可能となり、X線画像や光学画像などの微小な
画像の解析精度向上が実現できるたべ 医療計測や工業
計測への貢献には大なるものかあム
FIG. 2 shows an embodiment of the radiation detector used in the radiation image receiving apparatus of the present invention. An external signal is supplied from the input/output terminal 14, and the signal enters the radiation detector drive source 10 from the drive control section 13 to control the radiation detector 4. On the other hand, the output from the radiation detector 4 is guided to the radiation detector peripheral circuit 8 by a signal cable 12 and taken out to the outside via an input/output terminal 14. The power shown in another embodiment (a grid-like structure 15 that shields radiation is installed in front of the radiation detector 4, and only the grid-like structure 15 is moved back and forth by the radiation detector driving source 10). Therefore, not only can the device be made smaller, but also the radiation detector 4 can be moved without having to move.
Electric wiring such as the signal cable 12 can be fixed, and a very reliable radiation detector can be realized.
The radiation image receiving device of the present invention also detects debris that is thicker than the sum of the distance that the image moves on the radiation detector 4 during one image measurement period and the aperture of the lattice-like structure that shields radiation. Vessel 4
Furthermore, although the movement of the grid structure 15 is important, as shown in FIG. 4, the position of the object to be measured 3 changes over time. When moving and returning, the number of image measurements can be increased by moving faster than when moving forward. Furthermore, as shown in FIG. 5, the radiation detector 4 can be moved forward and stopped or moved forward at a low speed repeatedly during a certain cycle or a certain distance along the movement of the object to be measured 3, thereby detecting the object to be measured 3 that is moving at high speed. Although highly accurate measurement is possible, the moving distance of the radiation detector 4 is the moving distance corresponding to one pixel of the measured object 3 per one image measurement period, and in high-definition images when using X-rays. 1 mm or less, and with a method in which an optical image is formed using a lens on a solid-state image sensor (one pixel pitch of a solid-state image sensor, that is, about 10 μm), the driving device of the radiation detector 4 has also become extremely small. The relationship between the radiation detector position and the output signal in the embodiments described above is as follows.
In this case, the output signal in an ideal case (6
As shown in Figure (a), it should appear clearly corresponding to each part of the object to be measured 3. Figure 2 (c) shows the output signal from the radiation image receiving device of the present invention. The present invention is applied to radiographic images and described above.
Although similar effects can be obtained in ordinary optical image capturing and reading, the present invention has advantages over and above the effects of the invention. It is possible to realize an excellent radiation image receiving device and radiation image receiving method that can substantially improve the image resolution and minimize the occurrence of errors due to the movement of the object to be measured. It is possible to improve the analysis accuracy of minute images such as X-ray images and optical images, and it will be a great contribution to medical measurement and industrial measurement.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における放射線受像装置の構
成図 第2図は本発明の放射線受像装置に使用する放射
線検出器の一実施例を示す構成医第3図は本発明の放射
線受像装置に使用する放射線検出器の他の実施例を示す
構8.@  第4図は本発明の放射線受像装置に使用す
る放射線検出器の動作の一例を示す動作医 第5図は同
放射線検出器の動作の他の例を示す動作医 第6図(a
)〜(c)は放射線検出器位置と出力信号との関係を示
す特性諷 第7図は従来の放射線受像装置および放射線
受像方法を説明するための構成図であムト・・放射線淑
 3・・・被計測物体(計測すべき物体)、4・・・放
射線検出器 5・・・移動色Ill  図 1−−放2竹」象涜 3−″$虹刻鞄体(虹刻すへ゛き1伴)4− 牧わ1泉
検出器 5− ネ多勧 e 代理人の氏名 弁理士 粟野重孝 はか1名第 図 第 図 譲 L] ↓ ↓ 照Jli?X線j Mcjii埠雇鴬凰位l□ To) 方♂u’r峰検工】ツLイiH プr栄;」雫ゴrags辷S】ツしイ1χ二1第 図 時間 第 図 時間 箪 図 !!1.註X埠 方丈射線1唾ヒdシ見のイカ−1
FIG. 1 is a configuration diagram of a radiation image receiving apparatus according to an embodiment of the present invention. FIG. 2 is a configuration diagram showing an embodiment of a radiation detector used in the radiation image receiving apparatus of the present invention. Structure 8 showing another embodiment of the radiation detector used in the device. @ Fig. 4 is an operating doctor showing an example of the operation of the radiation detector used in the radiation image receiving apparatus of the present invention.
) to (c) are characteristic diagrams showing the relationship between the radiation detector position and the output signal. Figure 7 is a block diagram for explaining the conventional radiation image receiving device and radiation image receiving method.・Object to be measured (object to be measured), 4... Radiation detector 5... Moving color ) 4- Makiwa 1 Spring Detector 5- Neta-Kan e Agent's name Patent attorney Shigetaka Awano Haka 1 person (Figure 1) ↓ ↓ Teru Jli? To) direction♂u'rmine inspection】tsuLiiH PRei;"Shizukugo rags辷S】tsushii 1χ21 fig. time fig. time diagram! ! 1. Note

