JPH04343447A - Electrostatic attraction apparatus - Google Patents

Electrostatic attraction apparatus

Info

Publication number
JPH04343447A
JPH04343447A JP3116313A JP11631391A JPH04343447A JP H04343447 A JPH04343447 A JP H04343447A JP 3116313 A JP3116313 A JP 3116313A JP 11631391 A JP11631391 A JP 11631391A JP H04343447 A JPH04343447 A JP H04343447A
Authority
JP
Japan
Prior art keywords
wafer
electrode
electrodes
electrostatic
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3116313A
Other languages
Japanese (ja)
Inventor
Masaya Kobayashi
雅哉 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP3116313A priority Critical patent/JPH04343447A/en
Publication of JPH04343447A publication Critical patent/JPH04343447A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

PURPOSE:To realize an accurate wafer conveying and to control a temperature of a wafer with high reproducibility in an electrostatic attraction apparatus for holding the wafer by attraction in a semiconductor manufacturing process. CONSTITUTION:In an electrostatic attraction apparatus having A electrodes 24, 25 in which a positive voltage is applied and B electrodes 26, 27 in which a negative voltage is applied to electrostatically attract a wafer 33 by the electrodes 24, 25 and 26, 27, an electrostatic potentiometer probe 22 and an electrostatic potentiometer 34 for measuring a potential of the wafer 33 in a state attracted to the electrodes 24, 25 and 26, 27, are provided. Voltages to be applied to the electrodes 24, 25 and 26, 27 are so controlled that the potential of the wafer 33 becomes zero volt based on the potential of the wafer 33 to be measured by the probe 22 and the potentiometer 34.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は静電吸着装置に係り、特
に半導体製造プロセスにおいてウェハを吸着保持する静
電吸着装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrostatic chuck device, and more particularly to an electrostatic chuck device for holding a wafer by suction in a semiconductor manufacturing process.

【0002】近年の半導体製造プロセスでは自動化が進
み、製造装置内のウェハ搬送を正確に行うことが要求さ
れている。
[0002] Automation has advanced in semiconductor manufacturing processes in recent years, and it has become necessary to accurately transport wafers within manufacturing equipment.

【0003】よって、半導体製造プロセスに組み込まれ
るウェハの吸着装置においても正確にかつ速やかにウェ
ハを着脱することが重要となる。
[0003] Therefore, it is important to accurately and quickly attach and detach wafers in wafer suction devices incorporated in semiconductor manufacturing processes.

【0004】0004

【従来の技術】図5は従来における静電吸着装置の一例
を示す構成図である。同図に示すように、従来における
静電吸着装置1は直流高電圧を用いたものが一般的であ
る。この直流高電圧式の静電吸着装置1は、正電極2及
び負電極3に夫々直流電圧を印加することにより電極2
,3上に絶縁物4を介して載置された被吸着物(ウェハ
)5に誘電分極を起こし、これによりウェハ5の表面に
誘起される正負の電荷の静電力により、ウェハ5を絶縁
物4に吸着する構成となっている。
2. Description of the Related Art FIG. 5 is a block diagram showing an example of a conventional electrostatic chuck device. As shown in the figure, a conventional electrostatic adsorption device 1 generally uses a DC high voltage. This DC high-voltage type electrostatic adsorption device 1 is constructed by applying a DC voltage to a positive electrode 2 and a negative electrode 3, respectively.
, 3 through an insulator 4, causes dielectric polarization in the object (wafer) 5 placed on the surface of the wafer 5, and the electrostatic force of positive and negative charges induced on the surface of the wafer 5 causes the wafer 5 to become an insulator. It has a structure that attracts 4.

【0005】図6は、上記の静電吸着装置1をRIE装
置(反応性イオンエッチング装置)6に配設したときの
等価回路を示している。図中、7はチェンバ、8,9は
直流高電圧電源、10は高周波発生装置を夫々示してい
る。ウェハ5をRIE装置6により加工する際、先ずチ
ェンバ7を取り外して静電吸着装置1の電極2,3上に
ウェハ5を載置し、直流高電圧電源8,9により各電極
2,3に正負の直流電圧を印加する。これにより、上記
したようにウェハ5に誘電分極が生じ、ウェハ5は絶縁
物4に静電的に吸着される。続いてチェンバ7が装着さ
れ、チェンバ7内を所定の真空度とした上で高周波発生
装置10が駆動しプラズマを発生させ、ウェハ5に対し
てエッチング処理が行われる。このエッチング処理中、
ウェハ5は静電吸着装置1に吸着された状態を維持する
。そして、所定のエッチング処理が終了すると、再びチ
ェンバ7は外され、直流高電圧電源8,9の電圧印加も
解除され、ウェハ5は静電吸着装置1より取り外される
FIG. 6 shows an equivalent circuit when the electrostatic adsorption device 1 described above is installed in an RIE device (reactive ion etching device) 6. In the figure, 7 is a chamber, 8 and 9 are DC high voltage power supplies, and 10 is a high frequency generator. When processing the wafer 5 using the RIE device 6, first remove the chamber 7, place the wafer 5 on the electrodes 2 and 3 of the electrostatic chuck device 1, and apply pressure to each electrode 2 and 3 using the DC high voltage power supplies 8 and 9. Apply positive and negative DC voltage. As a result, dielectric polarization occurs in the wafer 5 as described above, and the wafer 5 is electrostatically attracted to the insulator 4. Subsequently, the chamber 7 is installed, the chamber 7 is brought to a predetermined degree of vacuum, the high frequency generator 10 is driven to generate plasma, and the wafer 5 is etched. During this etching process,
The wafer 5 remains attracted to the electrostatic attraction device 1. When the predetermined etching process is completed, the chamber 7 is removed again, the voltage application of the DC high voltage power supplies 8 and 9 is also canceled, and the wafer 5 is removed from the electrostatic chuck device 1.

【0006】従来の静電吸着装置1では、ウェハ5を吸
着するに際し、各電極2,3に対して等量で異符合の直
流電圧を印加する構成とされていた。
In the conventional electrostatic chuck device 1, when the wafer 5 is chucked, DC voltages of the same amount and of different signs are applied to each electrode 2, 3.

【0007】[0007]

【発明が解決しようとする課題】上記各電極2,3は同
一面積となるよう製造されているが、製造誤差等により
多少の面積差を有している。また、ウェハ5と各電極2
,3間に介在する絶縁物4の厚さのバラツキ、及び絶縁
物4の不均質による比誘電率のバラツキ等により、ウェ
ハ5と各電極2,3間の静電容量は異なる。このため、
各電極2,3に等量で異符合の直流電圧を印加しても、
ウェハ5の電位は零ボルトとはならず、いくらかの電位
を持つ。
Although the electrodes 2 and 3 are manufactured to have the same area, there is some difference in area due to manufacturing errors and the like. In addition, the wafer 5 and each electrode 2
The capacitance between the wafer 5 and each of the electrodes 2 and 3 differs due to variations in the thickness of the insulator 4 interposed between the wafer 5 and the electrodes 2 and 3, and variations in relative permittivity due to non-uniformity of the insulator 4. For this reason,
Even if equal amounts of DC voltages of different signs are applied to each electrode 2 and 3,
The potential of the wafer 5 is not zero volts, but has some potential.

【0008】このような状態で静電吸着されたウェハ5
をプラズマ等の価電粒子のある雰囲気にさらすと、ウェ
ハ5の電位を零にするような電荷がプラズマから供給さ
れる。この後、プラズマ処理を終了させ、直流高電圧電
源8,9を切ると、このプラズマから供給された電荷が
そのまま残り、この残留した電荷により直流高電圧電源
8,9を切った後もウェハ5は吸着力を維持するため、
ウェハ5を静電吸着装置1から剥離できなくなる。この
ように吸着力を保持しているウェハ5を補助的に力を加
えて剥離させようとした場合、ウェハ5に無理な力が加
えられるため、ウェハ5が破損するおそれがあるという
問題点があった。
The wafer 5 electrostatically attracted in this state
When the wafer 5 is exposed to an atmosphere containing valence particles such as plasma, charges are supplied from the plasma to bring the potential of the wafer 5 to zero. After that, when the plasma processing is finished and the DC high voltage power supplies 8 and 9 are turned off, the charge supplied from the plasma remains, and even after the DC high voltage power supplies 8 and 9 are turned off, the remaining charge remains on the wafer. In order to maintain the adsorption power,
The wafer 5 cannot be peeled off from the electrostatic chuck device 1. If an attempt is made to peel off the wafer 5, which maintains the suction force in this way, by applying an auxiliary force, there is a problem that the wafer 5 may be damaged because an unreasonable force is applied to the wafer 5. there were.

【0009】また、上記の如くウェハ5に電荷が残って
いる状態では、各電極2,3に印加する電圧の極性を変
えるだけでウェハ5の極性が変わってしまう。このため
、RIE装置やECR(電子サイクロトロン共鳴)エッ
チング装置等のプラズマエッチング装置に従来の静電吸
着装置1を使用した場合、各電極2,3の印加電圧の極
性が変わるとエッチング中における吸着力が変化する(
ウェハ5の電位が正である場合は、負のセルフバイアス
電圧のために各電極2,3とウェハ5との間に電位差を
生じ、ウェハ5の吸着力が増す)。
[0009] Furthermore, in a state where charges remain on the wafer 5 as described above, the polarity of the wafer 5 can be changed simply by changing the polarity of the voltage applied to each electrode 2, 3. For this reason, when the conventional electrostatic adsorption device 1 is used in a plasma etching device such as an RIE device or an ECR (electron cyclotron resonance) etching device, if the polarity of the voltage applied to each electrode 2 and 3 changes, the adsorption force during etching will increase. changes (
When the potential of the wafer 5 is positive, a potential difference is generated between each electrode 2, 3 and the wafer 5 due to the negative self-bias voltage, and the attraction force of the wafer 5 increases).

【0010】このように、各電極2,3の印加電圧の極
性変化で静電吸着装置1のウェハ5に対する吸着力が変
わってしまうと、ウェハ5の冷却性能が変わってくる。 従って、印加電圧の極性切り換え前後のウェハ5でエッ
チング中のウェハ温度が異なり、エッチング形状及びエ
ッチングレートの変化をもたらし安定したエックングが
実施できないという問題点があった。
As described above, when the adsorption force of the electrostatic adsorption device 1 to the wafer 5 changes due to a change in the polarity of the voltage applied to each electrode 2, 3, the cooling performance of the wafer 5 changes. Therefore, the wafer temperature during etching differs between the wafer 5 before and after the polarity of the applied voltage is changed, causing a change in the etching shape and etching rate, resulting in a problem that stable etching cannot be performed.

【0011】本発明は上記の点に鑑みてなされたもので
あり、正確なウェハ搬送を実現できると共に再現性の良
いウェハ温度制御を行いうる静電吸着装置を提供するこ
とを目的とする。
The present invention has been made in view of the above points, and an object of the present invention is to provide an electrostatic chuck device that can realize accurate wafer transport and control wafer temperature with good reproducibility.

【0012】0012

【課題を解決するための手段】上記課題を解決するため
に、本発明では、正電圧を印加する第1の電極と、負電
圧を印加する第2の電極を具備し、この第1及び第2の
電極により被吸着物を静電的に吸着する静電吸着装置に
おいて、上記被吸着物の電位が零ボルトとなるよう、上
記第1及び第2の電極に印加する電圧を制御することを
特徴とするものである。
[Means for Solving the Problems] In order to solve the above problems, the present invention includes a first electrode to which a positive voltage is applied and a second electrode to which a negative voltage is applied, and the first and second electrodes are provided. In an electrostatic attraction device that electrostatically attracts an object to be attracted by a second electrode, the voltage applied to the first and second electrodes is controlled so that the potential of the object to be attracted becomes zero volts. This is a characteristic feature.

【0013】また、正電圧を印加する第1の電極と、負
電圧を印加する第2の電極を具備し、この第1及び第2
の電極により被吸着物を静電的に吸着する静電吸着装置
において、上記第1及び第2の電極に吸着された状態に
おける該被吸着物の電位を測定する静電位計を設け、こ
の静電位計が測定する被吸着物の電位に基づき、被吸着
物の電位が零ボルトとなるよう、上記第1及び第2の電
極に印加する電圧を制御する構成としたことを特徴とす
るものである。
[0013] The invention also includes a first electrode to which a positive voltage is applied and a second electrode to which a negative voltage is applied;
An electrostatic adsorption device that electrostatically adsorbs an object to be adsorbed by the electrodes is provided with an electrostatic meter that measures the potential of the object while it is adsorbed to the first and second electrodes. It is characterized by a configuration in which the voltage applied to the first and second electrodes is controlled based on the potential of the attracted object measured by an electrometer so that the potential of the attracted object becomes zero volts. be.

【0014】[0014]

【作用】静電吸着装置を上記構成とすることにより、電
極製造誤差等による各電極間の面積差、被吸着物と各電
極間に介在する絶縁物の厚さのバラツキ、及びこの絶縁
物の不均質による比誘電率のバラツキ等に拘わらず、被
吸着物の電位は常に零ボルトとなる。従って、各電極に
印加する電圧を切ると、被吸着物に対する吸着力はなく
なるため、容易に被吸着物を静電吸着装置より取り外す
ことができる。
[Function] By configuring the electrostatic adsorption device as described above, the area difference between each electrode due to electrode manufacturing error, the variation in the thickness of the insulator interposed between the object to be adsorbed and each electrode, and the difference in the thickness of the insulator are eliminated. Regardless of variations in relative permittivity due to non-uniformity, the potential of the adsorbed object is always zero volts. Therefore, when the voltage applied to each electrode is cut off, the attraction force against the object to be attracted disappears, so that the object to be attracted can be easily removed from the electrostatic attraction device.

【0015】また、印加電圧の極性切り換えても吸着力
が変化するようなことはなく、エッチング中のウェハ温
度は安定し、エッチング形状及びエッチングレートを安
定させることができる。
Furthermore, even if the polarity of the applied voltage is changed, the adsorption force does not change, the wafer temperature during etching is stabilized, and the etched shape and etching rate can be stabilized.

【0016】[0016]

【実施例】次に本発明の実施例について図面と共に説明
する。図1は本発明の一実施例である静電吸着装置20
を示す概略構成図である。同図に示す静電吸着装置20
は、大略すると、静電チャック21,静電位計プロープ
22,静電チャック電源23により構成されている。
Embodiments Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows an electrostatic adsorption device 20 which is an embodiment of the present invention.
FIG. Electrostatic adsorption device 20 shown in the figure
Roughly speaking, it is composed of an electrostatic chuck 21, an electrostatic meter probe 22, and an electrostatic chuck power source 23.

【0017】静電チャック21は、図2に示されるよう
に同心円状に4極の電極24〜27が形成されている。 また、電極24と25及び電極26と27は夫々対をな
しており、2極式の静電チャックを構成している。いま
、電極24,25をA極(正電極)、電極26,27を
B極(負電極)とすると、A極の面積SA とB極の面
積SB は夫々SA =61 cm2  ,SB =4
3 cm2  である。また、各電極24〜27は銅に
より形成されている。
As shown in FIG. 2, the electrostatic chuck 21 has four electrodes 24 to 27 formed concentrically. Furthermore, the electrodes 24 and 25 and the electrodes 26 and 27 form a pair, respectively, and constitute a bipolar electrostatic chuck. Now, if the electrodes 24 and 25 are A poles (positive electrodes) and the electrodes 26 and 27 are B poles (negative electrodes), the area SA of the A pole and the area SB of the B pole are SA = 61 cm2 and SB = 4, respectively.
It is 3 cm2. Moreover, each electrode 24-27 is formed of copper.

【0018】上記の各電極24〜27は、アルミニウム
製台座28(厚さ15mm)上に配設されたシリコン樹
脂29の上部に形成されている。更にこの各電極24〜
27の上部には、絶縁物であるアルミナ(Al2O3)
製のセラミック30が形成されている。このセラミック
30の厚さは0.25mmである。また、アルミニウム
製台座28の中央には孔28aが形成されており、各電
極24〜27に接続されたリード線31はこの孔28a
を通りアルミニウム製台座28の裏側に引き出されてい
る。また、この孔28aは、リード線31を引き出した
後、エポキシ樹脂32で封止されている。
Each of the electrodes 24 to 27 described above is formed on a silicone resin 29 placed on an aluminum pedestal 28 (thickness 15 mm). Furthermore, each electrode 24~
On the top of 27, there is alumina (Al2O3) which is an insulator.
A ceramic 30 made of The thickness of this ceramic 30 is 0.25 mm. Further, a hole 28a is formed in the center of the aluminum pedestal 28, and the lead wires 31 connected to each electrode 24 to 27 are connected to the hole 28a.
It passes through and is pulled out to the back side of the aluminum pedestal 28. Further, this hole 28a is sealed with epoxy resin 32 after the lead wire 31 is drawn out.

【0019】再び図1に戻って説明する。静電位計プロ
ーブ22は静電チャック21と対向するよう電極24〜
27の上部に配設されている。この静電位計プローブ2
2は、電極24〜27に吸着されるウェハ33に生じる
電位を測定するものである。この静電位プローブ22は
静電チャック電源23に接続されている。
Referring back to FIG. 1, the explanation will be made again. The electrostatic meter probe 22 has electrodes 24 to 24 facing the electrostatic chuck 21.
It is arranged on the upper part of 27. This electrostatic meter probe 2
2 measures the potential generated in the wafer 33 attracted to the electrodes 24-27. This electrostatic potential probe 22 is connected to an electrostatic chuck power supply 23.

【0020】静電チャック電源23は、静電位プローブ
22から供給される信号より静電位を演算する静電位計
34を内設した制御部35、A極(正電極)24,25
に印加される電圧を可変する印加電圧可変部36、B極
(負電極)26,27に印加される電圧を可変する印加
電圧可変部37、印加電圧可変部36で設定された電圧
値の電圧をA極(正電極)24,25に印加する正電圧
電源38、印加電圧可変部37で設定された電圧値の電
圧をB極(負電極)26,27に印加する負電圧電源3
9とにより構成されている。
The electrostatic chuck power supply 23 includes a control section 35 that includes an electrostatic meter 34 that calculates an electrostatic potential from a signal supplied from the electrostatic potential probe 22, and an A electrode (positive electrode) 24, 25.
an applied voltage variable section 36 that varies the voltage applied to the B poles (negative electrodes) 26 and 27; an applied voltage variable section 37 that varies the voltage applied to the B poles (negative electrodes) 26 and 27; A positive voltage power supply 38 applies the voltage to the A poles (positive electrodes) 24 and 25, and a negative voltage power supply 3 applies a voltage of the voltage value set by the applied voltage variable section 37 to the B poles (negative electrodes) 26 and 27.
9.

【0021】制御部35は、静電位計34がウェハ33
に発生している電位に基づき、この電位を零ボルトとす
るためにA極24,25及びB極26,27に印加する
電圧値を演算する。ウェハ33の電位を零ボルトとする
ためのA極24,25及びB極26,27に印加する電
圧値が求められると、制御部35は印加電圧可変部36
,37にこの電圧値を伝え、印加電圧可変部36,37
は正電圧電源38及び負電圧電源39を駆動させて、ウ
ェハ33の電位を零ボルトとする電圧値の直流電圧をA
極24,25及びB極26,27に印加する。これによ
り、ウェハ33の電位を零ボルトとすることができる。
The control section 35 controls the electrostatic potential meter 34 to
Based on the potential generated at , the voltage values to be applied to the A poles 24 and 25 and the B poles 26 and 27 are calculated in order to set this potential to zero volts. When the voltage values to be applied to the A poles 24, 25 and the B poles 26, 27 for setting the potential of the wafer 33 to zero volts are determined, the control unit 35 controls the applied voltage variable unit 36.
, 37 to transmit this voltage value to the applied voltage variable parts 36, 37.
drives the positive voltage power supply 38 and the negative voltage power supply 39 to generate a DC voltage A with a voltage value that makes the potential of the wafer 33 zero volts.
It is applied to the poles 24 and 25 and the B poles 26 and 27. Thereby, the potential of the wafer 33 can be set to zero volts.

【0022】このように、本発明に係る静電吸着装置2
0では、ウェハ33の電位を零ボルトとすることができ
るため、電極製造誤差等による各電極間24〜27の面
積差、ウェハ33と各電極24〜27との間に介在する
セラミック30の厚さのバラツキ、及びこのセラミック
30の不均質による比誘電率のバラツキ等があったとし
ても、ウェハ33の電位は静電位計プローブ22,静電
チャック電源23により常に零ボルトとなる。従って、
各電極24〜27に印加する電圧を切ると、ウェハ33
に対する吸着力はなくなるため、容易にウェハ33を静
電チャック21から剥離させることができる。また、ウ
ェハ33の電位の電位が常に零ボルトとなることにより
、静電吸着装置20をRIE装置やECRエッチング装
置に適用し、印加電圧の極性切り換えても吸着力が変化
するようなことはなく、エッチング中のウェハ温度は安
定し、エッチング形状及びエッチングレートを安定させ
ることができる。
As described above, the electrostatic adsorption device 2 according to the present invention
0, the potential of the wafer 33 can be set to zero volts, so the difference in area between the electrodes 24 to 27 due to electrode manufacturing errors, etc., and the thickness of the ceramic 30 interposed between the wafer 33 and each electrode 24 to 27 Even if there are variations in the dielectric constant due to the non-uniformity of the ceramic 30, the potential of the wafer 33 is always set to zero volts by the electrostatic meter probe 22 and the electrostatic chuck power supply 23. Therefore,
When the voltage applied to each electrode 24 to 27 is cut off, the wafer 33
Since the adsorption force on the electrostatic chuck 21 is eliminated, the wafer 33 can be easily peeled off from the electrostatic chuck 21. Furthermore, since the potential of the wafer 33 is always zero volts, the electrostatic adsorption device 20 can be applied to an RIE device or an ECR etching device, and the adsorption force will not change even if the polarity of the applied voltage is switched. , the wafer temperature during etching is stabilized, and the etching shape and etching rate can be stabilized.

【0023】図3及び図4は、本発明に係る静電吸着装
置20の効果を実証するために本発明者が行った実験結
果を示している。
FIGS. 3 and 4 show the results of experiments conducted by the inventor to demonstrate the effects of the electrostatic chuck device 20 according to the present invention.

【0024】図3はウェハ33の剥離テストの実験結果
を示している。同図(A)に示すのは本発明に係る静電
吸着装置20の実験結果であり、同図(B)に示すのは
従来の静電吸着装置の実験結果である。実験の方法とし
ては、電極に直流電圧を印加して静電チャックにウェハ
を吸着させ、この状態でウェハをプラズマにさらした後
、直流電圧を切り、ウェハが剥離するかどうかのテスト
を行った。また実験条件としては、セルフバイアス: 
300W, アルゴンガス(Ar)流量:100scc
m ,圧力:0.2Torr ,処理時間:30秒で行
った。また、同図のウェハ剥離テストの欄においてで示
すのは、何ら力を加えることなくウェハを剥離すること
ができたことを表しており、また×はウェハを剥離する
ことがでなかったことを示している。
FIG. 3 shows the experimental results of a peel test on the wafer 33. FIG. 3A shows the experimental results of the electrostatic chuck device 20 according to the present invention, and FIG. 10B shows the experimental results of the conventional electrostatic chuck device. The experimental method involved applying DC voltage to the electrodes to attract the wafer to an electrostatic chuck, exposing the wafer to plasma in this state, then turning off the DC voltage and testing whether the wafer would peel off. . Also, the experimental conditions were self-bias:
300W, Argon gas (Ar) flow rate: 100scc
m, pressure: 0.2 Torr, processing time: 30 seconds. In addition, in the wafer peeling test column of the same figure, indicates that the wafer could be peeled off without applying any force, and × indicates that the wafer could not be peeled off. It shows.

【0025】同図に示すように、本発明に係る静電吸着
装置20では電極電圧の増減に拘わらず直流電圧を切っ
た時点で直ちにウェハ33を静電チャック21から剥離
することができた。これに対して従来装置では、各々の
電極電圧値において静電チャックからウェハを剥離する
ことができなかった。
As shown in the figure, in the electrostatic chuck device 20 according to the present invention, the wafer 33 could be peeled off from the electrostatic chuck 21 immediately after the DC voltage was turned off, regardless of the increase or decrease in the electrode voltage. On the other hand, with the conventional apparatus, it was not possible to separate the wafer from the electrostatic chuck at each electrode voltage value.

【0026】一方、図4はエッチング中のウェハの最高
到達温度を求めた実験結果を示している。この図におい
て(A)は本願発明に係る装置20の実験結果を示して
おり、(B)は従来装置の実験結果を示している。この
実験では、本発明に係る静電吸着装置20では、A極2
4,25に印加する電圧値(VA )を 700V、B
極26,27に印加する電圧値(VB )を1000V
とし、ウェハ1枚おきにVA ,VB の極静を切り換
えてエッチングの連続処理を行った時のエッチング中の
ウェハの最高到達温度を測定した。また、従来装置では
、VA =VB =0(ボルト)でウェハ1枚おきにV
A ,VB の極静を切り換えてエッチングの連続処理
を行った時のエッチング中のウェハの最高到達温度を測
定した。
On the other hand, FIG. 4 shows the experimental results for determining the maximum temperature of the wafer during etching. In this figure, (A) shows the experimental results of the device 20 according to the present invention, and (B) shows the experimental results of the conventional device. In this experiment, in the electrostatic adsorption device 20 according to the present invention, the A pole 2
The voltage value (VA) applied to 4, 25 is 700V, B
The voltage value (VB) applied to poles 26 and 27 is 1000V.
Then, the maximum temperature reached by the wafer during etching was measured when continuous etching was performed by switching between VA and VB for every other wafer. In addition, in the conventional equipment, when VA = VB = 0 (volts), V
The maximum temperature reached by the wafer during etching was measured when continuous etching was performed by switching between A and VB.

【0027】同図より、本発明に係る静電吸着装置20
ではウェハの最高到達温度は72℃〜79℃(温度の範
囲:7℃)に対して、従来装置では69℃〜82℃(温
度の範囲:13℃)であり、従来装置に比べて本発明に
係る静電吸着装置20の方がウェハ間の温度差が小さい
ことが判る。よって同図より、本発明に係る静電吸着装
置20によれば、ウェハ温度は安定しエッチング形状及
びエッチングレートを安定させられることが実証された
From the figure, an electrostatic adsorption device 20 according to the present invention is shown.
The maximum temperature reached by the wafer was 72°C to 79°C (temperature range: 7°C), whereas with the conventional equipment it was 69°C to 82°C (temperature range: 13°C). It can be seen that the temperature difference between wafers is smaller in the electrostatic chuck device 20 according to the above. Therefore, from the figure, it was verified that the electrostatic adsorption device 20 according to the present invention can stabilize the wafer temperature and stabilize the etching shape and etching rate.

【0028】上記してきた実施例では、静電位計プロー
ブ22によりウェハ33に発生する電位を直接的に測定
し、この測定値に基づき静電チャック電源23で各電極
24〜27に印加する電圧値を制御する構成とすること
によりウェハ33の電位を零ボルトとするよう構成した
In the embodiment described above, the potential generated on the wafer 33 is directly measured by the electrostatic meter probe 22, and the voltage value applied to each electrode 24 to 27 by the electrostatic chuck power supply 23 is determined based on this measured value. By controlling the voltage, the potential of the wafer 33 is set to zero volts.

【0029】しかるに、上記したようにウェハが電位を
持つ原因となるのは、製造誤差等により生ずる各電極の
面積差、ウェハと各電極間に介在する絶縁物(セラミッ
ク等)の厚さのバラツキ、絶縁物の不均質による比誘電
率のバラツキ等の定量的な値である。従って、例えば静
電吸着装置の出荷時にこれらの原因を踏まえた上で、各
電極に印加する電圧値を、ウェハ電位を零ボルトとする
電圧値に予め設定調整しておくことにより、ウェハに電
位が発生するのを防止することができる(この方法は、
上記のように直接的にウェハ電位を測定する方法と比べ
ると精度は落ちる)。以下、この方法における各電極に
印加する印加電圧の電圧値の求め方について説明する(
尚、各構成の符号については図1に用いた符号を付して
説明する)。
However, as mentioned above, the reason why the wafer has a potential is due to differences in the area of each electrode caused by manufacturing errors, etc., and variations in the thickness of the insulator (ceramic, etc.) interposed between the wafer and each electrode. , is a quantitative value of the variation in relative dielectric constant due to non-uniformity of the insulator. Therefore, for example, by taking these causes into consideration when shipping an electrostatic adsorption device, and adjusting the voltage value applied to each electrode in advance to a voltage value that makes the wafer potential zero volts, the potential of the wafer can be increased. can be prevented from occurring (this method
(The accuracy is lower than the method of directly measuring the wafer potential as described above.) Below, we will explain how to determine the voltage value of the applied voltage applied to each electrode in this method (
Note that the reference numerals used in FIG. 1 will be used to explain each component.

【0030】いま、電圧印加時に上記の原因に起因して
ウェハに生じる電荷量をQ、A電極24,25とウェハ
33との間の静電容量をCA 、B電極26,27とウ
ェハ33との間の静電容量をCB とすると、上記電荷
量をQは、 Q=CA ×VA +CB ×VB  で表すことができる。従って、 CA ×VA +CB ×VB =0 となるように、印加電圧VA ,VB を定めることに
より、ウェハ電荷量Qを零とすることができ、ウェハ電
位を零ボルトとすることができる。
Now, the amount of charge generated on the wafer due to the above causes when voltage is applied is Q, the capacitance between the A electrodes 24, 25 and the wafer 33 is CA, and the capacitance between the B electrodes 26, 27 and the wafer 33 is If the electrostatic capacitance between them is CB, then the amount of charge Q can be expressed as Q=CA x VA + CB x VB. Therefore, by determining the applied voltages VA and VB so that CA x VA + CB x VB = 0, the wafer charge amount Q can be made zero, and the wafer potential can be made zero volts.

【0031】また、各電極24〜27とウェハ33との
間の静電容量は、セラミック30の誘電率ε,電極とウ
ェハ33との間に介在するセラミック30の厚さd,電
極の面積SA ,SB を変数とした関数で表せるから
、セラミック30の厚さd及び誘電率εが均一でかつ均
質である場合には、ウェハ電荷量Qは電極の面積SA 
,SB を変数とした一次関数とみなすことができる。 よって、ウェハ電荷量Qは、 Q=k・(SA ×VA +SB ×VB )但し、k
は定数 で表すことができる。従って、 SA ×VA +SB ×VB =0 となるように、印加電圧VA ,VB を定めることに
より、ウェハ電荷量Qを零とすることができ、ウェハ電
位を零ボルトとすることができる。
Further, the capacitance between each electrode 24 to 27 and the wafer 33 is determined by the dielectric constant ε of the ceramic 30, the thickness d of the ceramic 30 interposed between the electrode and the wafer 33, and the area SA of the electrode. , SB as variables, so if the thickness d and dielectric constant ε of the ceramic 30 are uniform and homogeneous, the wafer charge Q is equal to the electrode area SA
, SB can be regarded as a linear function with variables. Therefore, the wafer charge amount Q is: Q=k・(SA ×VA +SB ×VB) However, k
can be expressed as a constant. Therefore, by determining the applied voltages VA and VB so that SA x VA + SB x VB = 0, the wafer charge amount Q can be made zero, and the wafer potential can be made zero volts.

【0032】[0032]

【発明の効果】上述の如く本発明では、被吸着物の電位
が零ボルトとなるような電圧を各電極に印加することに
より、プラズマ等の価電粒子のある雰囲気にさらした後
でも、被吸着物に電荷が溜まらないため、電極に対する
電圧印加を停止した後速やかに被吸着物を装置より剥離
することができ、また電極に印加する電圧の極性を切り
換えても吸着力は一定となるため、再現性の良いウェハ
温度制御を行うことができ、被吸着物に対して安定した
加工を行うことができる等の特長を有する。
Effects of the Invention As described above, in the present invention, by applying a voltage to each electrode such that the potential of the target object becomes zero volts, the target object can be easily removed even after being exposed to an atmosphere containing valence particles such as plasma. Since no electric charge is accumulated on the adsorbed object, the adsorbed object can be quickly peeled off from the device after stopping the voltage application to the electrode, and the adsorption force remains constant even if the polarity of the voltage applied to the electrode is changed. It has the advantages of being able to perform wafer temperature control with good reproducibility and being able to perform stable processing on objects to be attracted.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の一実施例である静電吸着装置の概略構
成図である。
FIG. 1 is a schematic configuration diagram of an electrostatic adsorption device that is an embodiment of the present invention.

【図2】静電チャックを拡大して示す図である。FIG. 2 is an enlarged view of an electrostatic chuck.

【図3】本発明装置の効果を示すため本発明者が行った
実験結果を示す図である。
FIG. 3 is a diagram showing the results of an experiment conducted by the inventor to demonstrate the effects of the device of the present invention.

【図4】本発明装置の効果を示すため本発明者が行った
実験結果を示す図である。
FIG. 4 is a diagram showing the results of an experiment conducted by the inventor to demonstrate the effects of the device of the present invention.

【図5】従来における静電吸着装置の一例を示す概略構
成図である。
FIG. 5 is a schematic configuration diagram showing an example of a conventional electrostatic adsorption device.

【図6】図5の静電吸着装置をRIE装置に配設したと
きの等価回路を示す図である。
FIG. 6 is a diagram showing an equivalent circuit when the electrostatic adsorption device of FIG. 5 is installed in an RIE apparatus.

【符号の説明】[Explanation of symbols]

20  静電吸着装置 21  静電チャック 22  静電位計プローブ 23  静電チャック電源 24,25  A電極 26,27  B電極 28  Al製台座 29  シリコン樹脂 30  セラミック(絶縁物) 32  エポキシ樹脂 33  ウェハ 34  静電位計 35  制御部 36,37  印加電圧可変部 38  正電圧電源 38  負電圧電源 20 Electrostatic adsorption device 21 Electrostatic chuck 22 Electrostatic meter probe 23 Electrostatic chuck power supply 24, 25 A electrode 26, 27 B electrode 28 Al pedestal 29 Silicone resin 30 Ceramic (insulator) 32 Epoxy resin 33 Wafer 34 Electrostatic potential meter 35 Control section 36, 37 Applied voltage variable section 38 Positive voltage power supply 38 Negative voltage power supply

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】  正電圧を印加する第1の電極(24,
25)と、負電圧を印加する第2の電極(26,27)
を具備し、該第1及び第2の電極(24〜27)により
被吸着物(33)を静電的に吸着する静電吸着装置にお
いて、該被吸着物(33)の電位が零ボルトとなるよう
、該第1及び第2の電極(24〜27)に印加する電圧
を制御することを特徴とする静電吸着装置。
Claim 1: A first electrode (24,
25) and a second electrode (26, 27) that applies a negative voltage.
In an electrostatic adsorption device that electrostatically adsorbs an object (33) using the first and second electrodes (24-27), the electric potential of the object (33) is zero volts. An electrostatic chuck device characterized in that the voltage applied to the first and second electrodes (24 to 27) is controlled so that the voltages applied to the first and second electrodes (24 to 27) are controlled.
【請求項2】  請求項1の静電吸着装置において、該
第1の電極(24,25)と該被吸着物(33)との間
の静電容量をC1とし、該第2の電極(26,27)と
該被吸着物(33)との間の静電容量をC2とし、かつ
、該第1の電極(24,25)の電極に印加する電圧を
V1とし、該第2の電極(26,27)の電極に印加す
る電圧をV2としたとき、C1×V1=C2×V2とな
るよう該第1及び第2の電極(24〜27)に印加する
電圧を選定してなることを特徴とする静電吸着装置。
2. In the electrostatic attraction device according to claim 1, the capacitance between the first electrode (24, 25) and the object to be attracted (33) is C1, and the second electrode ( 26, 27) and the object to be attracted (33) is C2, the voltage applied to the first electrode (24, 25) is V1, and the second electrode When the voltage applied to the electrodes (26, 27) is V2, the voltage applied to the first and second electrodes (24 to 27) is selected so that C1 x V1 = C2 x V2. An electrostatic adsorption device featuring:
【請求項3】  請求項1の静電吸着装置において、該
第1の電極(24,25)の電極面積をS1とし、該第
2の電極(26,27)の電極面積をS2とし、かつ、
該第1の電極(24,25)の電極に印加する電圧をV
1とし、該第2の電極(26,27)の電極に印加する
電圧をV2としたとき、S1×V1=S2×V2となる
よう該第1及び第2の電極(24〜27)に印加する電
圧を選定してなることを特徴とする静電吸着装置。
3. The electrostatic adsorption device according to claim 1, wherein the first electrode (24, 25) has an electrode area S1, the second electrode (26, 27) has an electrode area S2, and ,
The voltage applied to the first electrodes (24, 25) is V
1, and when the voltage applied to the second electrode (26, 27) is V2, apply it to the first and second electrodes (24 to 27) so that S1 x V1 = S2 x V2. An electrostatic adsorption device characterized in that it is made by selecting a voltage to be used.
【請求項4】正電圧を印加する第1の電極(24,25
)と、負電圧を印加する第2の電極(26,27)を具
備し、該第1及び第2の電極(24〜27)により被吸
着物(33)を静電的に吸着する静電吸着装置において
、該第1及び第2の電極(24〜27)に吸着された状
態における該被吸着物(33)の電位を測定する静電位
計(22,34)を設け、該静電位計(22,34)が
測定する該被吸着物(33)の電位に基づき、該被吸着
物(33)の電位が零ボルトとなるよう、該第1及び第
2の電極(24〜27)に印加する電圧を制御する構成
としたことを特徴とする静電吸着装置。
Claim 4: A first electrode (24, 25) to which a positive voltage is applied.
), and a second electrode (26, 27) to which a negative voltage is applied, and an electrostatic device that electrostatically attracts an object to be attracted (33) by the first and second electrodes (24 to 27). The adsorption device is provided with an electrostatic meter (22, 34) that measures the potential of the adsorbed object (33) in a state of being adsorbed to the first and second electrodes (24-27), and the electrostatic electrometer Based on the potential of the object (33) measured by (22, 34), the first and second electrodes (24 to 27) are connected so that the potential of the object (33) is zero volts. An electrostatic chuck device characterized in that it is configured to control an applied voltage.
JP3116313A 1991-05-21 1991-05-21 Electrostatic attraction apparatus Withdrawn JPH04343447A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3116313A JPH04343447A (en) 1991-05-21 1991-05-21 Electrostatic attraction apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3116313A JPH04343447A (en) 1991-05-21 1991-05-21 Electrostatic attraction apparatus

Publications (1)

Publication Number Publication Date
JPH04343447A true JPH04343447A (en) 1992-11-30

Family

ID=14683906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3116313A Withdrawn JPH04343447A (en) 1991-05-21 1991-05-21 Electrostatic attraction apparatus

Country Status (1)

Country Link
JP (1) JPH04343447A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06120329A (en) * 1992-08-20 1994-04-28 Fujitsu Ltd Electrostatic attractor for wafer, electrostatic attraction method for wafer, and breakup method for wafer, and dry etching method
JP2016115819A (en) * 2014-12-16 2016-06-23 株式会社日立ハイテクノロジーズ Plasma processing apparatus
JP2019036747A (en) * 2018-10-19 2019-03-07 株式会社日立ハイテクノロジーズ Plasma treatment apparatus and plasma treatment method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06120329A (en) * 1992-08-20 1994-04-28 Fujitsu Ltd Electrostatic attractor for wafer, electrostatic attraction method for wafer, and breakup method for wafer, and dry etching method
JP2016115819A (en) * 2014-12-16 2016-06-23 株式会社日立ハイテクノロジーズ Plasma processing apparatus
JP2019036747A (en) * 2018-10-19 2019-03-07 株式会社日立ハイテクノロジーズ Plasma treatment apparatus and plasma treatment method

Similar Documents

Publication Publication Date Title
US8149562B2 (en) System for decharging a wafer or substrate after dechucking from an electrostatic chuck
KR100281935B1 (en) Self-bias measuring method and apparatus and electrostatic adsorption apparatus
US6297165B1 (en) Etching and cleaning methods
EP1166323B1 (en) Method and apparatus for compensating non-uniform wafer processing in plasma processing
US5793192A (en) Methods and apparatuses for clamping and declamping a semiconductor wafer in a wafer processing system
US7799238B2 (en) Plasma processing method and plasma processing apparatus
US11107694B2 (en) Method for releasing sample and plasma processing apparatus using same
JPH06326176A (en) Method and device for measuring self bias, and electrostatic attraction device
US5835333A (en) Negative offset bipolar electrostatic chucks
JPH05160076A (en) Dry etching device
TW200410332A (en) Method and device for plasma treatment
JP2976861B2 (en) Electrostatic chuck and method of manufacturing the same
JPH04343447A (en) Electrostatic attraction apparatus
GB2293689A (en) Electrostatic chuck
JPH1027780A (en) Plasma treating method
JPH04288818A (en) Semiconductor manufacturing apparatus and manufacture of semiconductor device
JP2002252276A (en) Method and device for measuring self bias, and electrostatic attraction device
JPH0817808A (en) Plasma treatment method and device, substrate elimination method, and application voltage controller
JP3792865B2 (en) Semiconductor device manufacturing apparatus and dry etching method
CN111383895B (en) Plasma etching equipment and sheath voltage measuring method thereof
JPS62287950A (en) Electrostatic attracting device
JP2001230310A (en) Apparatus and method for evaluating electrostatic chuck
JPH0786383A (en) Electrostatic device and method therefor
JPH09129716A (en) Electrostatic attraction apparatus, manufacture thereof and wafer processing method
JPH09321128A (en) Electrostatic chuck device

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980806