JPH0434341A - Ultraviolet absorption detector - Google Patents

Ultraviolet absorption detector

Info

Publication number
JPH0434341A
JPH0434341A JP14277790A JP14277790A JPH0434341A JP H0434341 A JPH0434341 A JP H0434341A JP 14277790 A JP14277790 A JP 14277790A JP 14277790 A JP14277790 A JP 14277790A JP H0434341 A JPH0434341 A JP H0434341A
Authority
JP
Japan
Prior art keywords
light
concave mirror
slit
sample
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14277790A
Other languages
Japanese (ja)
Other versions
JP2874288B2 (en
Inventor
Tamizo Matsuura
松浦 民三
Katsuya Tazaki
田崎 克也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP14277790A priority Critical patent/JP2874288B2/en
Publication of JPH0434341A publication Critical patent/JPH0434341A/en
Application granted granted Critical
Publication of JP2874288B2 publication Critical patent/JP2874288B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To make the title detector resistant to a change in environment and to facilitate optical adjustment by forming first and second spherical surfaces on a third concave mirror and by specifying the relationship in disposition of a slit for sample light with a slit for comparison light and of a sensor for sample light with a sensor for comparison light. CONSTITUTION:A light reflected by a first spherical surface 6a passes through an emission slit 8 disposed in the vicinity of the focus of the spherical surface and is detected by a sample light sensor 10 through a flow cell 9. A light reflected by a second spherical surface 6b passes through an emission slit 11 for comparison light disposed in the vicinity of the focus of this sperical surface and is detected by a comparison light sensor 12 through the flow cell 9. Computation is executed on the basis of a signal of detection by the sample light sensor 10 and a signal of detection by the comparison light sensor 12 in this way, and the absorbance of ultraviolet rays of a fluid flowing through the flow cell 9 is detected.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、高速液体クロマトグラフ等の検出器として使
用されフローセル内を流れる試料に紫外線を照射し該紫
外線の減少量から前記試料中の被測定成分を検出する紫
外線吸収検出器に関する。
Detailed Description of the Invention <Industrial Application Field> The present invention is used as a detector in a high performance liquid chromatograph, etc., and a sample flowing through a flow cell is irradiated with ultraviolet rays, and from the amount of decrease in ultraviolet rays, the amount of exposure in the sample is determined. This invention relates to an ultraviolet absorption detector that detects components to be measured.

〈従来の技術〉 第5図は、紫外線吸収検出器の一般的な構成説明図であ
り、図中、1は光源、2,4.6は凹面鏡、3は入射ス
リット、5は回折格子、7はハーフミラ−18,11は
出射スリット、9はフローセル、10はサンプル光セン
サー、12は比較光センサーである。このような構成か
らなる従来の紫外線吸収検出器において、光源1から照
射された光は凹面鏡2で反射されて入射スリット3に集
光される。また、入射スリット3を通った光は、凹面鏡
4で反射されて平行光となり回折格子5によって種々の
波長の光に分光される。このようにして分光された凹面
鏡6に入射した平行光のうち特定波長の光は、凹面鏡6
の焦点付近に配設されている出射スリット8とフローセ
ル9を通り、すンプル光センサー10で検出される。ま
た、凹面鏡6に入射した平行光の一部は、ハーフミラ−
7で反射されてのち出射スリット11を通り、比較光セ
ンサー12で検出される。
<Prior art> Fig. 5 is a general configuration explanatory diagram of an ultraviolet absorption detector, in which 1 is a light source, 2, 4.6 are concave mirrors, 3 is an entrance slit, 5 is a diffraction grating, are half mirrors 18 and 11 are output slits, 9 is a flow cell, 10 is a sample light sensor, and 12 is a comparison light sensor. In a conventional ultraviolet absorption detector having such a configuration, light emitted from a light source 1 is reflected by a concave mirror 2 and focused on an entrance slit 3. Further, the light passing through the entrance slit 3 is reflected by the concave mirror 4 and becomes parallel light, which is separated by the diffraction grating 5 into light of various wavelengths. Of the parallel light incident on the concave mirror 6 separated in this way, light of a specific wavelength is
The light passes through an exit slit 8 and a flow cell 9 arranged near the focal point of the light beam, and is detected by a sample optical sensor 10. In addition, a part of the parallel light incident on the concave mirror 6 is transmitted to the half mirror.
After being reflected at 7, the light passes through an exit slit 11 and is detected by a comparison optical sensor 12.

一方、フローセル9の中には試料が流されており、該試
料の成分濃度に応じてサンプルの光強度が変化する。こ
のため、A、I、Ioをそれぞれ吸光度、サンプル光出
力、比較光出力とするとき、下式(1)に示すランベル
ト・ベアの法則に従って吸光度Aの変化が出力されるよ
うになっている。
On the other hand, a sample is flowing into the flow cell 9, and the light intensity of the sample changes depending on the component concentration of the sample. Therefore, when A, I, and Io are the absorbance, the sample light output, and the comparative light output, respectively, the change in the absorbance A is output according to the Lambert-Baer law shown in equation (1) below.

A=i’os  (Io/I)・−”・(1)因みに、
サンプル光出力■が0.1%変化すると、吸光度Aは下
式(2)に示すように −4,4×104だけ変化する
ようになる。
A=i'os (Io/I)・-”・(1) By the way,
When the sample light output ■ changes by 0.1%, the absorbance A changes by −4.4×10 4 as shown in equation (2) below.

ΔA=i’os (Io/I)  los  (Io/
(0,999I)) =10s (0,999) =−4,4X10’・・・・・・・・・・・・・・・(
2)〈発明が解決しようとする問題点〉 然しながら、上記従来例においては、環境温度の変化に
よって光学系の筐体が歪んだりハーフミラ−の向きが変
わったり或いは各センサーの温度変化が異なったりして
結果的にサンプル光センサーと比較光センサーの出力が
変化することがある。
ΔA=i'os (Io/I) los (Io/
(0,999I)) =10s (0,999) =-4,4X10'・・・・・・・・・・・・・・・(
2) <Problems to be solved by the invention> However, in the above-mentioned conventional example, the housing of the optical system may be distorted, the orientation of the half mirror may change, or the temperature changes of each sensor may differ due to changes in the environmental temperature. As a result, the outputs of the sample light sensor and comparison light sensor may change.

また、振動など外部からの力によっても変化する。It also changes due to external forces such as vibrations.

このため、試料の濃度が不変であるにも拘らず吸光度出
力が変化するという欠点があった。
Therefore, there is a drawback that the absorbance output changes even though the concentration of the sample remains unchanged.

また、このような吸光度出力の変化をもたらす原因を考
察すると次のようになっていた。即ち、■サンプル光と
比較光が別れ、センサーが離れた位置にある。このため
、周囲温度や歪みが変化したとき、サンプルと比較光の
センサー出力による影響が同一とならず究極的にセンサ
ー出力のノイズや揺らぎ或いはドリフトの原因となって
いた。
Further, when considering the causes of such a change in absorbance output, it was as follows. That is, (1) the sample light and the comparison light are separated, and the sensor is located at a separate position. For this reason, when the ambient temperature or strain changes, the effects of the sensor output on the sample and comparison light are not the same, ultimately causing noise, fluctuation, or drift in the sensor output.

■サンプルと比較光が同一波長でないと光源などのスペ
クトル変化を補償できないにも拘らず、サンプルと比較
光の波長を揃えるのが困難である。
■It is difficult to match the wavelengths of the sample and comparison light, although it is not possible to compensate for spectral changes caused by the light source unless the sample and comparison light have the same wavelength.

本発明は、かかる状況に鑑みてなされものであり、その
課題は、環境変化に強く且つ光学調整の容易な紫外線吸
収検出器を提供することにある。
The present invention was made in view of this situation, and its object is to provide an ultraviolet absorption detector that is resistant to environmental changes and whose optical adjustment is easy.

〈課題を解決するための手段〉 本発明は、光源から照射された光が第1凹面鏡で反射さ
れて入射スリットに集光され、該入射スリットを逼った
光が第2凹面鏡を通って平行光となり回折格子によって
種々の波長の光に分光されて後、第3凹面鏡に入射して
平行となった光のうち特定波長の光を、前記第3凹面鏡
の焦点付近に配設されている出射スリットとフローセル
を通し、光センサーで検出して前記フローセル内を流れ
る試料中の被測定成分を検出する紫外線吸収検出器にお
いて、前記第3凹面鏡に第1及び第2の球面を形成し、
該第1球面の曲面の主軸を上下に平行にすると共に、前
記サンプル光用スリットと比較用スリットを上下に近接
配設し、且つ、前記サンプル光用光センサーと比較用光
センサーを上下に近接配設したことにある。
<Means for Solving the Problems> In the present invention, light emitted from a light source is reflected by a first concave mirror and focused on an entrance slit, and the light passing through the entrance slit passes through a second concave mirror and becomes parallel. After becoming light and being split into light of various wavelengths by a diffraction grating, the light of a specific wavelength among the light that enters the third concave mirror and becomes parallel is emitted by an output device disposed near the focal point of the third concave mirror. In an ultraviolet absorption detector that detects a component to be measured in a sample flowing inside the flow cell by detecting it with an optical sensor through a slit and a flow cell, first and second spherical surfaces are formed on the third concave mirror,
The main axes of the curved surface of the first spherical surface are vertically parallel, the sample light slit and the comparison slit are arranged vertically close to each other, and the sample light optical sensor and the comparison optical sensor are vertically close to each other. This is due to the fact that it was arranged.

〈実施例〉 以下、本発明について図を用いて詳細に説明する。第1
図は本発明実施例の要部構成説明図であり、図中、第5
図と同一記号は同一意味を持たせて使用しここでの重複
説明は省略する。また、第2図は第1図の凹面鏡6から
光センサー10.12に至る部分を横から見た図である
。更に、第3図は凹面鏡6の立体斜視図であり、第4図
は出射スリットの立体斜視図である。また、第3図にお
いて、6aは凹面鏡6の第1球面、6bは凹面鏡6の第
2球面である。尚、第2図乃至第4図において、第5図
と同一記号は同一意味を持たせて使用しここでの重複説
明は省略する。また、第1球面6a、6bの焦点距離は
自由に設定できるが、本発明実施例においては高さだけ
が異なるようになっており、各曲面の主軸は上下に平行
でサンプル光センサー10と比較光センサー11は近い
位1に配設されている。
<Example> Hereinafter, the present invention will be described in detail using the drawings. 1st
The figure is an explanatory diagram of the main part configuration of the embodiment of the present invention, and in the figure, the fifth
The same symbols as in the figures are used with the same meaning, and redundant explanation will be omitted here. 2 is a side view of the portion from the concave mirror 6 to the optical sensor 10.12 in FIG. 1. Furthermore, FIG. 3 is a three-dimensional perspective view of the concave mirror 6, and FIG. 4 is a three-dimensional perspective view of the exit slit. Further, in FIG. 3, 6a is the first spherical surface of the concave mirror 6, and 6b is the second spherical surface of the concave mirror 6. Note that in FIGS. 2 to 4, the same symbols as in FIG. 5 are used with the same meaning, and repeated explanation here will be omitted. Further, the focal lengths of the first spherical surfaces 6a and 6b can be set freely, but in the embodiment of the present invention, only the heights differ, and the principal axes of each curved surface are vertically parallel, compared to the sample optical sensor 10. The optical sensor 11 is arranged at the nearest point 1.

このような構成からなる本発明の実施例において、光源
1から照射された光は凹面鏡2で反射されて入射スリッ
ト3に集光される。また、入射スリット3を通った光は
、凹面鏡4を通って平行光となり回折格子5によって種
々の波長の光に分光される。このようにして分光され凹
面鏡6に入射した平行光のうち特定波長の光は、その焦
点に集光する。
In the embodiment of the present invention having such a configuration, light emitted from the light source 1 is reflected by the concave mirror 2 and focused on the entrance slit 3. Further, the light passing through the entrance slit 3 passes through the concave mirror 4 and becomes parallel light, and is separated by the diffraction grating 5 into lights of various wavelengths. Among the parallel lights that have been separated in this way and are incident on the concave mirror 6, light of a specific wavelength is condensed at its focal point.

ここで、凹面鏡6は第3図に示すように第1球面6aと
第2球面6bの2つの曲面を有しており、第1球面6a
の焦点と第2球面6bの焦点は興なっている。このため
、第1球面6aで反射された光は、その焦点付近に配設
されている出射スリット8を通過して限定されたバンド
幅の光となってフローセル9を通り、サンプル光センサ
ー10で検出される。また、第2球面6bで反射された
光は、その焦点付近に配設されている比較光用出射スリ
ット11を通り、限定されたバンド幅の光となってフロ
ーセル9を通過し比較光センサー12で検出される。こ
のようにして、サンプル光センサー10で検出された検
出信号(I)と比較光センサー12で検出された検出信
号(Io)に基いて前記第(1)式に示したような演算
が行われ、フローセル9内を流れる流体の紫外線吸光度
が検出されるようになっている。
Here, the concave mirror 6 has two curved surfaces, a first spherical surface 6a and a second spherical surface 6b, as shown in FIG.
The focal point of the second spherical surface 6b is aligned with the focal point of the second spherical surface 6b. Therefore, the light reflected by the first spherical surface 6a passes through the output slit 8 disposed near the focal point, becomes light with a limited bandwidth, passes through the flow cell 9, and is detected by the sample light sensor 10. Detected. Further, the light reflected by the second spherical surface 6b passes through the comparison light output slit 11 disposed near the focal point, becomes light with a limited bandwidth, passes through the flow cell 9, and passes through the comparison light sensor 12. Detected in In this way, the calculation shown in equation (1) above is performed based on the detection signal (I) detected by the sample optical sensor 10 and the detection signal (Io) detected by the comparison optical sensor 12. , the ultraviolet absorbance of the fluid flowing inside the flow cell 9 is detected.

尚、本発明は上述の実施例に限定されることなく種々の
変形が可能であり、例えば次の■や■のようにしても良
いものとする。■紫外線吸収検出器だけでなく赤外線そ
の他の光学系検出器に用いる。■凹面鏡の主軸を上下方
向に平行でなく、焦点距離をずらすようにする。
It should be noted that the present invention is not limited to the above-mentioned embodiments, and can be modified in various ways, such as the following (1) and (2). ■Used not only for ultraviolet absorption detectors but also for infrared and other optical system detectors. ■The main axis of the concave mirror is not parallel to the vertical direction, but the focal length is shifted.

〈発明の効果〉 以上詳しく説明したように、本発明は、光源から照射さ
れた光が第1凹面鏡で反射されて入射スリットに集光さ
れ、該入射スリットを通った光が第2凹面鏡を通って平
行光となり回折格子によって種々の波長の光に分光され
て後、第3凹面鏡に入射して平行となった光のうち特定
波長の光を、前記第3凹面鏡の焦点付近に配設されてい
る出射スリットとフローセルを通し、光センサーで検出
して前記フローセル内を流れる試料中の被測定成分を検
出する紫外線吸収検出器において、前記第3凹面鏡に第
1及び第2の球面を形成し、該第1球面の曲面の主軸を
上下に平行にすると共に、前記サンプル光用スリットと
比較用スリットを上下に近接配設し、且つ、前記サンプ
ル光用光センサーと比較用光センサーを上下に近接配設
するように構成した。
<Effects of the Invention> As explained in detail above, the present invention is such that the light emitted from the light source is reflected by the first concave mirror and focused on the entrance slit, and the light that has passed through the entrance slit passes through the second concave mirror. After the light becomes parallel light and is split into light of various wavelengths by a diffraction grating, the light of a specific wavelength among the light that enters the third concave mirror and becomes parallel is arranged near the focal point of the third concave mirror. In an ultraviolet absorption detector that detects a component to be measured in a sample flowing in the flow cell by detecting it with an optical sensor through an exit slit and a flow cell, the third concave mirror is formed with first and second spherical surfaces, The main axes of the curved surface of the first spherical surface are vertically parallel, the sample light slit and the comparison slit are arranged vertically close to each other, and the sample light optical sensor and the comparison optical sensor are vertically close to each other. It was configured to be installed.

このため、次の■〜■のような効果が得られる。Therefore, the following effects (1) to (2) can be obtained.

■サンプル光センサーと比較光センサーを極めて近い位
置に配設でき、温度条件を等しくできるため、センサー
感度の温度による変化を小さくすることができる。
■The sample light sensor and comparison light sensor can be placed very close to each other and the temperature conditions can be made equal, making it possible to minimize changes in sensor sensitivity due to temperature.

■サンプル光センサーと比較光センサーを極めて近い位
置に配設でき、温度条件を等しくできるため、温度変化
に起因して光学系の機械的歪みによって生ずる光の変化
を相殺できる。
■Since the sample light sensor and comparison light sensor can be placed extremely close together and the temperature conditions can be made equal, changes in light caused by mechanical distortion of the optical system due to temperature changes can be canceled out.

■回折格子で分光した光を2つの焦点に集光し、その位
置にスリットや光センサーを配設できる。
■The light separated by the diffraction grating is focused on two focal points, and slits and optical sensors can be placed at those positions.

従って、光の利用効率が高くて明かるい光学系となって
いるうえ、高感度測定も可能である。
Therefore, the optical system is bright with high light utilization efficiency, and high-sensitivity measurements are also possible.

■凹面鏡6における第1球面の主軸と第2球面の主軸が
上下に平行となっており、比較光用出射スリットとサン
プル光用出射スリットは単に上下に配設するだけで同一
波長の光が入射することになる。このなめ、サンプル光
の光学調整を行なえは同時に比較光の光学調整も行われ
ることになって光学調整が楽なる。また、サンプル光と
比較光の光が自動的に同じ光になるため、光源などのス
ペクトル強度が変化しても相殺される。
■The principal axes of the first spherical surface and the principal axes of the second spherical surface in the concave mirror 6 are vertically parallel, and the comparison light output slit and the sample light output slit can be simply arranged above and below to allow light of the same wavelength to enter. I will do it. Because of this, when optical adjustment of the sample light is performed, optical adjustment of the comparison light is also performed at the same time, making the optical adjustment easier. Furthermore, since the sample light and comparison light automatically become the same light, even if the spectral intensity of the light source changes, they cancel each other out.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明実施例の要部構成説明図、第2図は第1
図の凹面鏡から光センサーに至る部分を櫓から見た図、
第3図は凹面鏡の立体斜視図、第4図は出射スリットの
立体斜視図、第5図は従来例の構成説明図、第6図は第
5図のフローセル部分の詳細説明図である。 1・・・光源、2.4.6・・・凹面鏡、6a、6b・
・・球面、3・・・入射スリット、5・・・回折格子、
7・・・ハーフミラ−58,11・・・出射スリット、 9・・・フローセル、10・・・サンプル光センサー1
2・・・比較光センサ 秦 区・ 8 出射スリット 第 図 10訳ブリ召匡−しヘソフr 第 図
Figure 1 is an explanatory diagram of the main part configuration of the embodiment of the present invention, and Figure 2 is the first
A diagram of the part from the concave mirror to the optical sensor seen from the turret,
FIG. 3 is a three-dimensional perspective view of a concave mirror, FIG. 4 is a three-dimensional perspective view of an exit slit, FIG. 5 is an explanatory diagram of the configuration of a conventional example, and FIG. 6 is a detailed explanatory diagram of the flow cell portion of FIG. 1... Light source, 2.4.6... Concave mirror, 6a, 6b.
... Spherical surface, 3 ... Input slit, 5 ... Diffraction grating,
7... Half mirror 58, 11... Output slit, 9... Flow cell, 10... Sample optical sensor 1
2...Comparative optical sensor Hata Ku・8 Output slit Figure 10

Claims (1)

【特許請求の範囲】[Claims]  光源から照射された光が第1凹面鏡で反射されて入射
スリットに集光され、該入射スリットを通った光が第2
凹面鏡を通って平行光となり回折格子によつて種々の波
長の光に分光されて後、第3凹面鏡に入射して平行とな
った光のうち特定波長の光を、前記第3凹面鏡の焦点付
近に配設されている出射スリットとフローセルを通し、
光センサーで検出して前記フローセル内を流れる試料中
の被測定成分を検出する紫外線吸収検出器において、前
記第3凹面鏡に第1及び第2の球面を形成し、これら球
面の各曲面の主軸を上下に平行にすると共に、前記サン
プル光用スリットと比較用スリットを上下に近接配設し
、且つ、前記サンプル光用光センサーと比較用光センサ
ーを上下に近接配設したことを特徴とする紫外線吸収検
出器。
The light emitted from the light source is reflected by the first concave mirror and focused on the entrance slit, and the light that has passed through the entrance slit is focused on the second concave mirror.
After passing through the concave mirror, it becomes parallel light and is separated into light of various wavelengths by a diffraction grating, and then enters a third concave mirror and among the parallel light, a specific wavelength of light is transmitted near the focal point of the third concave mirror. through the exit slit and flow cell arranged in the
In an ultraviolet absorption detector that detects a component to be measured in a sample flowing through the flow cell by an optical sensor, first and second spherical surfaces are formed on the third concave mirror, and the principal axis of each curved surface of these spherical surfaces is The ultraviolet rays are vertically parallel, the sample light slit and the comparison slit are arranged close to each other vertically, and the sample light sensor and the comparison light sensor are arranged close to each other vertically. Absorption detector.
JP14277790A 1990-05-31 1990-05-31 UV absorption detector Expired - Lifetime JP2874288B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14277790A JP2874288B2 (en) 1990-05-31 1990-05-31 UV absorption detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14277790A JP2874288B2 (en) 1990-05-31 1990-05-31 UV absorption detector

Publications (2)

Publication Number Publication Date
JPH0434341A true JPH0434341A (en) 1992-02-05
JP2874288B2 JP2874288B2 (en) 1999-03-24

Family

ID=15323351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14277790A Expired - Lifetime JP2874288B2 (en) 1990-05-31 1990-05-31 UV absorption detector

Country Status (1)

Country Link
JP (1) JP2874288B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010112809A (en) * 2008-11-06 2010-05-20 Shimadzu Corp Spectral fluorescence photometer
JP2016161455A (en) * 2015-03-03 2016-09-05 株式会社日立ハイテクノロジーズ Far-ultraviolet absorbance detector for liquid chromatograph

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010112809A (en) * 2008-11-06 2010-05-20 Shimadzu Corp Spectral fluorescence photometer
JP2016161455A (en) * 2015-03-03 2016-09-05 株式会社日立ハイテクノロジーズ Far-ultraviolet absorbance detector for liquid chromatograph
US10429363B2 (en) 2015-03-03 2019-10-01 Hitachi High-Technologies Corporation Far-ultraviolet absorbance detection device for liquid chromatography

Also Published As

Publication number Publication date
JP2874288B2 (en) 1999-03-24

Similar Documents

Publication Publication Date Title
US5767976A (en) Laser diode gas sensor
US5153679A (en) Apparatus and process for measuring light absorbance or fluorescence in liquid samples
US5923035A (en) Infrared absorption measuring device
US5198872A (en) Apparatus for detecting the wavelength of laser light
JP2963752B2 (en) Device for measuring absorbance of liquid
JP2000506274A (en) Holographic gas analyzer
JPH0434341A (en) Ultraviolet absorption detector
JPS626126A (en) Sensor for analyzing light spectrum
JP3469569B2 (en) Flow cell
JP2001021480A (en) Flow cell and particle measuring apparatus using the flow cell
JP2021051074A (en) Spectroscopic analyzer
JPS58113839A (en) Detector for dew point
JP6750734B2 (en) Flow cell and detector equipped with the flow cell
JPH04168347A (en) Method and apparatus for detecting parallax refractive index for liquid chromatography
JPS61105445A (en) Flow cell for measuring light absorbancy
JPH0434321A (en) Ultraviolet absorption detector
JPH11142241A (en) Measuring apparatus for spectral transmittance
US20190033207A1 (en) Microscopic analysis device
JPH0434340A (en) Ultraviolet absorption detector
JPH02240532A (en) Spectrophotometer
JPH0736051U (en) Gas analyzer
JPH06109539A (en) Optical measuring instrument
JPS6093944A (en) Light-scattering particle measuring apparatus
JPS59203927A (en) Double beam spectrophotometer
JPH05172744A (en) Ultraviolet light absorption detector