Claims (3)

【特許請求の範囲】[Claims] (1)放射線源と、放射線源に対向して設けた放射線検
出器と、放射線源と放射線検出器に挟まれた空間を通過
し、計測すべき物体を搭載して一定方向に移動する移動
台とを設けた放射線受像装置において、前記放射線検出
器が物体と同一方向に移動できる機構を有する放射線受
像装置。
(1) A radiation source, a radiation detector placed opposite to the radiation source, and a moving table that passes through the space between the radiation source and the radiation detector, carries the object to be measured, and moves in a fixed direction. A radiation image receiving apparatus comprising: a mechanism that allows the radiation detector to move in the same direction as an object;
(2)放射線検出器が放射線検出素子を面状または直線
状に配列したものである請求項1記載の放射線受像装置
(2) The radiation image receiving apparatus according to claim 1, wherein the radiation detector has radiation detection elements arranged in a planar or linear manner.
(3)放射線検出器がその放射線入射面の前面に放射線
を遮蔽する格子状構造体を有し、かつ格子状構造体が計
測すべき物体と同一方向に移動できるものである請求項
1または2記載の放射線受像装置(4)放射線源と、放
射線源に対向して設けた放射線検出器と、放射線源と放
射線検出器の間にあって計測すべき物体を搭載して一定
方向に移動する移動台とを設けた放射線受像装置を使用
し、画像計測の間放射線検出器を物体と同一方向に移動
させる放射線受像方法。
(3) Claim 1 or 2, wherein the radiation detector has a lattice-like structure for shielding radiation in front of its radiation entrance surface, and the lattice-like structure can move in the same direction as the object to be measured. The radiation image receiving device (4) includes a radiation source, a radiation detector provided opposite to the radiation source, and a movable table that is placed between the radiation source and the radiation detector and carries an object to be measured and moves in a fixed direction. A radiation image receiving method that uses a radiation image receiving device equipped with a radiation detector and moves the radiation detector in the same direction as the object during image measurement.
JP14092290A 1990-05-30 1990-05-30 Radiation image receiving apparatus and radiation image receiving method Expired - Fee Related JPH0833449B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14092290A JPH0833449B2 (en) 1990-05-30 1990-05-30 Radiation image receiving apparatus and radiation image receiving method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14092290A JPH0833449B2 (en) 1990-05-30 1990-05-30 Radiation image receiving apparatus and radiation image receiving method

Publications (2)

Publication Number Publication Date
JPH0434387A true JPH0434387A (en) 1992-02-05
JPH0833449B2 JPH0833449B2 (en) 1996-03-29

Family

ID=15279937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14092290A Expired - Fee Related JPH0833449B2 (en) 1990-05-30 1990-05-30 Radiation image receiving apparatus and radiation image receiving method

Country Status (1)

Country Link
JP (1) JPH0833449B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0273185A (en) * 1988-09-07 1990-03-13 Fuji Electric Co Ltd Radioactive contamination examining device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0273185A (en) * 1988-09-07 1990-03-13 Fuji Electric Co Ltd Radioactive contamination examining device

Also Published As

Publication number Publication date
JPH0833449B2 (en) 1996-03-29

Similar Documents

Publication Publication Date Title
US6175609B1 (en) Methods and apparatus for scanning an object in a computed tomography system
JP4551919B2 (en) Tomographic inspection system and method
US6895080B2 (en) X-ray measuring apparatus
EP1314976A2 (en) Method and apparatus to produce three-dimensional X-ray images
US4433427A (en) Method and apparatus for examining a body by means of penetrating radiation such as X-rays
JPH10104174A (en) Electric connection inspection apparatus
KR20080022089A (en) X-ray laminography and/or tomosynthesis apparatus
US9250199B2 (en) X-ray imaging apparatus, and X-ray imaging method
MXPA03004979A (en) Off-center tomosynthesis.
US7286639B2 (en) Focal spot sensing device and method in an imaging system
US20070189460A1 (en) Precise x-ray inspection system
JPH0318352A (en) X-ray diagnosing device
US20220050067A1 (en) Industrial x-ray workpiece measuring system and method for operating same
JPS6267432A (en) X rays ct apparatus
JP4894359B2 (en) X-ray tomographic imaging apparatus and X-ray tomographic imaging method
JP2003294848A (en) Radiation-calibrating apparatus
JPH0434387A (en) Radiation image receiving apparatus and method
JP2003294659A (en) X-ray analysis apparatus
JPH10246708A (en) Apparatus and method for nondestructive inspection
JP2019191059A (en) Radiation detector and inspection device
JP7460197B2 (en) Sample imaging method
WO2023017664A1 (en) Radiation detector
US6804322B2 (en) X-ray image converter, device and method for recording, processing and illustrating images using X-rays
JPH1164246A (en) X-ray image pickup device
JPH02248887A (en) Radiation image receiver

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees